Đăng ký Đăng nhập
Trang chủ Ngoại ngữ Kiến thức tổng hợp Phân tích đáp ứng của profile cánh máy bay theo cách tiếp cận đối ngẫu...

Tài liệu Phân tích đáp ứng của profile cánh máy bay theo cách tiếp cận đối ngẫu

.PDF
130
26
129

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ --o0o-- NGUYỄN MINH TRIẾT PHÂN TÍCH ĐÁP ỨNG CỦA PROFILE CÁNH MÁY BAY THEO CÁCH TIẾP CẬN ĐỐI NGẪU Chuyên ngành: Cơ kỹ thuật Mã số: 62 52 01 01 LUẬN ÁN TIẾN SĨ CƠ HỌC KỸ THUẬT NGƢỜI HƢỚNG DẪN KHOA HỌC 1. GS.TSKH Nguyễn Đông Anh 2. PGS.TS Phạm Mạnh Thắng HÀ NỘI - 2017 II LỜI CẢM ƠN Tôi xin bày tỏ lời cảm ơn sâu sắc tới các thầy hƣớng dẫn khoa học là GS.TSKH. Nguyễn Đông Anh và PGS.TS. Phạm Mạnh Thắng, các thầy đã trực tiếp hƣớng dẫn tận tình và giúp tôi hoàn thành luận án này. Tôi cũng chân thành cảm ơn các nhà khoa học và các cán bộ của khoa Cơ học kỹ thuật & Tự động hóa, trƣờng Đại học Công nghệ, Đại học Quốc gia Hà Nội, và Viện Cơ học, Viện Hàn lâm Khoa học & Công nghệ Việt Nam, đã tạo điều kiện thuận lợi, giúp đỡ tôi trong quá trình học tập, nghiên cứu tại đây. Hà Nội, ngày … tháng … năm 2017 Nguyễn Minh Triết III LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận án là trung thực và chƣa từng đƣợc ai công bố trong bất kỳ công trình nào khác. Hà Nội, ngày tháng Tác giả luận án Nguyễn Minh Triết năm 2017 IV MỤC LỤC LỜI CẢM ƠN ................................................................................................................. II LỜI CAM ĐOAN ......................................................................................................... III MỤC LỤC .................................................................................................................... IV DANH MỤC MỘT SỐ KÝ HIỆU VÀ CHỮ VIẾT TẮT .............................................VI DANH MỤC HÌNH VẼ, ĐỒ THỊ ............................................................................ VIII DANH MỤC BẢNG VÀ SƠ ĐỒ KHỐI ......................................................................IX MỞ ĐẦU ......................................................................................................................... 1 1. Tính cấp thiết của đề tài .......................................................................................... 1 2. Mục tiêu nghiên cứu ................................................................................................ 2 3. Đối tƣợng nghiên cứu.............................................................................................. 3 4. Nội dung nghiên cứu ............................................................................................... 3 4.1. Phƣơng pháp nghiên cứu .................................................................................3 4.2. Hƣớng giải quyết ............................................................................................. 3 4.3. Kết quả dự kiến ................................................................................................ 3 5. Cấu trúc của luận án ................................................................................................ 4 CHƢƠNG 1. TỔNG QUAN VỀ BÀI TOÁN PHÂN TÍCH ĐÁP ỨNG CỦA THIẾT DIỆN CÁNH ...................................................................................................................7 1.1. Khái niệm cơ bản về khí đàn hồi .........................................................................7 1.2. Các nghiên cứu đáp ứng của thiết diện cánh........................................................ 8 1.3. Thiết diện cánh phi tuyến ................................................................................... 13 1.4. Một số nghiên cứu liên quan ở trong nƣớc ........................................................ 16 1.5. Cách tiếp cận đối ngẫu ....................................................................................... 18 1.6. Vấn đề nghiên cứu của luận án ..........................................................................19 Kết luận chƣơng 1 .........................................................................................................20 CHƢƠNG 2. MÔ HÌNH CƠ HỌC CỦA THIẾT DIỆN CÁNH CHUYỂN ĐỘNG TRONG DÒNG KHÍ .....................................................................................................21 2.1. Lực khí động dừng và tựa dừng .........................................................................21 2.1.1. Lực khí động dừng ...................................................................................... 21 2.1.2. Lực khí động tựa dừng ................................................................................25 2.2. Phƣơng trình chuyển động của thiết diện cánh ..................................................28 2.3. Hiện tƣợng flutter ............................................................................................... 30 2.3.1. Hiện tƣợng mất ổn định 1 bậc tự do ........................................................... 30 2.3.2. Hiện tƣợng mất ổn định 2 bậc tự do ........................................................... 32 2.4. Tính toán vận tốc flutter trong hệ tuyến tính ..................................................... 34 2.4.1. Hệ tự dao động tổng quát ............................................................................34 2.4.2. Thiết diện cánh 2 chiều có điều khiển PID .................................................36 V 2.5. Tính toán thiết diện cánh bằng phƣơng pháp CFD ............................................37 2.5.1. Mô phỏng khí động lực trên mô hình cánh máy bay ..................................38 2.5.2. Tối ƣu hình dạng khí động sử dụng phƣơng pháp SQP ............................. 45 2.5.3. Mô phỏng CFD trên cánh máy bay với các góc tới lớn .............................. 53 Kết luận chƣơng 2 .........................................................................................................61 CHƢƠNG 3. PHÁT TRIỂN KỸ THUẬT ĐỐI NGẪU CHO BÀI TOÁN DAO ĐỘNG PHI TUYẾN ..................................................................................................................62 3.1. Phƣơng pháp tuyến tính hóa tƣơng đƣơng ......................................................... 62 3.1.1. Tiêu chuẩn tƣơng đƣơng kinh điển ............................................................. 63 3.1.2. Tiêu chuẩn sai số thế năng ..........................................................................64 3.1.3 Tiêu chuẩn tƣơng đƣơng điều chỉnh ............................................................ 65 3.2 Tiêu chuẩn đối ngẫu có trọng số .........................................................................66 3.3. Những cải tiến của phƣơng pháp đối ngẫu có trọng số ......................................68 3.3.1. Cải tiến 1 .....................................................................................................68 3.3.2. Cải tiến 2 .....................................................................................................69 3.3.3. Cải tiến 3 .....................................................................................................69 3.4 Áp dụng cho dao động tự do của hệ phi tuyến dạng Duffing bậc cao ................70 3.5. Áp dụng cho dao động ngẫu nhiên .....................................................................73 CHƢƠNG 4. ÁP DỤNG KỸ THUẬT TUYẾN TÍNH HÓA ĐỐI NGẪU CHO BÀI TOÁN PHÂN TÍCH ĐÁP ỨNG PHI TUYẾN CỦA THIẾT DIỆN CÁNH ................76 4.1. Mô hình thiết diện cánh...................................................................................... 76 4.2. Phƣơng trình xác định vận tốc tới hạn ............................................................... 79 4.3. Áp dụng kỹ thuật tuyến tính hóa đối ngẫu ......................................................... 81 4.4. Các ví dụ và tính toán bằng phƣơng trình vi phân .............................................84 4.4.1. Số liệu đầu vào ............................................................................................ 84 4.4.2. Tìm vận tốc tới hạn bằng phƣơng pháp số .................................................87 4.5. Kết quả tính toán với ví dụ 1 ..............................................................................89 4.6. Kết quả tính toán với ví dụ 2 ..............................................................................90 4.7. Kết quả tính toán với ví dụ 3 ..............................................................................92 4.8. Kết quả tính toán với ví dụ 4 ..............................................................................94 4.9. Kết quả tính toán với ví dụ 5 ..............................................................................97 Kết luận chƣơng 4 .......................................................................................................100 KẾT LUẬN VÀ KIẾN NGHỊ .....................................................................................102 TÀI LIỆU THAM KHẢO ...........................................................................................107 PHỤ LỤC ....................................................................................................................116 VI DANH MỤC MỘT SỐ KÝ HIỆU VÀ CHỮ VIẾT TẮT A véc tơ hàm phi tuyến AoA Góc tới hoặc góc nâng (Angle of Attack) B véc tơ, hàm tuyến tính tƣơng đƣơng b, k hệ số tuyến tính hóa tƣơng đƣơng C hệ số chuẩn hóa CL, CD, CM Các hệ số khí động (nâng, cản, mô men) c1,ktt,kα hệ số độ cứng tuyến tính c3 , c5 hệ số độ cứng phi tuyến CAD Thiết kế với hỗ trợ của máy tính (Computer-Aided Design) CFD Động lực học chất lỏng tính toán (Computational fluid dynamics) CSM Mô hình cấu trúc tính toán (Computational Structural Model) D Lực cản (Drag) dk(µ) tỉ số các hệ số tuyến tính hóa theo các tiêu chuẩn Dxx (t1 , t2 ), D12 hiệp phƣơng sai e  x, x  sai số phƣơng trình E{.}, <.> kỳ vọng toán học f(t), u(t) kích động ngoài F(x) hàm phân phối xác suất FSI Tƣơng tác dòng khí kết cấu (Fluid Structure Interaction) g  x, x  hàm phi tuyến của dịch chuyển h hệ số cản tuyến tính H ( x, x) hàm tổng năng lƣợng KKT Phƣơng trình Karush-Kuhn-Tucker K(x,t) ma trận hệ số khuếch tán Kp, Ki, Kd Các hệ số bộ điều khiển PID L Lực nâng (Lift) LCO Dao động vòng giới hạn (Limit Cycle Oscillation) VII m khối lƣợng minS giá trị cực tiểu của tiêu chuẩn tuyến tính hóa mx trung bình xác suất p trọng số p(μ) hàm trọng số P{.} xác suất của một sự kiện PID Bộ vi tích phân tỉ lệ (Proportional Integral Derivative) PTTH Phần tử hữu hạn (Finite Element) q Áp suất khí động lực r hệ số tƣơng quan R(t1,t2) hàm tƣơng quan RANS Hệ Reynolds Navier-Stokes (Reynolds Averaged Navier-Stokes) Re Số Reynolds S biểu thức tính diện tích SQP Lập trình toàn phƣơng liên tiếp (Sequential Quadratic Programming) Sx(ω) hàm mật độ phổ T chu kỳ dao động t thời gian TMD Bộ hấp thụ dạng khối lƣợng (Tuned Mass Damper) TTH Tuyến tính hóa (Linearization) UAV Máy bay không ngƣời lái (Unmanned aerial vehicle) u, v(t ), x(t ) vận tốc x(t) dịch chuyển x t  gia tốc X, Y biến ngẫu nhiên α, β các hệ số hằng, hoặc góc tới δ(x) hàm Delta Dirac θ góc giữa hai véc tơ VIII λ hệ số trở về μ mức độ phụ thuộc tuyến tính 𝜌 Khối lƣợng riêng μn mô men trung tâm μnm mô men liên kết trung tâm σx độ lệch chuẩn  x2 phƣơng sai τ độ trễ ω tần số kích động ω0 tần số dao động tự do IX DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1. Tam giác khí đàn hồi của Collar Hình 2. Mô hình thiết diện cánh hai chiều, lực khí động quy về lực tập trung Hình 3. Mô hình cánh theo tấm bị ngàm Hình 4. Mô hình cánh phẳng, lực khí động tính bằng CFD Hình 5. Mô hình kết hợp CFD-CSM Hình 6. Mô hình thiết diện cánh 2 chiều có cánh nhỏ điều khiển Hình 7. Phi tuyến bậc ba và phi tuyến khe hở tự do Hình 8. Dao động vòng giới hạn điển hình Hình 9. Một số thuật ngữ về cánh Hình 10. Dòng dừng đi qua một thiết diện cánh 2 chiều Hình 11: Đƣờng dòng và các đƣờng đẳng thế của một xoáy 2 chiều tại gốc tọa độ Hình 12: Dòng không dừng đi qua thiết diện cánh Hình 13. Mô hình cánh 2 bậc tự do Hình 14: Mô hình lực chất lỏng tác động vào hệ 1 bậc tự do Hình 15. Các hệ số khí động theo góc xung kích Hình 16. Mô tả hiện tƣợng mất ổn định lên xuống –xoắn Hình 17. Phác thảo thiết kế thiết diện cánh máy bay. Hình 18. Mô hình cánh máy bay tạo ra trong ANSYS. Hình 19. Chia lƣới trong ANSYS Hình 20. Biểu đồ phân bố áp suất Hình 21. Biểu đồ phân bố vận tốc Hình 22: Ứng suất tƣơng đƣơng trên cánh Hình 23. Quan hệ giữa lực nâng với vận tốc tƣơng đối Hình 24. Quan hệ giữa lực cản với vận tốc tƣơng đối Hình 25. Hình dạng thiết diện cánh máy bay ban đầu và cánh tối ƣu Hình 26. Hình ảnh phân bố áp suất tại Re=5.105 và =5o trên thiết diện cánh Eppler 66 (hình trái) và thiết diện tối ƣu theo SQP (hình phải). X Hình 27. Hình ảnh phân bố vận tốc Re=5.105 và =5o trên thiết diện cánh Eppler 66 (hình trái) và thiết diện tối ƣu theo SQP (hình phải) Hình 28: Hình ảnh phân bố ứng suất trên cánh tại Re=5.105 và =5o đối với thiết diện cánh Eppler 66 (hình trái) và thiết diện tối ƣu theo SQP (hình phải) Hình 29. Phác họa thiết diện đặc trƣng của cánh máy bay Hình 30. Hình học của hình dạng cánh Hình 31. Biểu đồ phân bố áp suất (trái) và phân bố vận tốc dòng khí xung quanh cánh tại góc tới là 0 độ Hình 32. Biểu đồ phân bố áp suất (trái) và phân bố vận tốc dòng khí xung quanh cánh tại góc tới là 10 độ Hình 33. Biểu đồ phân bố áp suất (trái) và phân bố vận tốc dòng khí xung quanh cánh tại góc tới là 18 độ Hình 34. Đồ thị hệ số lực nâng theo góc tới Hình 35. Đồ thị hệ số lực cản theo góc tới Hình 36. Mô hình khí động với các bậc tự do tịnh tiến và xoắn. Hình 37. Mô hình giản đồ của bố trí thí nghiệm Hình 38. Mô hình giản đồ của số liệu đầu vào và đầu ra cho việc đo và điều khiển mô hình thí nghiệm Hình 39. Biên flutter của ví dụ 1 tính theo phƣơng pháp số đƣợc đề cập trong luận án Hình 40. Biên flutter của ví dụ 1 (cắt từ bài báo Li vcs 2011) Hình 41. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 1 Hình 42. Kết quả so sánh đƣờng cong tần số-vận tốc trong ví dụ 2 Hình 43. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 3, Kp=-0.5 Hình 44. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 3, Kp=0.5 Hình 45. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 4, Ki=-2 (1/s) Hình 46. Sự phân kỳ của dao động xoắn trong ví dụ 4 khi Ki=2 (1/s), h(0)=0(m), (0)=0.0125(rad), u=2.6 (m/s) Hình 47. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 5, Kd=-0.5 (s) Hình 48. Kết quả so sánh đƣờng cong biên độ-vận tốc trong ví dụ 5, Kd=0.5 (s) XI DANH MỤC BẢNG VÀ SƠ ĐỒ KHỐI Bảng 1. Các đặc điểm của Hợp kim nhôm 7075-T6 Bảng 2. Các đặc tính khí động lực trên các thiết diện cánh tại Re=5.105 và =5o Bảng 3. Các giá trị lực nâng và lực cản tƣơng ứng với các góc tới khác nhau Bảng 4. So sánh các tần số tính toán với tần số chính xác Bảng 5. So sánh các dịch chuyển bình phƣơng trung bình Bảng 6. Số liệu của ví dụ 1 Bảng 7. Số liệu của ví dụ 2 Bảng 8. Số liệu của ví dụ 3 Bảng 9. Số liệu của ví dụ 4 Bảng 10. Số liệu của ví dụ 5 Bảng 11. So sánh một số vận tốc flutter trong ví dụ 1 Bảng 12. So sánh một số vận tốc flutter trong ví dụ 2 Bảng 13. So sánh các vận tốc flutter trong ví dụ 1 Bảng 14. So sánh các vận tốc flutter trong ví dụ 2 Bảng 15. So sánh các vận tốc flutter trong ví dụ 3, Kp=-0.5 Bảng 16. So sánh các vận tốc flutter trong ví dụ 3, Kp=0.5 Bảng 17. So sánh các vận tốc flutter trong ví dụ 4, Ki=-2 (1/s) Bảng 18. Các giá trị riêng tính theo các phƣơng pháp tuyến tính hóa, ví dụ 4, Ki=2 (1/s) Bảng 19. So sánh các vận tốc flutter trong ví dụ 5, Kd=-0.5 (s) Bảng 20. So sánh các vận tốc flutter trong ví dụ 5, Kd=0.5 (s) MỞ ĐẦU 1. Tính cấp thiết của đề tài Hiện nay, máy bay là phƣơng tiện không thể thiếu đƣợc trong mỗi quốc gia, có vai trò đặc biệt quan trọng trong lĩnh vực dân sự và quân sự. Do vậy, mặc dù đã đƣợc phát minh và đƣa vào sử dụng từ 100 năm trƣớc, các nghiên cứu về máy bay vẫn đƣợc tiếp tục phát triển mạnh trên thế giới nhằm nâng cao độ ổn định, an toàn và tốc độ cho các chuyến bay. Khi máy bay chuyển động trong dòng khí sẽ xuất hiện các hiệu ứng khí động học, trong đó dao động flutter của thiết diện cánh máy bay rất đƣợc quan tâm. Phân tích đáp ứng của thiết diện cánh máy bay là một bài toán quan trọng phục vụ quá trình thiết kế, chế tạo, vận hành và bảo dƣỡng máy bay. Thiết diện cánh chuyển động trong dòng khí không nén đƣợc thƣờng đƣợc mô hình bằng mô hình cơ học hai chiều. Phƣơng trình chuyển động ứng với mô hình thƣờng là hệ tự dao động và có tính chất phi tuyến. Khi nghiên cứu hệ phi tuyến này, ngƣời ta quan sát thấy hiện tƣợng mà ở đó có xuất hiện vòng giới hạn, các hiện tƣợng rẽ nhánh Hopf và hiện tƣợng mất ổn định flutter. Vấn đề khoa học này đã thu hút nhiều nghiên cứu trong những thập niên trở lại đây, nhất là nghiên cứu phục vụ nhu cầu chế tạo các loại máy bay với nhiều tính năng, đảm bảo ổn định khi bay ở các độ cao, vận tốc và điều kiện bay khác nhau. Các phƣơng trình chuyển động của thiết diện cánh đều là phƣơng trình phi tuyến và có thể phi tuyến mạnh, do vậy phải phát triển các phƣơng pháp đã có để có thể thu đƣợc lời giải đạt đƣợc độ chính xác mong muốn. Mới đây, một cách tiếp cận mới cho bài toán phi tuyến về dao động và điều khiển kết cấu đƣợc đề xuất. Cách tiếp cận mới đƣợc biết với tên gọi cách tiếp cận đối ngẫu với quan điểm tạo ra một sự hài hòa trong nghiên cứu, cho phép phát hiện bản chất của vấn đề một cách đầy đủ hơn. Áp dụng cho lĩnh vực tuyến tính hóa (TTH) tƣơng đƣơng đã dẫn đến phƣơng pháp cực tiểu bình phƣơng đối ngẫu. Ban đầu phƣơng pháp đƣợc đề xuất trong nghiên cứu dao động ngẫu nhiên của các hệ phi tuyến với kích động ngoài ồn trắng. Kết quả thu 1 đƣợc chỉ ra rằng với các hệ phi tuyến mạnh, phƣơng pháp cho kết quả khá tốt và phù hợp với kết quả thu đƣợc từ nghiệm chính xác trong trƣờng hợp hệ phi tuyến có đƣợc nghiệm chính xác, và kết quả thu đƣợc từ nghiệm mô phỏng số trong trƣờng hợp không tìm đƣợc nghiệm chính xác của hệ phi tuyến. Tính ƣu việt của nó sau đó còn đƣợc tìm thấy trong trong nghiên cứu hệ nhiều bậc tự do chịu kích động ngẫu nhiên. Ý tƣởng của phƣơng pháp đƣợc mở rộng sang nghiên cứu điều khiển giảm dao động cho hệ TMD. Các kết quả thu đƣợc về đáp ứng của hệ TMD cũng tốt hơn hẳn so với các kết quả đã có trƣớc đây. Cách tiếp cận đối ngẫu ở trên có tính linh hoạt và có thể áp dụng đƣợc cho nhiều lớp hệ phi tuyến khác nhau. Đây cũng là chủ đề của luận án với mục đích nghiên cứu phát triển và áp dụng cho bài toán ổn định thiết diện cánh máy bay. Nghiên cứu nhằm tìm ra những nghiệm gần đúng của bài toán với sai số nghiệm nhỏ so với các nghiệm mô phỏng số trong trƣờng hợp hệ đang xét có tính phi tuyến, thậm chí là phi tuyến mạnh. Hƣớng nghiên cứu này chƣa từng đƣợc triển khai cho đến thời điểm hiện nay. Việc triển khai nghiên cứu sẽ tạo ra khả năng thu đƣợc các kết quả mới chính xác hơn các kết quả đã biết, mở đƣờng cho một cách tiếp cận mới trong nghiên cứu các kết cấu hàng không và vũ trụ. Nhƣ vậy qua phân tích và nghiên cứu các tài liệu khoa học công nghệ có thể khẳng định đề tài “PHÂN TÍCH ĐÁP ỨNG PHI TUYẾN CỦA THIẾT DIỆN CÁNH THEO CÁCH TIẾP CẬN ĐỐI NGẪU” của luận án có tính cấp thiết, ý nghĩa khoa học và thực tiễn. 2. Mục tiêu nghiên cứu - Phát triển phƣơng pháp luận cho cách tiếp cận đối ngẫu trong phƣơng pháp tuyến tính hóa tƣơng đƣơng áp dụng trong bài toán phân tích đáp ứng của thiết diện cánh chịu lực khí động. - Xây dựng các cải tiến có hiệu quả cho tiêu chuẩn tuyến tính hóa tƣơng đƣơng đối ngẫu, áp dụng cho bài toán flutter phi tuyến của thiết diện cánh. 2 - Tăng độ chính xác cho nghiệm của bài toán ổn định flutter thiết diện cánh bằng cách áp dụng tiêu chuẩn đối ngẫu đƣợc cải tiến. - Thu đƣợc các kỹ thuật tính toán theo tiêu chuẩn đối ngẫu cho bài toán flutter của thiết diện cánh. 3. Đối tƣợng nghiên cứu Thiết diện cánh máy bay theo mô hình hai chiều chịu tác động của lực khí động. 4. Nội dung nghiên cứu 4.1. Phƣơng pháp nghiên cứu - Sử dụng các phƣơng pháp của cơ học để xây dựng mô hình tính toán. Áp dụng lý thuyết khí động học xây dựng phƣơng trình dao động flutter của mô hình thiết diện cánh máy bay. - Sử dụng các phƣơng pháp giải tích, đặc biệt phát triển phƣơng pháp tuyến tính hóa tƣơng đƣơng của cơ học phi tuyến. - Sử dụng các phƣơng pháp CFD, phƣơng pháp số mô phỏng hệ phi tuyến, các số liệu thực nghiệm đã có để so sánh, đánh giá kết quả lý thuyết. 4.2. Hƣớng giải quyết Trên cơ sở hoàn thiện mô hình cơ học và các kết quả lý thuyết đã có về dao động của thiết diện cánh đề tài tập trung phát triển cách tiếp cận đối ngẫu để xây dựng một kỹ thuật tính toán mới với cách mở rộng tiêu chuẩn đối ngẫu cho bài toán phân tích đáp ứng phi tuyến của thiết diện cánh dƣới tác động của lực khí động. 4.3. Kết quả dự kiến - Xây dựng thành công các cải tiến có hiệu quả cho tiêu chuẩn đối ngẫu cho hệ dao động phi tuyến tuần hoàn và ngẫu nhiên. - Áp dụng cho mô hình dao động 2 chiều của thiết diện cánh, xác định các hiện tƣợng mất ổn định flutter và vận tốc gió tới hạn. 3 - Đánh giá sai số của nghiệm và đảm bảo sai số của nghiệm đƣợc cải thiện so với các kết quả đã có trƣớc đây. 5. Cấu trúc của luận án Luận án gồm phần Mở đầu, 4 Chƣơng và Kết luận. Mở đầu. Phần mở đầu trình bày tính cấp thiết, mục đích và nhiệm vụ nghiên cứu, ý nghĩa khoa học và ý nghĩa thực tiễn của luận án. Chƣơng 1. Trong chƣơng này luận án trình bày các kiến thức cơ sở liên quan đến lĩnh vực khí đàn hồi, sự tƣơng tác giữa ba loại lực: khí động, đàn hồi và quán tính. Đã tổng quan các nghiên cứu quốc tế và trong nƣớc liên quan đến bài toán phân tích đáp ứng của thiết diện cánh chịu lực khí động. Các vấn đề cơ bản về mô hình hóa thiết diện cánh, các hiện tƣợng phi tuyến và cách tiếp cận đối ngẫu đƣợc trình bày nhằm làm sáng tỏ vấn đề nghiên cứu. Qua đó đã xác định nội dung cơ bản cũng nhƣ các giới hạn nghiên cứu của luận án. Chƣơng 2. Trên cơ sở lý thuyết khí động học và các số liệu thực nghiệm đã có xây dựng mô hình thiết diện cánh máy bay chuyển động trong dòng khí không nén đƣợc. Phƣơng trình phi tuyến thu đƣợc từ mô hình đƣợc dùng để phân tích đáp ứng cũng nhƣ các hiện tƣợng flutter. Sau khi thiết lập phƣơng trình dao động hai bậc tự do của thiết diện cánh đã trình bày một số phƣơng pháp giải tích và tính toán số để phân tích các hiện tƣợng dao động flutter. Chƣơng 3. Trình bày tiêu chuẩn đối ngẫu có trọng số cho vấn đề tuyến tính hóa tƣơng đƣơng hệ dao động phi tuyến, trong đó khi cho tham số trọng số bằng không sẽ thu đƣợc tiêu chuẩn tuyến tính hóa kinh điển. Để giải quyết vấn đề chọn giá trị tham số trọng số nhƣ thế nào sẽ nghiên cứu đề xuất 3 cách lựa chọn tƣơng ứng với 3 cải tiến. Áp dụng cho các hệ phi tuyến dạng đa thức là dạng hay gặp trong 4 bài toán ổn định flutter cho thấy các tiêu chuẩn đối ngẫu cải tiến đều cho kết quả chính xác hơn tiêu chuẩn kinh điển. Chƣơng 4. Tác giả sử dụng các phƣơng pháp số cho phƣơng trình vi phân chuyển động của thiết diện cánh. Các kết quả mô phỏng số tính toán đáp ứng phi tuyến cho thiết diện cánh máy bay đƣợc thực hiện. Kết quả của phƣơng pháp mô phỏng số và các kết quả của tác giả khác sẽ dùng để đánh giá, so sánh các kết quả giải tích thu đƣợc theo kỹ thuật tính toán đối ngẫu. Kết luận chung. Danh sách công trình đã đƣợc công bố, đã đƣợc chấp nhận và sẽ đăng thuộc luận án : 1. Nguyễn Đông Anh, Nguyễn Minh Triết, Mở Rộng Tiêu Chuẩn Đối Ngẫu Cho Các Hệ Phi Tuyến Dao Động Tuần Hoàn, Tạp chí Khoa học Giáo dục Kỹ thuật, Trƣờng Đại học Sƣ phạm Kỹ thuật TPHCM, 2015, p.03:07. 2. Nguyen Minh Triet, Nguyen Ngoc Viet, Pham Manh Thang, Aerodynamic Analysis of Aircraft Wing, VNU Journal of Science, Natural Sciences and Technology, 2015, p.68:75. 3. Nguyen Minh Triet, Extension of dual equivalent linearization technique to flutter analysis of two dimensional nonlinear airfoils, Vietnam Journal of Mechanics, vol. 37, N3, 2015, p.217:230. 4. Nguyen Minh Triet, A Full Dual Mean Square Error Criterion For The Equivalent Linearization, Journal of Science and Technology, 2015, p.557:562. 5. Nguyen Minh Triet, M.T. Pham, M. C. Vu, D.A. Nguyen - "Design wireless control system for aircraft model " Proceedings of the 3rd International Conference on Engineering Mechanics and Automation, ICEMA3, 2014, p.283:286. 5 6. Minh Triet Nguyen, Ngoc Viet Nguyen, Van Manh Hoang, Manh Thang Pham - Aerodynamic shape optimization of airfoil using SQP method - Tuyển tập Hội nghị Khoa học toàn quốc Cơ học Vật rắn biến dạng lần thứ XII, 2015, p.1442:1449. 7. Minh Triet Nguyen, Van Long Nguyen, Ngoc Viet Nguyen, Ngoc Linh Nguyen, Manh Thang Pham “A Study on Low-Speed Wind Tunnel – Theory and Experiment” Proceedings of the 4rd International Conference on Engineering Mechanics and Automation - ICEMA4, 2016, (Accepted 10/2016) 8. Minh Triet Nguyen, Ngoc Viet Nguyen, Van Manh Hoang, Manh Thang Pham “Aerodynamic analysis and experiment of an airfoil in a low speed wind tunnel”. Proceedings of the 4rd International Conference on Engineering Mechanics and Automation - ICEMA4, 2016, (Accepted 10/2016). 6 CHƢƠNG 1. TỔNG QUAN VỀ BÀI TOÁN PHÂN TÍCH ĐÁP ỨNG CỦA THIẾT DIỆN CÁNH 1.1. Khái niệm cơ bản về khí đàn hồi Khí đàn hồi (Aeroelasticity) là ngành khoa học nghiên cứu các hiện tƣợng xảy ra do sự tƣơng tác giữa lực khí động (aerodynamic), lực quán tính (inertia) và lực đàn hồi (elastic). Lĩnh vực nghiên cứu này đƣợc tóm tắt rõ ràng nhất bởi tam giác khí đàn hồi Collar (Collar, 1978) [26], cho trên Hình 1. Lực quán tính Ổn định và điều khiển Dao động Khí đàn hồi động Lực khí động Lực đàn hồi Khí đàn hồi tĩnh Hình 1. Tam giác khí đàn hồi của Collar Hình 1 thể hiện mối tƣơng quan của những lĩnh vực nhƣ ổn định và điều khiển (stability and control), dao động (vibration) và khí đàn hồi tĩnh (static aeroelasticity) với các tƣơng tác giữa 2 trong 3 loại lực. Sự tƣơng tác của cả 3 loại lực này dẫn tới đối tƣợng nghiên cứu gọi là khí đàn hồi động (dynamic aeroelasticity). Các hiện tƣợng khí đàn hồi có ảnh hƣởng lớn tới việc thiết kế và hiệu quả hoạt động của máy bay. Lịch sử phát triển của khí đàn hồi và ảnh hƣởng của môn khoa học này tới việc thiết kế máy bay có thể đƣợc tham khảo trong các tài 7 liệu của Collar (1978) [26], Garrick và Reid (1981) [37], Flomenhoft (1997) [34], với những khảo sát về các ứng dụng đƣợc cho bởi Friedmann (1999) [35], và Livne (2003) [62]. Các tài liệu tổng kết khá toàn diện về khí đàn hồi gần đây bao gồm Hodges và Pierce (2002) [42], Dowell vcs (2015) [32], trong đó các cách tiếp cận toán học sâu sắc và các nhiều khía cạnh cơ bản đã đƣợc trình bày chi tiết. Khí đàn hồi không chỉ là lĩnh vực thuần túy liên quan đến máy bay. Đề tài này còn rất liên quan tới thiết kế các kết cấu nhƣ cầu, xe đua công thức 1, cánh quạt tua bin gió, cánh quạt động cơ tu bô, máy bay trực thăng, và rất nhiều các ứng dụng khác … Trên thực tế, các nguyên lý cơ bản cho các nghiên cứu về cánh máy bay đều có thể liên quan tới các ứng dụng trên. Các ứng dụng đó đang ngày càng tăng lên về số lƣợng vì công nghệ trong các lĩnh vực này đòi hỏi những kết cấu nhẹ hơn nhƣng làm việc trong điều kiện dòng chất lƣu khắc nghiệt hơn. Các vấn đề này có thể đƣợc tham khảo trong cuốn sách mới nhất tổng hợp các bài giảng về khí đàn hồi (Dowell vcs 2015) [31], và các tài liệu đƣợc trích dẫn trong đó. Trong luận án này ta tập trung vào hiện tƣợng khí đàn hồi động (là tâm của tam giác khí đàn hồi trong Hình 1). Khí đàn hồi động liên quan tới hiệu ứng dao động của sự tƣơng tác khí đàn hồi, và lĩnh vực chính cần quan tâm là hiệu ứng phá hủy thảm khốc của hiện tƣợng mất ổn định flutter. Sự mất ổn định này thƣờng liên quan tới hai hay nhiều dạng dao động và sinh ra do sự kết hợp không có lợi giữa ba loại lực: khí động, quán tính và đàn hồi, trong đó kết cấu có thể hấp thụ rất mạnh năng lƣợng từ dòng khí và bị phá hủy do dao động tăng đột biến. 1.2. Các nghiên cứu đáp ứng của thiết diện cánh Phân tích đáp ứng của thiết diện cánh là bài toán quan trọng phục vụ quá trình thiết kế, chế tạo, vận hành và bảo dƣỡng máy bay. Để tăng lực nâng, giảm lực cản, cánh cần đƣợc thiết kế có dạng mỏng. Điều này lại dẫn tới độ nhạy cảm 8 với dao động tăng lên, đặc biệt khi chuyển động trong dòng khí với vận tốc lớn. Lúc này, lực khí động (lực nâng) tăng rất lớn làm biến dạng hình học của cánh, từ đó lại làm thay đổi đặc trƣng của dòng khí, dẫn tới các hiện tƣợng tƣơng tác khí đàn hồi. Vấn đề khoa học này đã thu hút nhiều nghiên cứu trong những thập niên trở lại đây, nhất là nghiên cứu phục vụ nhu cầu chế tạo các loại máy bay với nhiều tính năng, đảm bảo ổn định khi bay ở các độ cao, vận tốc và điều kiện bay khác nhau. Về mặt mô hình hóa, cánh có thể đƣợc mô tả từ đơn giản đến phức tạp, ví dụ nhƣ cho trên các hình 2-5. Hình 2. Mô hình thiết diện cánh hai chiều, lực khí động quy về lực tập trung Hình 3. Mô hình cánh theo tấm bị ngàm 9
- Xem thêm -

Tài liệu liên quan