Tài liệu Phương pháp giải một số dạng toán về số thập phân ở lớp 5 khóa luận tốt nghiệp

  • Số trang: 56 |
  • Loại file: PDF |
  • Lượt xem: 76 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 27125 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC TÂY BẮC NGUYỄN THỊ BẠCH TUYẾT PHƢƠNG PHÁP GIẢI MỘT SỐ DẠNG TOÁN VỀ SỐ THẬP PHÂN Ở LỚP 5 KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Sơn La, năm 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC TÂY BẮC NGUYỄN THỊ BẠCH TUYẾT PHƢƠNG PHÁP GIẢI MỘT SỐ DẠNG TOÁN VỀ SỐ THẬP PHÂN Ở LỚP 5 Chuyên ngành: Phƣơng pháp dạy học Toán KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Ngƣời hƣớng dẫn: TS. Nguyễn Triệu Sơn Sơn La, năm 2014 LỜI CẢM ƠN Em xin bày tỏ lòng biết ơn chân thành và sâu sắc nhất đến TS.Nguyễn Triệu Sơn, người đã luôn tận tình hướng dẫn, giúp đỡ và tạo điều kiện cho em hoàn thành khóa luận này. Em cũng xin bày tỏ lòng biết ơn chân thành tới các thầy, cô giáo khoa Tiểu học – Mầm non, Trung tâm Thông tin thư viện trường Đại học Tây Bắc, các bạn sinh viên lớp K51 Đại học Giáo dục Tiểu học A đã tạo điều kiện thuận lợi nhất cho em trong quá trình thực hiện khóa luận . Sơn La, tháng 05 năm 2014 Tác giả Nguyễn Thị Bạch Tuyết DANH MỤC CHỮ VIẾT TẮT GV : Giáo viên HS : Học sinh G : Giỏi K : Khá TB : Trung bình SGV : Sách giáo viên NXB : Nhà xuất bản NXBGD : Nhà xuất bản giáo dục TH : Tiểu học STP : Số thập phân MỤC LỤC PHẦN MỞ ĐẦU .................................................................................................. 1 1. Lý do chọn đề tài ............................................................................................... 1 2. Mục đích ............................................................................................................ 2 3. Nhiệm vụ ........................................................................................................... 2 4. Đối tượng, phạm vi nghiên cứu......................................................................... 3 5. Khách thể nghiên cứu ........................................................................................ 3 6. Phương pháp nghiên cứu ................................................................................... 3 7. Cấu trúc của khóa luận ...................................................................................... 3 PHẦN NỘI DUNG .............................................................................................. 4 CHƢƠNG 1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN ......................................... 4 1.1. Cơ sở lí luận ................................................................................................... 4 1.1.1. Quan niệm và vai trò của bài tập toán trong quá trình dạy học .................. 4 1.1.1.1. Quan niệm về bài toán.............................................................................. 4 1.1.1.2. Vai trò của bài tập toán trong quá trình dạy học ...................................... 4 1.1.2. Vai trò của nội dung số thập phân trong dạy học và thực tiễn .................... 5 1.2. Cơ sở thực tiễn ............................................................................................... 6 1.2.1. Nội dung dạy học số thập phân ................................................................... 6 1.2.1.1. Mục đích yêu cầu ..................................................................................... 6 1.2.1.2. Khái niệm số thập phân ............................................................................ 7 1.2.1.3. So sánh số thập phân ................................................................................ 8 1.2.1.4. Bốn phép tính về số thập phân ................................................................. 9 1.2.1.5. Một số tính chất của các phép tính trên số thập phân ............................ 10 1.2.1.6. Ứng dụng số thập phân .......................................................................... 10 1.2.2. Một số phương pháp thường dùng khi giải Toán về số thập phân ........... 10 1.2.2.1. Phương pháp sơ đồ đoạn thẳng .............................................................. 13 1.2.2.2. Phương pháp chia tỉ lệ ............................................................................ 13 1.2.2.3. Phương pháp thử chọn ........................................................................... 14 1.2.2.4. Phương pháp tính ngược từ cuối ............................................................ 14 1.2.2.5. Phương pháp ứng dụng sơ đồ................................................................. 15 1.2.2.6. Phương pháp dùng chữ thay số .............................................................. 15 1.2.3. Những điều cần lưu ý khi giảng dạy ......................................................... 16 1.2.4. Điều tra khảo sát thực trạng dạy và học về số thập phân .......................... 16 1.2.4.1. Điều tra học sinh .................................................................................... 16 1.2.4.2. Điều tra giáo viên ................................................................................... 17 1.2.5. Đề xuất giải pháp sư phạm ........................................................................ 19 1.2.6. Kết luận chương ........................................................................................ 19 CHƢƠNG 2: PHƢƠNG PHÁP GIẢI MỘT SỐ DẠNG TOÁN VỀ SỐ THẬP PHÂN ..................................................................................................... 20 2.1. Dạng toán về cấu tạo số thập phân ............................................................... 20 2.2. Dạng toán về so sánh các số thập phân ........................................................ 24 2.3. Các bài toán về thực hiện phép tính ............................................................. 28 2.4. Kết luận chương ........................................................................................... 39 CHƢƠNG 3: THỰC NGHIỆM SƢ PHẠM ................................................... 40 3.1. Mục đích thực nghiệm.................................................................................. 40 3.2. Phương pháp thực nghiệm ........................................................................... 40 3.3. Nội dung thực nghiệm .................................................................................. 40 3.4. Tổ chức thực nghiệm.................................................................................... 40 3.5. Kết quả ......................................................................................................... 41 3.6. Kết luận chương ........................................................................................... 42 KẾT LUẬN ........................................................................................................ 44 TÀI LIỆU THAM KHẢO PHỤ LỤC PHẦN MỞ ĐẦU 1. Lý do chọn đề tài Giáo dục ngày nay được coi là nền móng của sự phát triển kinh tế xã hội, đem lại sự thịnh vượng cho nền kinh tế quốc dân. Vì lẽ đó, có thể coi giáo dục đồng nghĩa với sự phát triển. Có thể khẳng định rằng, không có giáo dục thì không có bất cứ sự phát triển nào đối với con người, đối với kinh tế, văn hóa và xã hội. Hiện nay, công cuộc đổi mới kinh tế - xã hội đang diễn ra từng ngày từng giờ trên khắp đất nước, đòi hỏi những lớp người lao động mới có bản lĩnh có năng lực hoạt động sáng tạo, dám nghĩ, dám làm thích ứng được với thực tiễn cuộc sống xã hội luôn luôn phát triển. Nhu cầu này làm cho mục tiêu đào tạo của nhà trường phải được điều chỉnh một cách thích hợp dẫn đến sự thay đổi tất yếu về nội dung và phương pháp dạy học nhằm “phát huy tính tích cực, tự giác, chủ động, tư duy sáng tạo của người học; bồi dưỡng năng lực tự học, khả năng thực hành, lòng say mê học tập và ý chí vươn lên”. Để thực hiện nhiệm vụ này cần tổ chức hợp lý quá trình học tập của học sinh, kích thích nhu cầu, động cơ và hứng thú học tập của học sinh; giúp học sinh có khát vọng, niềm tin để nắm vững và hoàn thiện tri thức, kĩ năng, kĩ xảo. Môn Toán ở Tiểu học nói chung và nội dung số học nói riêng có một vị trí quan trọng, nó góp phần vào việc hình thành và phát triển những cơ sở ban đầu rất quan trọng của con người. Các kiến thức, kỹ năng của môn Toán ở Tiểu học có nhiều ứng dụng trong đời sống; chúng rất cần thiết để học các môn học khác ở Tiểu học. Môn Toán còn góp phần rất quan trọng trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp giải quyết vấn đề; nó góp phần phát triển trí thông minh, cách suy nghĩ độc lập, linh hoạt sáng tạo, nó đóng góp vào việc hình thành các phẩm chất cần thiết và quan trọng của người lao động như: cần cù, cẩn thận, có ý chí vượt khó khăn, làm việc có kế hoạch, có nền nếp và tác phong khoa học. Mục tiêu của môn Toán ở Tiểu học là nhằm giúp học sinh có những kiến thức cơ bản ban đầu về số học các số tự nhiên, phân số và số thập phân. Số thập 1 phân không chỉ đóng vai trò quan trọng trong mạch kiến thức số học mà nó còn giữ vai trò quan trọng trong đời sống thực tiễn. Số thập phân được đưa vào chương trình dạy trong Toán 5. Hệ thống bài tập có vai trò quan trọng, cho phép tổ chức hợp lí quá trình học tập, là công cụ phát huy nhu cầu, động cơ, hứng thú và hoạt động học tập độc lập sáng tạo của học sinh. Hệ thống bài tập chủ đề số thập phân được kết cấu trong SGK nhằm cung cấp kiến thức, kĩ năng về số thập phân và các phép tính với số thập phân. Cần xem xét hệ thống bài tập về số thập phân như một công cụ góp phần tích cực hóa hoạt động học tập của học sinh, hình thành kĩ năng, kĩ xảo. Trong thực tế, nhiều giáo viên chỉ chú trọng đến mục tiêu cung cấp kiến thức mà chưa chú ý tới việc hình thành, phát triển và rèn luyện kĩ năng, phương pháp giải các dạng toán về chủ đề số thập phân cho học sinh. Xuất phát từ những lí do trên với mong muốn góp phần nâng cao hiệu quả của việc dạy và học môn toán tôi lựa chọn đề tài “Phương pháp giải một số dạng toán về số thập phân ở lớp 5”. 2. Mục đích Tìm hiểu khó khăn của học sinh khi giải các dạng toán về số thập phân. Xây dựng tài liệu tham khảo cho sinh viên đại học giáo dục tiểu học và giáo viên tiểu học. Nâng cao hiểu biết, nhận thức cá nhân. 3. Nhiệm vụ Để thực hiện được mục đích đề ra, khóa luận cần giải quyết một số nhiệm vụ sau: - Tìm hiểu cơ sở lí luận về vai trò của số thập phân trong dạy học và thực tiễn, vai trò của bài tập toán trong quá trình dạy học. - Tìm hiểu thực trạng việc dạy và học nội dung số thập phân, phương pháp giải các dạng toán về số thập phân. - Tiến hành thực nghiệm sư phạm. 2 4. Đối tƣợng, phạm vi nghiên cứu Phương pháp giải một số dạng toán về số thập phân. Nội dung số thập phân trong chương trình Toán 5. GV và HS một số trường tiểu học. 5. Khách thể nghiên cứu Trường tiểu học Tân Dương- huyện Bảo Yên, tỉnh Lào Cai. Trường tiểu học Thị trấn Thuận Châu, tỉnh Sơn La. 6. Phƣơng pháp nghiên cứu 6.1 Phương pháp nghiên cứu lí luận Nghiên cứu tìm hiểu nguồn thông tin từ tài liệu, giáo trình có liên quan đến đề tài. 6.2 Phương pháp nghiên cứu thực tiễn Dùng phiếu điều tra kết hợp với phỏng vấn giáo viên và học sinh về phương pháp giải một số dạng toán về số thập phân ở Toán 5. 6.3 Phương pháp thực nghiệm sư phạm Sử dụng những đề xuất đề ra tác động đến học sinh lớp 5 tại hai trường tiểu học trong quá trình thực nghiệm. Thu được kết quả xử lí bằng phương pháp toán học. 7. Cấu trúc của khóa luận Mở đầu. Nội dung. Chương 1: Cơ sở lí luận và thực tiễn. Chương 2: Phương pháp giải một số dạng toán về số thập phân. Chương 3: Thực nghiệm sư phạm. Kết luận. Tài liệu tham khảo 3 PHẦN NỘI DUNG CHƢƠNG 1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1. Cơ sở lí luận 1.1.1. Quan niệm và vai trò của bài tập toán trong quá trình dạy học 1.1.1.1. Quan niệm về bài toán Bài toán là một tình huống kích thích đòi hỏi một lời giải đáp không có sẵn ở người giải tại thời điểm bài toán được đưa ra. 1.1.1.2. Vai trò của bài tập toán trong quá trình dạy học Ta đã biết bài toán là một dạng của bài tập toán học cho nên để hiểu được vai trò của việc giải bài toán về số thập phân ta sẽ đi tìm hiểu về vị trí cũng như vai trò, chức năng của bài tập toán học ở trường tiểu học, bài tập có vai trò quan trọng trong môn toán, dạy toán là dạy hoạt động toán học. Điều căn bản là bài tập có vai trò là giá mang hoạt động của học sinh, các bài tập toán ở trường tiểu học là một phương tiện rất có hiệu quả và không thể thay thế được trong việc giúp học sinh nắm vững tri thức, phát triển tư duy và hình thành kỹ năng, kỹ xảo, ứng dụng toán học vào thực tiễn. Thông qua việc giải quyết bài tập, học sinh phải thực hiện những hoạt động nhất định, bao gồm cả nhận dạng và thể hiện định nghĩa, quy tắc hay phương pháp những hoạt động toán học phức tạp, những hoạt động trí tuệ phổ biến trong toán học, những hoạt động trí tuệ chung và những hoạt động ngôn ngữ. Hoạt động của học sinh liên hệ mật thiết với mục tiêu, nội dung và phương pháp dạy học, chính vì vậy mà vai trò của bài tập toán học được thể hiện trên cả ba bình diện. Thứ nhất: Trên bình diện mục tiêu dạy học, bài tập toán học ở trường tiểu học là giá mang những hoạt động mà việc thực hiện các hoạt động đó thể hiện mức độ đạt mục tiêu. Mặt khác, những bài tập cũng thể hiện những chức năng khác nhau hướng đến việc thực hiện các mục tiêu dạy học môn toán cụ thể là: Hình thành củng cố tri thức, kỹ năng, kỹ xảo ở những khâu khác nhau của quá trình dạy học, kể cả kỹ năng ứng dụng toán học vào thực tiễn. 4 Phát triển năng lực trí tuệ: rèn luyện những hoạt động tư duy hình thành những phẩm chất trí tuệ, trí tưởng tượng không gian. Thứ hai: Trên bình diện nội dung dạy học, những bài tập toán học là giá mang hoạt động liên hệ với những nội dung nhất định để người học kiến tạo những tri thức nhất định trên cơ sở đó thực hiện những mục tiêu dạy học khác. Những bài tập toán còn là một phương tiện cài đặt nội dung để hoàn chỉnh hay bổ sung cho những tri thức nào đó đã được trình bày trong phần lí thuyết. Thứ ba: Trên bình diện phương pháp dạy học, bài tập toán học là giá mang hoạt động để người học kiến tạo những tri thức nhất định và trên cơ sở đó thực hiện các mục tiêu dạy học khác. Khai thác tốt những bài tập như vậy sẽ góp phần tổ chức cho học sinh học tập trong hoạt động và bằng hoạt động tự giác, tích cực, chủ động và sáng tạo được thực hiện độc lập, linh hoạt trong giao lưu. Trong thực tiễn dạy học, bài tập được sử dụng với những dụng ý khác nhau về phương pháp dạy học. Đảm bảo trình độ xuất phát, gợi động cơ, làm việc với nội dung mới, củng cố hoặc kiểm tra. Đặc biệt là về mặt kiểm tra, bài tập là phương tiện đánh giá mức độ, kết quả dạy và học, khả năng làm việc độc lập và trình độ phát triển của học sinh. Một bài tập cũng có thể nhằm vào một hay nhiều dụng ý trên, nhưng cũng có thể bao hàm những ý đồ nhiều mặt. 1.1.2. Vai trò của nội dung số thập phân trong dạy học và thực tiễn Nội dung cốt lõi của môn Toán lớp 5 là dạy học và ứng dụng những kiến thức, kỹ năng về số thập phân và bốn phép tính với số thập phân. Có thể nói, đây là sự kết tinh các kết quả của quá trình dạy học số học ở bậc tiểu học. Để học tập có hiệu quả về số thập phân và các phép tính về số thập phân học sinh phải huy động các kiến thức và kỹ năng về số tự nhiên, phân số, số đo đại lượng và các phép tính với các loại số này đã được học từ lớp 1 đến lớp 4. Ngược lại, khi học và thực hành với số thập phân, học sinh vừa hiểu hơn về các số đã học vừa hệ thống hóa và củng cố các kiến thức, kỹ năng về các số và phép tính đã học. Như vậy, phạm vi và cấu trúc nội dung của chương trình môn Toán ở tiểu học đã tạo điều kiện cho học sinh phát triển các kiến thức và kỹ năng cơ bản của số học ngày càng sâu và rộng, đến lớp 5 có thể đạt đến đỉnh cao của sự phát triển đó. 5 Khả năng ứng dụng thực tế của số thập phân lại rất lớn nên sau khi học số thập phân và các phép tính với số thập phân học sinh có thể giải được nhiều bài toán thực tế gần gũi với đời sống mà các lớp 1, 2, 3, 4 chưa thể giải được. Ví dụ: Khi đo độ dài một đoạn thẳng được số đo là 3m 24cm. Hãy viết số đó thành số đo độ dài chỉ có một đơn vị là mét. Nếu như không được học về số thập phân các em không thể nào giải được. Nhưng khi đã được học về số thập phân các em có thể giải được ngay: 3m 24cm = 3,24m. Như vậy, thông qua việc dạy học số thập phân đã giúp các em ứng dụng vào thực tế cuộc sống. Từ các sự vật hiện tượng đơn giản đã giải quyết các em có thể giải quyết được những sự vật, hiện tượng phức tạp. Nội dung số thập phân giúp các em hiểu được nhiều mặt của cuộc sống. Vì vậy nó góp phần tạo nên những con người hoàn chỉnh, phát triển toàn diện, đáp ứng được nhu cầu thực tiễn của cuộc sống đặt ra đó là: “Đào tạo ra những con người lao động có năng lực thích nghi với những biến động của thị trường”. Vì vậy có thể nói nội dung “Số thập phân” trong chương trình Toán ở tiểu học có vai trò quan trọng trong quá trình học tập chiếm lĩnh tri thức của các em. Nó góp phần phát triển ở các em năng lực tư duy, óc sáng tạo, năng lực thực hành giúp các em trở thành một con người đủ năng lực, phẩm chất, trí tuệ của người lao động mới mà xã hội đặt ra. 1.2. Cơ sở thực tiễn 1.2.1. Nội dung dạy học số thập phân 1.2.1.1. Mục đích yêu cầu Khi học xong phần STP, HS phải đạt được các yêu cầu cơ bản sau: * Khái niệm ban đầu về số thập phân - Nhận biết được các phân số thập phân. Biết đọc, viết các phân số thập phân. - Nhận biết được hỗn số và biết hỗn số có phần nguyên, phần phân số. Biết đọc, viết hỗn số, biết chuyển một hỗn số thành phân số. - Nhận biết được số thập phân. Biết số thập phân có phần nguyên và phần thập phân. Biết đọc, viết, so sánh các STP. Biết sắp xếp một nhóm các số thập phân theo thứ tự từ bé đến lớn hoặc ngược lại. 6 * Phép cộng và phép trừ các STP - Biết cộng, trừ các STP có đến ba chữ số ở phần thập phân, có nhớ không quá hai lượt. - Biết sử dụng tính chất giao hoán và tính chất kết hợp của phép cộng các số thập phân trong thực hành tính. - Biết tính giá trị của các biểu thức có không quá ba dấu phép tính cộng, trừ có hoặc không có dấu ngoặc. - Biết tìm một thành phần chưa biết của phép cộng hoặc phép trừ. * Phép nhân các STP - Biết thực hiện phép nhân có tích là số tự nhiên, STP có không quá ba chữ số ở phần thập phân trong một số trường hợp: + Nhân một STP với một số tự nhiên có không quá hai chữ số, mỗi lượt nhân có nhớ không qua hai lần. + Nhân một STP với một STP, mỗi lượt nhân có nhớ không qua hai lần. - Biết nhân nhẩm một STP với 10, 100, 1000,… hoặc cho 0,1; 0,01; 0,001;… - Biết tính giá trị của các biểu thức STP có đến ba dấu tính. - Biết tìm một thành phần chưa biết của phép nhân hoặc phép chia với STP. 1.2.1.2. Khái niệm số thập phân Số thập phân được đưa vào chương trình Toán lớp 5 sau phần ôn tập về phân số. Dạy học STP ở tiểu học nhằm cung cấp cho học sinh tiểu học một loại số mới, một công cụ biểu diễn số đo đại lượng, là một dạng biểu diễn của phân số thập phân, tiện hơn trong tính toán và trong thực tiễn. Có 3 cách tiếp cận khái niệm STP được dùng trong SGK Toán 5. Cách 1: Tiếp cận kiểu dựa vào phân số. Số thập phân được coi như một dạng biểu diễn mới của phân số thập phân. Khái niệm số thập phân được hình thành theo sơ đồ sau: Phân số dạng tổng quát: a 1 1 1   dạng không có mẫu số 0,1; ; ; b 10 100 1000 0,01; 0,001. Kiểu tiếp cận này được thể hiện trong hai tiết đầu tiên hình thành 7 khái niệm STP ở Toán 5. Để tiếp cận kiểu này HS cần được chuẩn bị khá tốt các kiến thức và khái niệm về phân số, phân số thập phân. Cách 2: Mã hóa lại số đo phức hợp. Cách tiếp cận này dựa vào kiến thức đo đại lượng và quan hệ giữa các đại lượng đo mà học sinh đã có, HS sử dụng vốn kiến thức và kĩ năng đá có, dễ dàng nhận thức được 1 1 1 ; ; của mét (hoặc của kilogam) trước khi hiểu 10 100 1000 1 1 1 ; ; của một đơn vị trừu tượng. Trên cơ sở nhận thức ban đầu đó rồi 10 100 1000 trừu tượng hóa, khái quát hình thành khái niệm số thập phân. Cách này thể hiện ở tiết thứ 3 hình thành khái niệm STP trong Toán 5. Cách 3: Mã hóa lại số nguyên. Cách tiếp cận này cũng dựa trên các kiến thức và khái niệm đã có về hệ thập phân và dựa vào quan hệ giữa các đơn vị của một số đại lượng (có quan hệ giữa 2 đơn vị đo liền kề hơn kém nhau 10 lần). Ví dụ: Vụ thu hoạch ngô của một gia đình với số lượng 2680 kg ngô. Người ta chọn một đơn vị đo mới là tấn để biểu diễn lại số đó ta được 2,68 tấn. Xuất hiện 2,68 gọi là số đo thập phân. Cách này gọi là mã hóa lại số nguyên. Chú ý: Khi hình thành khái niệm STP cho HS lớp 5 cần làm rõ: - STP là loại số mới, một dạng biểu diễn khác của phân số thập phân. Nó mở rộng tác dụng so với số tự nhiên ở chỗ có thể biểu diễn chính xác hơn các số đo dại lượng. - Cách ghi số thập phân cũng dựa trên nguyên tắc ghi số theo vị trí với hệ cơ số 10 giá trị của mỗi chữ số phụ thuộc vào vị trí hàng mà nó đứng trong cách ghi. Cụ thể là: mọi số tự nhiên đều có thể coi là số thập phân có phần thập phân là 0, mọi số thập phân đều có thể biểu diễn dưới dạng phân số thập phân và ngược lại. 1.2.1.3. So sánh số thập phân So sánh STP dựa trên thuật toán so sánh số tự nhiên có nhiều chữ số và so sánh phân số có cùng mẫu số. - Tính chất bằng nhau của số thập phân: 8 + Nếu viết thêm chữ số 0 vào bên phải phần thập phân của số thập phân thì được một số thập phân bằng nó. + Nếu một số thập phân có chữ số 0 ở tận cùng bên phải phần thập phân thì khi bỏ chữ số 0 đó đi ta được một số thập phân bằng nó. - Quy tắc so sánh số thập phân theo cấu tạo hàng: + So sánh các phần nguyên của hai số đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn. + Nếu phần nguyên của hai số đó bằng nhau thì so sánh phần thập phân, lần lượt từng hàng phần mười, phần trăm, phần nghìn.., đến tận cùng hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn. + Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau. 1.2.1.4. Bốn phép tính về số thập phân Việc dạy bốn phép tính ở số thập phân chú trọng tới việc hình thành kỹ thuật tính. Trong khi hình thành kỹ năng tính cộng, trừ, nhân, chia trên tập số thập phân cần tạo ra những hoạt động logic giúp học sinh từng bước thực hành và hình thành kĩ năng. Cần chú ý 4 bước cơ bản: + Bước 1: Nêu tình huống thực tiễn có nhu cầu sử dụng phép tính trên tập số thập phân. + Bước 2: Hướng dẫn học sinh huy động các kiến thức và kĩ năng tính toán đã có trên tập số tự nhiên và phân số để tìm kết quả. + Bước 3: Gợi ý giúp học sinh nhận xét kết quả, rút ra cách làm (trên cơ sở so sánh thành phần các phép tính) và trực quan. + Bước 4: Chính xác hóa cách làm, quy tắc. - Trong quy tắc cộng (trừ) hai số thập phân, chỉ khác phép cộng (trừ) hai số tự nhiên ở chỗ phải đặt dấu phẩy và tổng hoặc hiệu tìm được thẳng cột các dấu phẩy của từng số hạng. - Phép nhân hai số thập phân chỉ khác phép nhân hai số tự nhiên ở chỗ phải đặt dấu phẩy để tách phần nguyên và phần thập phân bằng cách đếm số chữ số thập phân ở các thừa số rồi tách ở tích tìm được kể từ phải sang trái. 9 - Trong phép chia cho số thập phân, vận dụng tính chất: Nếu cùng nhân cả số bị chia và số chia với cùng một số khác 0 thì thương không đổi, để đưa về phép chia số tự nhiên hoặc chia số thập phân cho số tự nhiên, ta cần chú ý cho học sinh về dấu phẩy ở thương. 1.2.1.5. Một số tính chất của các phép tính trên số thập phân Mọi tính chất của phép toán trên số tự nhiên đều được áp dụng trên STP. - Tính chất giao hoán của phép cộng, phép nhân. - Tính chất kết hợp của phép cộng, phép nhân. - Một tổng nhân với một số, một số nhân với một tổng. Mối quan hệ giữa các phép tính cộng, trừ, nhân, chia trên STP. - Khi học về phép trừ STP có thể thử lại bằng phép cộng số thập phân, khi học về phép chia STP có thể thử lại bằng phép nhân STP. - Tạo thành nhóm các bài tập cộng, trừ, nhân, chia. 1.2.1.6. Ứng dụng số thập phân STP được ứng dụng trong viết số đo đại lượng và giải các bài toán về tỉ số phần trăm. 1.2.2. Một số phƣơng pháp thƣờng dùng khi giải Toán về số thập phân * Phương pháp chung tìm lời giải bài toán Để giải một bài toán ta thực hiện theo các bước sau: Bước 1: Phân tích đề bài Phát biểu đề bài dưới những dạng hình thức khác nhau để hiểu rõ nội dung bài toán. Xác định cái đã cho, cái phải tìm. Có thể dùng công thức, kí hiệu, hình vẽ để hỗ trợ cho việc diễn tả đề bài. Bước 2: Tìm phương pháp giải Tìm tòi, phát hiện cách giải nhờ những suy nghĩ có tính chất suy đoán. Biến đổi cái đã cho, biến đổi cái phải tìm hay phải chứng minh, liên hệ cái đã cho hoặc cái phải tìm với những tri thức đã biết, liên hệ bài toán cần giải với một bài toán cũ tương tự một trường hợp riêng, một bài toán tổng quát hơn hay một bài 10 toán nào đó có liên quan, sử dụng những phương pháp đặc thù với từng dạng toán như: bài toán về cấu tạo số, bài toán có lời văn… . Kiểm tra lời giải bằng cách xem lại kỹ từng bước thực hiện hoặc đặc biệt hóa kết quả tìm được hoặc đối chiếu kết quả với một số tri thức có liên quan tìm tòi những cách khác nhau, so sánh chúng để tìm được cách giải hợp lí nhất. Bước 3: Trình bày lời giải Từ phương pháp giải đã được phát hiện, sắp xếp các việc phải làm thành một chương trình, thành các bước theo một trình tự thích hợp và thực hiện các bước đó. Bước 4: Nghiên cứu sâu lời giải Nghiên cứu khả năng ứng dụng kết quả của lời giải. Nghiên cứu giải những bài toán tương tự mở rộng hay lật ngược vấn đề. Kết luận: Phương pháp chung để giải bài toán không phải là thuật giải bài toán. Một câu hỏi đặt ra là làm thế nào để học sinh hiểu được, vận dụng được phương pháp chung để giải bài toán vào việc giải những bài toán cụ thể trong chương trình học. Học phương pháp chung để giải bài toán là học những kinh nghiệm giải toán mang tính chất tìm tòi phát hiện. Nói chung, cách thức dạy học sinh mang phương pháp chung để giải bài toán như sau: + Thông qua việc giải những bài toán cụ thể, cần nhấn mạnh để học sinh nắm được phương pháp chung gồm 4 bước và có ý thức vận dụng 4 bước này trong quá trình giải toán + Thông qua việc giải toán cụ thể, cần đặt ra cho học sinh những câu hỏi gợi ý đúng tình huống để học sinh dần dần biết sử dụng những phương tiện này như những phương tiện kích thích suy nghĩ tìm tòi, dự đoán, phát hiện để thực hiện từng bước phương pháp chung giải toán Những câu hỏi lúc đầu là do giáo viên đưa ra để hỗ trợ cho học sinh nhưng dần biến thành vũ khí của bản thân học sinh, được học sinh nêu ra đúng lúc, đúng chỗ để gợi ý từng bước đi của mình trong quá trình giải toán. 11 Như vậy, quá trình học sinh tìm tòi phương pháp chung giải toán là một quá trình biến những tri thức phương pháp tổng quát thành kinh nghiệm giải toán của bản thân mình thông qua việc giải hàng loạt các bài toán cụ thể. Từ phương pháp chung giải bài toán đi tới cách giải cụ thể một bài toán còn là cả một chặng đường đòi hỏi lao động tích cực của người học sinh, trong đó có nhiều yếu tố sáng tạo: “Tìm được cách giải bài toán là một phát minh” * Các yêu cầu đối với lời giải bài toán Để phát huy tác dụng của bài tập toán học, trước hết cần nắm vững các yêu cầu của lời giải bài toán. Nói một cách vắn tắt, lời giải phải đúng, ngắn gọn, dễ hiểu cụ thể là: i) Kết quả đúng, kể cả các bước trung gian Kết quả cuối cùng phải là một đáp số đúng, một biểu thức, một hình vẽ,… thỏa mãn các yêu cầu đề ra. Kết quả các bước trung gian cũng phải đúng. Như vậy, lời giải không thể chứa những sai lầm tính toán, hình vẽ. 2i) Lập luận chặt chẽ Phải tuân thủ các yêu cầu sau: - Luận đề phải nhất quán - Luận cứ phải đúng - Luận chứng phải hợp lôgic 3i) Lời giải đầy đủ Lời giải phải không được bỏ sót một trường hợp, một chi tiết cần thiết nào. 4i) Ngôn ngữ chính xác Đây là một yêu cầu về giáo dục tiếng mẹ đẻ đặt ra cho tất cả các bộ môn. Việc dạy học môn toán cũng phải đảm bảo yêu cầu này. 5i) Trình bày rõ ràng, đảm bảo tính thẩm mỹ Yêu cầu đặt ra đối với cả lời văn, chữ viết, cách trình bày phép tính trong lời giải. 6i) Tìm ra nhiều cách giải, chọn cách giải ngắn gọn, hợp lý nhất trong tất cả các cách giải đã tìm được 12 Trong quá trình dạy học cần khuyến khích học sinh tìm ra nhiều cách giải trong một bài toán, hướng dẫn học sinh phân tích, so sánh để tìm ra cách giải ngắn gọn, hợp lý nhất. 7i) Nghiên cứu giải những bài toán tương tự, mở rộng hay lật ngược vấn đề Bốn yêu cầu từ i) đến 4i) là bốn yêu cầu cơ bản; 5i) là yêu cầu về mặt trình bày; 6i), 7i) là yêu cầu đề cao. 1.2.2.1. Phương pháp sơ đồ đoạn thẳng Phương pháp sơ đồ đoạn thẳng là một phương pháp giải toán ở tiểu học, trong đó, mối quan hệ giữa các đại lượng đã cho và đại lượng phải tìm trong bài toán được biểu diễn bởi các đoạn thẳng. Việc lựa chọn độ dài của các đoạn thẳng để biểu diễn các đại lượng và sắp thứ tự của các đoạn thẳng trong sơ đồ hợp lý sẽ giúp cho học sinh tìm được lời giải một cách tường minh. Phương pháp sơ đồ đoạn thẳng dùng để giải nhiều dạng toán khác nhau, chẳng hạn: các bài toán đơn, các bài toán hợp và một số bài toán có lời văn điển hình. 1.2.2.2. Phương pháp chia tỉ lệ Phương pháp chia tỉ lệ là một phương pháp giải toán, dùng để giải các bài toán về tìm hai số khi biết tổng và tỷ số hoặc hiệu và tỷ số của hai số đó. Phương pháp chia tỷ lệ còn dùng để giải các bài toán về cấu tạo số tự nhiên, cấu tạo phân số, cấu tạo số thập phân, các bài toán có nội dung hình học, các bài toán chuyển động đều… . Đối với các bài toán về tìm ba số khi biết tổng và tỷ số hoặc hiệu và tỷ số của chúng, ta cũng dùng phương pháp chia tỷ lệ. Khi giải bài toán bằng phương pháp chia tỷ lệ ta thường tiến hành theo bốn bước: Bước 1: Tóm tắt đề toán bằng sơ đồ đoạn thẳng. Dùng các đoạn thẳng để biểu thị các số cần tìm. Số phần bằng nhau của các đoạn thẳng đó tương ứng với tỉ số của các số cần tìm. Bước 2: Tìm tổng hoặc hiệu số phần bằng nhau. 13 Bước 3: Tìm giá trị của một phần. Bước 4: Xác định mỗi số cần tìm. Khi giải bài toán về cấu tạo số thập phân, ta thường sử dụng các tính chất dưới đây của số thập phân: Tính chất 1: Khi dời dấu phẩy của một số thập phân từ phải qua trái một, hai, hoặc ba hàng thì số đó giảm đi 10, 100. 1000 lần. Tính chất 2: Khi dời dấu phẩy của một số thập phân từ trái qua phải một, hai, hoặc ba hàng thì số đó tăng lên gấp 10, 100, 1000 lần. 1.2.2.3. Phương pháp thử chọn Phương pháp thử chọn dùng để giải các bài toán về tìm một số khi số đó đồng thời thỏa mãn một số điều kiện cho trước. Phương pháp thử chọn có thể dùng để giải các bài toán về cấu tạo số tự nhiên, cấu tạo số thập phân, cấu tạo phân số và cả các bài toán có văn và hình học, toán về chuyển động đều, toán tính tuổi… Khi giải bài toán bằng phương pháp thử chọn ta thường tiến hành theo hai bước: Bước 1. Liệt kê: Trước hết ta xác định các số thỏa mãn một số trong các điều kiện mà đề bài yêu cầu ( tạm bỏ qua các điều kiện còn lại). Để lời giải ngắn gọn và chặt chẽ, ta cần cân nhắc chọn điều kiện để liệt kê sao cho số các số liệt kê được theo điều kiện này là ít nhất. Bước 2. Kiểm tra và kết luận: Lần lượt kiểm tra mỗi số vừa liệt kê ở bước một có thỏa các điều kiện còn lại mà đề bài yêu cầu hay không? Số nào thỏa mãn là số phải tìm. Số nào không thỏa mãn một trong các điều kiện còn lại thì ta loại bỏ. Bước kiểm tra và kết luận thường được thể hiện trong một bảng. 1.2.2.4. Phương pháp tính ngược từ cuối Có một số bài toán cho biết kết quả sau khi thực hiện liên tiếp một số các phép tính đối với số phải tìm. Khi giải các bài toán dạng này bằng phương pháp tính ngược từ cuối, ta thực hiện liên tiếp các phép tính ngược với các phép tính đã cho trong bài toán. Kết quả tìm được trong bước trước chính là thành phần đã 14
- Xem thêm -