Tài liệu Phát triển một số mô hình dữ liệu không - thời gian trong gis

  • Số trang: 26 |
  • Loại file: PDF |
  • Lượt xem: 151 |
  • Lượt tải: 0
thuvientrithuc1102

Đã đăng 15893 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN GIA TUẤN ANH PHÁT TRIỂN MỘT SỐ MÔ HÌNH DỮ LIỆU KHÔNG -THỜI GIAN TRONG GIS Chuyên ngành: ĐẢM BẢO TOÁN HỌC CHO MÁY TÍNH VÀ HỆ THỐNG TÍNH TOÁN Mã số chuyên ngành: 1.01.10 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC Tp. Hồ Chí Minh - 2012 1 Công trình được hoàn thành tại Khoa Công nghệ thông tin, trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Thành phố Hồ Chí Minh. Người hướng dẫn khoa học: PGS.TS Trần Vĩnh Phước Phản biện 1: PGS.TS Nguyễn Kim Lợi Phản biện 2: TS. Võ Thị Ngọc Châu Phản biện 3: TS. Lý Quốc Ngọc Phản biện độc lập 1: TS. Nguyễn Đình Thuân Phản biện độc lập 2: PGS.TS Nguyễn Kỳ Phùng Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp nhà nước họp tại: ................................................................................................... ................................................................................................................ vào hồi giờ ngày tháng năm 2013. Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tổng hợp Quốc gia Tp.HCM 2. Thư viện trường Đại học Khoa học Tự nhiên – HCM 2 TÓM TẮT LUẬN ÁN Hiện nay đô thị hóa trở thành một xu thế. Các hoạt động kinh tế, văn hóa, chính trị. . . thường diễn ra tập trung tại các đô thị. Để quản lí đô thị tốt và trợ giúp cho các lãnh đạo ra quyết định thì các ứng dụng GIS là một công cụ không thể thiếu. Để xây dựng các ứng dụng này thì việc thiết kế mô hình dữ liệu là một trong những chìa khóa dẫn tới thành công. Nội dung chính của luận án trình bày các đề xuất liên quan đến mô hình dữ liệu GIS 3D. Các đề xuất tập trung vào việc giảm chi phí thời gian hiển thị, kích thước lưu trữ các đối tượng không gian; biểu diễn lịch sử biến động của các đối tượng không gian theo thời gian; biểu diễn các đối tượng không gian tại nhiều mức chi tiết khác nhau. Luận án bao gồm 5 chương và được tóm tắt theo từng chương như sau: Chương 1. Giới thiệu Chương 1 giới thiệu về các định nghĩa GIS, GIS 3D và các khó khăn. Chương này cũng trình bày mục tiêu và các đóng góp chính của luận án 1.1 Mở đầu Tùy theo cách tiếp cận sẽ có nhiều định nghĩa khác nhau về “Hệ thống thông tin địa lý – GIS” [1].  GIS là hệ thống thông tin địa lý bao gồm bốn khả năng xử lý dữ liệu địa lí: nhập dữ liệu; lưu trữ, truy xuất dữ liệu; gia công, phân tích dữ liệu; xuất dữ liệu.  ... GIS 3D là một hệ thống có thể mô hình hóa, biểu diễn, quản lý, thao tác, phân tích và hỗ trợ quyết định dựa trên thông tin liên quan đến các hiện tượng 3D [16]. Các thử thách trên GIS 3D cần giải quyết bao gồm: Mô hình dữ liệu 3D, nhập dữ liệu, phân tích không gian, hiển thị, GIS 3D và WEB [163]. 1.2 Mục tiêu luận án  Phát triển mô hình dữ liệu GIS 3D mới, giảm chi phí về thời gian hiển thị và kích thước lưu trữ. 3  Tích hợp thời gian vào mô hình dữ liệu 3D để biểu diễn và lưu trữ những thay đổi của đối tượng không gian theo thời gian.  Biểu diễn các thuộc tính không gian trên nhiều mức chi tiết khác nhau để đáp ứng các yêu cầu đa dạng từ các ứng dụng và người dùng khác nhau. 1.3 Các đóng góp chính của luận án     Phân tích các mô hình dữ liệu 3D đã có [CT4]. Phát triển mô hình dữ liệu SUDM. Tác giả đề xuất mô hình mới để biểu diễn các đối tượng 2D, 3D khi các đối tượng này có các hình dạng đặc biệt nhằm giảm chi phí về thời gian hiển thị và kích thước lưu trữ [CT1], [CT9]. Phát triển mô hình dữ liệu LUDM. Tác giả đã tích hợp lớp mới-LOD và các mối liên kết giữa các đối tượng vào mô hình để hiển thị các đối tượng 3D tại nhiều mức chi tiết khác nhau [CT3], [CT5], [CT6], [CT7]. Phát triển mô hình dữ liệu TUDM. Tác giả tích hợp thêm một số lớp mới và các mối liên kết phức để ghi lại lịch sử tiến hóa của các đối tượng GIS trong cả vòng đời của các đối tượng này [CT2], [CT3], [CT5], [CT8]. Chương 2. Các mô hình dữ liệu GIS 3 chiều Chương 2 trình bày các mô hình dữ liệu GIS 3D đã được các tác giả đề nghị và những khái niệm xoay quanh. Chương này cũng phân tích, tổng hợp so sánh các mô hình dữ liệu GIS 3D trên các tiêu chí bởi các bảng. 2.1 Các khái niệm không gian Các dạng thức tồn tại của một đối tượng.Một đối tượng trong thế giới thực có các thuộc tính không gian, thời gian, ngữ nghĩa và chúng có thể tồn tại dưới các dạng thức sau (hình 2.1). Không gian. Không gian là các khái niệm được sử dụng để con người hiểu biết và hình thành ý niệm về môi trường xung quanh [5]. Có hai phương pháp tiếp cận cho định nghĩa này. Các thuộc tính và các quan hệ dùng để mô tả thành phần không gian của 4 một đối tượng trong GIS (hình 2.2). Các thuộc tính gồm: chiều, vị trí và hình học. Các quan hệ gồm: thứ tự, độ đo và topology [5]. Hình 2.1 Các dạng thức của một đối tượng Chiều. Chiều là một yếu tố để phân loại trong GIS, nó mô tả số lượng chiều không gian được hỗ trợ bởi hệ thống [5]. Hình 2.2 Các thành phần không gian của đối tượng GIS Hình học. Hình học là một thuộc tính không gian mô tả hình dáng của các đối tượng [5]. Các đối tượng không gian có thể do tự nhiên hay con người tạo ra. Quan hệ thứ tự. Quan hệ thứ tự trình bày quan điểm so sánh giữa 2 hay nhiều đối tượng không gian. Quan hệ độ đo. Quan hệ độ đo là phương thức thuần tính toán dựa trên nền tảng so sánh của những giá trị số có liên quan đến vị trí của các đối tượng trong không gian, kích cỡ các đối tượng và những tính toán khác [5]. Quan hệ topology. Topology mô tả mối quan hệ giữa đối tượng và những đối tượng lân cận [5]. Topology có thể được xét trong 5 không gian liên tục R2 trong 2D và R3 trong 3D hoặc trong không gian rời rạc Z2 trong 2D và Z3 trong 3D. Nếu là một đối tượng không gian của không gian topology , được mô tả trong lý thuyết bởi 3 thành tố: bao đóng (closure), phần trong (interior) và đường biên (boundary) [5]. Truy vấn không gian. Xây dựng một CSDL không gian là tạo ra tập dữ liệu có liên quan với nhau trong không gian, nhằm giải quyết các truy vấn như: ngôi nhà A cách bệnh viện gần nhất là bao nhiêu? Cấu trúc không gian. Theo truyền thống, cấu trúc không gian trong GIS được tạo ra bằng 2 phương pháp tiếp cận: Raster và Vector . 2.2 Các mô hình dữ liệu GIS 3D 2.2.1 Các khái niệm 2.2.1.1 Mô hình, mô hình dữ liệu, mô hình dữ liệu không gian Mô hình là sự trừu tượng hóa, đơn giản hóa về một thế giới thực, là cầu nối giữa lí thuyết và thực tiễn. Mô hình dữ liệu là phương thức biểu diễn thế giới thực một cách dễ hiểu đối với máy tính [16]. Mô hình dữ liệu không gian là một mô hình dữ liệu định nghĩa các thuộc tính và các thao tác trên các đối tượng không gian. Những đối tượng này được mô tả bằng các loại dữ liệu không gian như: Điểm, Đường, Bề mặt, Khối. 2.2.1.2 Mô hình dữ liệu GIS 3D Mô hình dữ liệu GIS 3D là chìa khóa của GIS 3D. Trước đây đã có vài tác giả đã thực hiện vấn đề này, tuy vậy các công việc của họ vẫn thiếu một số mô hình xuất hiện sau thời điểm mà tác giả nghiên cứu [11][12][21][22]. Một mô hình có thể tổ hợp mọi lãnh vực là không thực tiễn [15]. Các mô hình dữ liệu của các tác giả đã đề xuất được phân loại bởi 4 dạng chính:  Biểu diễn các đối tượng 3D bởi các đường biên (B-REP). 6   Biểu diễn các đối tượng 3D bởi các phần tử voxel. Biểu diễn các đối tượng 3D bằng cách tổ hợp các khối 3D cơ bản (CSG).  Biểu diễn các đối tượng 3D bằng cách tổ hợp 3 phương pháp trên. 2.2.2 Biểu diễn các đối tượng 3D bởi các đường biên Phương pháp B-REP biểu diễn một đối tượng 3D dựa trên các phần tử đã được định nghĩa trước, gồm: Điểm, Đường, Bề mặt, Khối. Trong đó, Đường có thể là các đoạn thẳng, các cung tròn, các đường tròn. Bề mặt có thể là các đa giác phẳng, các mặt tạo bởi các cung tròn, các mặt nón, các mặt hình trụ. . .Khối là sự mở rộng của các mặt, biểu diễn các khối 3D. Các khối có thể: hình hộp, hình nón, hình trụ, tổ hợp của các khối này hay một khối bất kì [3][4]. 2.2.3 Biểu diễn các đối tượng 3D bởi các phần tử voxel Phương pháp voxel biểu diễn một khối dựa trên ý tưởng chia nhỏ một đối tượng thành các phần tử con, mỗi phần tử con gọi là một voxel. Một phần tử con được xem như là một không gian địa lý và được gán bởi một số nguyên [17]. 2.2.4 Biểu diễn một đối tượng theo CSG Mô hình CSG [3][4] biểu diễn một khối bằng cách tổ hợp các khối đã được định nghĩa trước. Các khối cơ bản thường dùng: hình lập phương, hình trụ, hình cầu [16]. Các mối quan hệ giữa các hình này gồm: phép biến đổi và các toán hạng luận lí. 2.2.5 Các mô hình tổ hợp Gồm hai mô hình, V3D [21] và B_REP+CSG [6]. Mô hình V3D kết hợp giữa tiếp cận vector và raster. Mô hình B_REP+CSG kết hợp giữa cách tiếp cận B_REP và CSG. 2.3 So sánh các mô hình Luận án trình bày 4 bảng so sánh trên các tiêu chí sau: 2.3.1 So sánh các mô hình trên các tiêu chí: biểu diễn mặt, biểu diễn bên trong giữa các mô hình. 7 2.3.2 So sánh các mô hình trên các tiêu chí: các phần tử chính, các đối tượng phụ, cơ sở và ứng dụng. 2.3.4 So sánh các mô hình trên các tiêu chí: cấu trúc không gian, hướng, độ đo và topology. 2.3.5 So sánh các mô hình theo chuẩn về truy vấn: thuộc tính, vị trí và topology Chương 3. Mô hình SUDM, TUDM, LUDM Chương 3 trình bày các đề xuất của 3 mô hình SUDM, TUDM, LUDM, những lí do hình thành và phân tích những nét mới của chúng so với các mô hình trước. 3.1 Mô hình SUDM 3.1.1 Mô hình UDM (Urban Data Model) Mô hình UDM dùng hai đối tượng trung gian Node, Face; bốn đối tượng hình học Body, Surface, Line, Point [2][4] và các mối liên kết giữa chúng có dạng như hình 3.1. SURFACE BODY LINE N 2 POINT 1 N N N N FACE 1 NODE N 3 Hình 3.1 Mô hình UDM Mô hình UDM có một số hạn chế khi các đối tượng Bề mặt (Surface), Khối (Body) có hình thể đặc biệt. Với các đối tượng trên khi dùng UDM để biểu diễn có vài giới hạn: kích thước dữ liệu lớn, tạo ra một số đường không có thật, chi phí thời gian để hiển thị cao. Việc khắc phục các giới hạn trên được trình bày trong các đề xuất của 3.2. 3.2 Các cải tiến của SUDM (Specialized Urban Data Model) 3.2.1 Cải tiến đối tượng Bề mặt 8 Phát biểu: Các Bề mặt là các đa giác phẳng sẽ biểu diễn thông qua các đỉnh của đa giác và thứ tự của chúng. Mỗi đỉnh được mô tả bởi một Node. 3.2.2 Cải tiến các khối dạng hình trụ Phát biểu: Các Khối có dạng là hình trụ được biểu diễn thông qua các thuộc tính: bán kính RA, tâm vòng tròn đáy IDN, chiều cao HEIGHT, loại hình trụ. 3.2.3 Cải tiến khối 3D dạng hình lăng trụ Phát biểu: Các Khối có dạng là hình lăng trụ được biểu diễn qua đa giác đáy, chiều cao, loại hình lăng trụ. 3.2.4 Các cải tiến khác Hình chóp: Khối hình chóp được biểu diễn qua đỉnh và đáy của nó. Hình chóp cụt: Khối hình chóp cụt được biểu diễn qua hai đáy và các mặt bên. Hình nón: Khối hình nón được biểu diễn qua tâm vòng tròn đáy, bán kính, loại hình nón và chiều cao. 3.2.5 UDM sau các đề xuất 1, 2, 3, 4 Sau các đề xuất 1, 2, 3, 4, UDM được thiết kế lại như hình 3.2 và có tên SUDM. 3.3 Mô hình TUDM (Temporal Urban Data Model) 3.3.1 Các khái niệm liên quan đến thời gian 3.3.1.1 Sự cần thiết của thời gian và mô hình dữ liệu không gian-thời gian (2D+1) Yếu tố thời gian trong các đối tượng trong GIS cho biết các thông tin lịch sử các thay đổi trên các thuộc tính ngữ nghĩa lẫn thuộc tính không gian. Trong quá khứ đã có nhiều mô hình được đề nghị bởi nhiều tác giả [5] [8] [14] [18] [23]. Nhìn chung, đây là các mô hình gồm 2D không gian và 1D thời gian. 9 SURFACE S-POLYGON S-CURVE +N POINT BODY +N LINE +0 CYLINDER +N +N BODY-COMP FRUSMTUM CONE PRISM +N PYRIMID +N +N +N +N +N +N +1 +N FACE +11 +N +1 +N +1 +1 +N NODE +N +N +N Hình 3.2 Mô hình SUDM 3.3.1.2 Đặc điểm của thời gian Định nghĩa thời gian đã được các nhà khoa học cố gắng thực hiện, tuy vậy không một định nghĩa nào được công nhận một cách rộng rãi. Thời gian được các nhà khoa học đồng ý với quan điểm của Enstein là một chiều độc lập và tương tác qua lại với không gian. 3.3.1.3 Các ngữ nghĩa liên quan đến thời gian Các ngữ nghĩa liên quan đến thời gian gồm có: thời gian rời rạc, thời gian liên tục, thời gian tuyệt đối và thời gian tương đối. 3.3.1.4 Các loại dữ liệu thời gian Thời gian có thể được biểu diễn bởi điểm thời gian, đoạn hay khoảng thời gian. Thời gian được lưu trong CSDL liên quan đến một đối tượng A có thể có các ý nghĩa sau [10]: Là thời gian xảy ra với A trong thế giới thực; thời gian người ta quan sát được sự thay đổi của A; thời gian ghi lại sự thay đổi của A vào CSDL; thời gian đo lường được sự thay đổi của A; thời gian tường thuật lại sự thay đổi của A. Thực tế người ta cần quan tâm đến hai giá trị quan trọng, thời gian xảy ra với A trong thế giới thực T1 và thời gian ghi lại sự thay đổi của A vào CSDL T2 [5]. 3.3.1.5 Các yếu tố liên quan đến lớp thời gian 10 GIS phi thời gian chỉ biểu diễn các trạng thái của các đối tượng địa lý. Trong khi đó GIS theo thời gian biểu diễn đến cả trạng thái, biến cố và chứng cứ. Trạng thái, biến cố và chứng cứ làm cho dữ liệu mà đang đề cập gia tăng chất lượng và mô tả mối quan hệ nhân quả cho các biến đổi trên các đối tượng [4]. 3.3.2 Truy vấn theo thời gian CSDL thời gian là tập dữ liệu có thuộc tính thời gian. Ngôn ngữ truy vấn thời gian là ngôn ngữ truy vấn cho bất kì CSDL thời gian nào [19]. Hiện tại có một số ngôn ngữ truy vấn theo thời gian như [19]: TQUEL, TSQL2, SQLT, IXSQL, SQL/PT, TOSQL. . . 3.3.3 Các lớp được tích hợp trong mô hình TUDM Mục tiêu của việc tích hợp thời gian vào mô hình UDM cần thỏa ba tiêu chí:  Diễn đạt được cả hai nhóm thời gian: điểm thời gian và đoạn thời gian.  Mô tả được cho thời gian thực và thời gian ghi vào CSDL.  Biểu diễn, lưu trữ lịch sử biến động của các đối tượng không gian theo thời gian. Các lớp được tích hợp vào mô hình gồm: Time, DMY, Event, EventType. Lớp TIME: mỗi thời gian có mã số IDT, loại thời gian INT_INTS để phân biệt điểm và đoạn thời gian. Lớp DMY: mô tả bởi bốn thuộc tính, mã số IDDMY, ngày, tháng và năm. Lớp Event: Mỗi biến cố có một mã số IDE, có quan hệ với thời gian sinh ra và thời gian kết thúc của biến cố. Lớp EventType: mỗi biến cố có mã số IDET, một tên biến cố NAME. Ví dụ, lũ lụt, động đất, quy hoạch. 3.3.4 Mô hình dữ liệu TUDM Mô hình TUDM sau khi tích hợp các lớp TIME, DMY, EVENT, EVENTYPE và các mối liên kết giữa các lớp có dạng như hình 3.3. Mô hình TUDM đã lưu giữ tường minh lịch sử biến đổi của các đối tượng không gian theo thời gian. 11 3.4 Mô hình LUDM (Levels of detail Urban Data Model) 3.4.1 Khái niệm LOD (Levels of Detail) Trong đồ họa máy tính, LOD thường được sử dụng. LOD là thứ bậc của độ phân giải của một đối tượng hiển thị trong máy tính khi so với thế giới thực [7][13]. LOD có thể chia nhiều mức khác nhau bởi các nhà khoa học [20]. LOD là một cách biểu diễn nhanh cho mô hình 3D, chỉ ra các mức độ trừu tượng hóa áp cho các đối tượng. Các mô hình 3D phát triển hơn 10 năm, tuy vậy đa phần các mô hình vẫn biểu diễn dữ liệu ở mức thấp. Một số tác giả đã đề xuất các vấn đề liên quan đến LOD trên mô hình gồm mô hình: CityGML và Mingyuan Min. 3.4.2 OGC-Mô hình CityGML Do tổ chức OGC (Open Geospatial Consortium) đề nghị năm 2007 [8]. Nhóm tác giả đã đề xuất năm mức biểu diễn các mức chi tiết cho khối 3D: LOD0 là mô hình 2D, có dạng hình chụp hay một bản đồ. LOD1 dùng cho hiển thị các tòa nhà như các khối hình lăng trụ mái bằng. LOD2 dùng cho hiển thị các tòa nhà như khối hình lăng trụ có mái và chi tiết các bề mặt. LOD3 dùng cho hiển thị các tòa nhà như các khối có kiến trúc và chi tiết các mái nhà, tường ban công. LOD4 dùng cho hiển thị các tòa nhà như các khối có kiến trúc và hiển thị được bên trong các tòa nhà này. Ví dụ: phòng, cầu thang, nội thất khác. 3.4.3 Mô hình Mingyuan Min Mô hình do tác giả Mingyuan Min [9] đề nghị năm 2008. Tác giả đề xuất năm mức cho việc hiển thị chi tiết các tòa nhà, trong đó: LOD1 nhìn các tòa nhà theo chiều thẳng đứng. LOD1 cho biết sự phân bố các tòa nhà trong các quận huyện. LOD2 là mô tả theo chiều nằm ngang của các đối tượng 3D. LOD3 dùng hiển thị các tòa nhà như khối hình lăng trụ có mái và chi tiết các bề mặt. LOD4 định nghĩa đơn vị nhỏ nhất có thể biểu diễn các đối tượng 3D. LOD5 mô tả chi tiết một số đối tượng bên trong tòa nhà. 12 POINT +0 EVENT N +N +N +1 +N +N +1 +1 +N +N N +N LINE +3 +N EVENTYPE +N +N DMY +2 N TIME +N SURFACE +4 +4 +4 +4 +4 NODE +N +N +N FACE +N +N +N +N BODY +N +N Hình 3.3 Mô hình TUDM 3.4.4 So sánh LOD của 2 nhóm tác giả Bảng 3.1 mô tả sự giống nhau và khác nhau của hai mô hình dữ liệu GIS 3D, CityGML, Mingyuan Min thuộc hai nhóm tác giả. Bảng 3.1 So sánh LOD của hai nhóm tác giả Sự giống nhau - Số mức chi tiết: 5 - Xây dựng mức chi tiết trên cơ sở: ngữ nghĩa Sự khác nhau - Cách định nghĩa chi tiết tại mỗi mức là khác nhau. 3.4.5 Đề xuất tích hợp lớp LOD và các mối liên kết vào mô hình LUDM Các đề xuất về LOD của hai nhóm tác giả trên dựa vào ngữ nghĩa của các đối tượng 3D, trong tình huống này là các tòa nhà. Các ngữ nghĩa có thể là: mái nhà, cầu thang, ban công, cửa sổ. Chúng tôi đề xuất LOD theo cách tiếp cận khác, LOD dựa theo thuộc tính không gian, nghĩa là độc lập với ngữ nghĩa. LOD được định nghĩa là một lớp, gồm các thuộc tính: IDLOD: mã số mức chi tiết; NAME: tên mức chi tiết; DESC: các mô tả cần thiết cho mỗi IDLOD. Một Body của một đối tượng A có thể hiển thị tại các mức LOD khác nhau. Một mức LOD có thể có nhiều Body cho một Body 13 A. Mối liên kết ba nhánh này cho biết, một Body B1 sẽ hiển thị tại mức LOD nào cho đối tượng A. Mối liên kết giữa ba đối tượng LOD, SUFACE và BODY: mối liên kết cấp ba này cho biết, một Surface S1 sẽ hiển thị tại mức LOD nào cho Body A. Mối liên kết giữa ba đối tượng LOD, LINE và BODY: mối liên kết cấp ba này cho biết, một Line L1 sẽ hiển thị tại mức LOD nào cho Body A. Mối liên kết giữa ba đối tượng LOD, POINT và BODY: mối liên kết cấp ba này cho biết, một Point P1 sẽ hiển thị tại mức LOD nào cho Body A. 3.4.6 Mô hình dữ liệu LUDM Mô hình LUDM có dạng như hình 3.4 sau các đề xuất ở 3.4.5. Bảng 3.2 so sánh LOD giữa ba mô hình, CityGML, Mingyuan Min, LUDM trên ba tiêu chí: số mức chi tiết, có phụ thuộc vào ngữ nghĩa không và nhúng vào ứng dụng gì. Hình 3.4 Mô hình dữ liệu LUDM Bảng 3.2 So sánh 03 mô hình CityGML, Mingyuan Min và LUDM Mô hình Số mức chi tiết Phụ thuộc ngữ nghĩa Ứng dụng CityGML 5 Có Tòa nhà 3D Mingyuan Min 5 Có Tòa nhà 3D LUDM Tùy ý Không Nhiều ứng dụng 14 Đặc điểm của LUDM Việc đề xuất các mức biểu diễn này dựa trên nền tảng thuộc tính không gian dành cho các đối tượng 3D, nó độc lập với ngữ nghĩa. Số mức chi tiết của các đối tượng là tùy ý, do người dùng định nghĩa. Chương 4. Thực nghiệm Chương 4 mô tả dữ liệu mẫu, trình bày các thực nghiệm, phân tích kết quả trên 3 mô hình mới. Đánh giá chúng so với các mô hình trước đây. 4.1 Mô hình SUDM 4.1.1 Mục đích thực nghiệm Tính toán khối lượng dữ liệu và thời gian hiển thị cho hai mô hình UDM, SUDM trên một tập dữ liệu, gồm hai khối mẫu B1, B2 (hình 4.1). Hai khối mẫu minh họa cho hình ảnh căn nhà (B1) và biệt thự (B2). Số khối B1: 400, số khối B2: 150. Khối B1 (Căn nhà) Khối B2 (Biệt thự) Hình 4.1 Hình ảnh B1 (căn nhà), B2 (biệt thự) trong dữ liệu kiểm chứng 4.1.3 Tính thời khối lượng dữ liệu 400 khối B1, 150 khối B2 cho UDM và SUDM Bảng 4.1, 4.2 tính khối lượng 400 B1, 150 B2 theo UDM và SUDM. Hình 4. 2 so sánh khối lượng dữ liệu giữa UDM và SDM ở dạng biểu đồ. 15 Bảng 4.1 Tính khối lượng cho 400 khối B1, 150 khối B2 theo UDM Khối lượng 400 căn nhà, 100 biệt thự theo UDM Quan hệ BODY BODYFACE FACE NODE 400 B1 5.600 129.200 230.400 115.200 Tổng 480.400 150 B2 2.100 60.750 108.000 67.200 Tổng 238.050 600000 Khối lượng 500000 400000 UDM 300000 EUDM 200000 100000 0 B1 B2 Hình 4.2 Tỉ lệ khối lượng dữ liệu 400 B1, 150 B2 giữa UDM và SUDM dạng biểu đồ Bảng 4.2 Tính khối lượng cho 400 khối B1, 150 khối B2 theo SUDM Quan hệ BODY PRISM FACENODE NODE 400 B1 5600 24.000 50.400 76.800 Tổng 156.800 150 B2 2100 18.000 40.500 64.800 Tổng 125.400 4.1.3 Tính thời gian hiển thị 400 khối B1, 150 khối B2 cho UDM và SUDM Máy tính thực nghiệm có cấu hình: Window: 7 Professional; CPU: core2 Duo, E7500, 2.93GHz; Ram: 2G;HDD: 250G; Display Card: Onboard 814MB; Đơn vị: ms. Bảng 4.3 trình bày kết quả thời gian của 10 lần thực nghiệm khi hiển thị 400 B1 và 150 B2 bởi UDM và SUDM. Hình 4.3 so sánh thời gian hiển thị 400 khối B1 và 150 khối B2 giữa UDM, SUDM trong 10 lần thực nghiệm dạng biểu đồ. 16 Bảng 4.3 So sánh thời gian hiển thị 400 B1 và 150 B2 bởi UDM và SUDM 400 B1 150 B2 T1: T2: Tỉ lệ T3: T4: Tỉ lệ Lần UDM SUDM T1/T2 UDM SUDM T3/T4 1 3061 566 5.408127 3856 1251 3.082334 2 3061 501 6.10978 3701 1261 2.934972 3 3141 496 6.332661 3846 1276 3.014107 4 3061 616 4.969156 3781 1266 2.986572 5 3061 511 5.990215 3701 1301 2.844735 6 3141 446 7.042601 3701 1266 2.923381 7 3061 486 6.298354 3856 1276 3.021944 8 3061 516 5.932171 3781 1251 3.022382 9 3061 486 6.298354 3781 1266 2.986572 10 3061 441 6.941043 3701 1291 2.86677 4500 3500 4000 3000 3500 2500 3000 2000 T1: UDM 2500 1500 T2: SUDM 2000 T3: UDM T4: SUDM 1500 1000 1000 500 500 0 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Hình 4.3 So sánh thời gian hiển thị 400 khối B1 (trái) và 150 khối B2 (phải) bởi UDM và SUDM dạng biểu đồ 4.1.5 Phân tích kết quả Tỉ lệ khối lượng dữ liệu lưu trữ giữa UDM và SUDM cho 400 khối B1 là 3.06, 150 khối B2 là 1.89. Khối B2 được tạo từ nhiều khối con là nguyên nhân làm tỉ lệ này giữa UDM và SUDM giảm đi. Tỉ lệ thời gian hiển thị giữa UDM và SUDM cho 400 khối B1 trung bình là 6.13, 150 khối B2 là 2.96. Các khối càng 17 phức tạp do được tạo từ nhiều khối con sẽ làm giảm tỉ lệ thời gian hiển thị giữa UDM và SUDM. 4.2 Mô hình TUDM Xuất phát từ ý tưởng xây dựng mô hình 4D, gồm 3D không gian và 1D thời gian, để biểu diễn và lưu trữ các biến động của các đối tượng 3D theo thời gian, mô hình TUDM ra đời. Các biến động thể hiện ở các mốc: thời gian các đối tượng 3D sinh ra và mất đi, cả trong thế giới thực và lúc ghi vào CSDL. 4.2.1 Mô tả dữ liệu Các các quan hệ DMY, TIME, EVENTYPE, EVENT, BODY, BODYEVENT tham gia trong phần dữ liệu. Dữ liệu mẫu gồm 210 khối, từ B1 đến B210. Các khối này chia thành 10 nhóm, từ G1 đến G10. Mỗi nhóm có các đặc điểm riêng được mô tả trong các bảng. DMY(#IDMY, D/M/Y, H/M/S) TIME(#IDT, IDDMY1, IDDMY2, INT-INST) EVENTYPE(#IDET, NAME) EVENT(#IDE, IDTDBB, IDTDBE, IDTRB, IDTRE, IDET) BODY(#IDB, DESC, IDTDBB, IDTDBE, IDTRB, IDTRE). Số khối dữ liệu mẫu là 210. Chúng được chia thành 10 nhóm, từ G1 đến G10. Mỗi nhóm có các giá trị theo bảng 4.4. Bảng 4.5 phân loại các Gi thuộc các nhóm thời gian và mối quan hệ giữa thời gian ghi trong CSDL (IDTBDB, IDTDBE) và thời gian trong thế giới thực (IDTRB, IDTRE). 4.2.2 Các truy vấn mẫu Trình bày hai mẫu truy vấn không gian theo thời gian và màn hình kết quả. Truy vấn 1. Tìm các khối có thời điểm xây dựng từ T1 đến T2. Biết T1, T2 là điểm thời gian và thời gian thực (hình 4.4). 18 Hình 4.4 Kết quả truy vấn nhìn từ góc A Truy vấn 2. Tìm các Khối bị biến mất trong khoảng thời gian [T1, T2] do quy hoạch. Biết T1, T2 là điểm thời gian, thời gian thực . Kết quả truy vấn 6 minh họa bởi hình 4.14, 4.15 nhìn từ hai góc khác nhau (T1=10/1/2010, T2=20/7/2010). Hình 4.5 Kết quả truy vấn 2 nhìn từ góc A 4.3 Mô hình LUDM LUDM hình thành từ ý tưởng xây dựng một mô hình dữ liệu 3D sao cho hiển thị các khối ở nhiều mức chi tiết khác nhau. Số mức chi tiết là độc lập với ngữ nghĩa và có số mức do người dùng định nghĩa. 4.3.1 Mô tả dữ liệu mẫu cho hai khối B0 và B4 19 Hai khối mẫu B0, B4 có hình dạng ban đầu như hình phải của 4.7 và 4.9. Tại các LOD khác nhau các khối này có dữ liệu khác nhau. Tại mức 0, các khối hiển thị như một đa giác (hình trái 4.6 và 4.8). Tại mức 1, các khối hiển thị như một khối (hình phải 4.6 và 4.8). Tại mức 2, các khối hiển thị như một khối có các tầng (hình trái 4.7 và 4.9). Tại mức 3, các khối hiển thị như một khối có các tầng, các cửa sổ, các ban công và mái (hình phải 4.7 và 4.9). Hình 4.6 Hiển thị kết quả của khối B0 (chung cư 1) tại mức 0 (trái) và 1 (phải) Hình 4.7 Hiển thị kết quả của khối B0 tại mức 2 (trái) và 3 (phải) 20
- Xem thêm -