Đăng ký Đăng nhập
Trang chủ Nghiên cứu xử lý đóng rắn bùn đỏ alumina tây nguyên bằng công nghệ geopolyme đị...

Tài liệu Nghiên cứu xử lý đóng rắn bùn đỏ alumina tây nguyên bằng công nghệ geopolyme định hướng làm vật liệu không nung

.PDF
91
6
56

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------------- LÊ ĐẶNG THÙY DUNG NGHIÊN CỨU XỬ LÝ ĐÓNG RẮN BÙN ĐỎ ALUMINA- TÂY NGUYÊN BẰNG CÔNG NGHỆ GEOPOLYME ĐỊNH HƢỚNG LÀM VẬT LIỆU KHÔNG NUNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------------- LÊ ĐẶNG THÙY DUNG NGHIÊN CỨU XỬ LÝ ĐÓNG RẮN BÙN ĐỎ ALUMINA- TÂY NGUYÊN BẰNG CÔNG NGHỆ GEOPOLYME ĐỊNH HƢỚNG LÀM VẬT LIỆU KHÔNG NUNG Chuyên ngành: Hóa môi trường Mã số: 8440112.05 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS Trần Hồng Côn TS Công Tiến Dũng Hà Nội - 2019 LỜI CẢM ƠN Lời đầu tiên, tôi xin gửi lời cảm ơn sâu sắc tới PGS. TS Trần Hồng Côn cùng TS. Công Tiến Dũng đã trực tiếp giao đề tài, hướng dẫn và giúp đỡ tôi rất nhiều để tôi có thể hoàn thiện được báo cáo Luận văn thạc sỹ này theo đúng nội dung đề cương nghiên cứu. Tôi xin chân thành cảm ơn toàn thể các thầy cô trong Khoa Hóa thuộc trường Đại học Khoa học tự nhiên, Đại học Quốc gia Hà Nội đã nhiệt tình giảng dạy và truyền đạt cho tôi những kiến thức quý báu giúp tôi có nhiều kiến thức góp phần hoàn thiện bản luận văn thạc sỹ này được tốt hơn. Tôi cũng xin gửi lời cảm ơn tới các thầy cô, các bạn sinh viên trong Phòng thí nghiệm Hóa môi trường - Khoa Hóa học - Trường Đại học Khoa học Tự nhiên và Phòng thí nghiệm Hóa học - Trường Đại học Mỏ - Địa chất đã giúp đỡ trong thời gian nghiên cứu và học tập. Tôi xin chân thành cảm ơn! Hà Nội, ngày tháng năm 2019 Học viên Lê Đặng Thùy Dung MỤC LỤC Chƣơng 1. TỔNG QUAN ......................................................................................... 3 1.1 Giới thiệu về bùn đỏ ...................................................................................... 3 1.1.1 Khái niệm ................................................................................................... 3 1.1.2 Hiện trạng phát thải bùn đỏ ở một số quốc gia trên thế giới và Việt Nam. ......... 6 1.1.3 Nghiên cứu xử lý, tái sử dụng bùn đỏ trên thế giới và Việt Nam ............. 10 1.2 Giới thiệu về công nghệ geopolyme (polyme vô cơ) .................................. 14 1.2.1 Khái niệm, lịch sử phát triển geopolyme.................................................. 14 1.2.2 Cơ chế phản ứng tạo geopolyme .............................................................. 19 1.3 Nghiên cứu chế tạo polyme vô cơ trong xử lý đóng rắn bùn đỏ trên thế giới và Việt Nam .......................................................................................................... 22 1.3.1 Chế tạo polyme vô cơ trong xử lý đóng rắn bùn đỏ sử dụng cao lanh/khoáng sét ................................................................................................. 22 1.3.2 Chế tạo polyme vô cơ trong xử lý đóng rắn bùn đỏ sử dụng tro bay....... 24 1.3.3 Xử lý đóng rắn bùn đỏ bằng phương pháp geopolyme sử dụng hỗn hợp cao lanh, tro bay hoặc một số nguyên liệu khác ............................................... 28 Chƣơng 2. THỰC NGHIỆM .................................................................................. 31 2.1 Mục tiêu và nội dung nghiên cứu .................................................................. 31 2.1.1 Mục tiêu .................................................................................................... 31 2.1.2 Nội dung nghiên cứu ................................................................................ 31 2.2 Hóa chất, dụng cụ .......................................................................................... 31 2.2.1 Hóa chất ................................................................................................... 31 2.2.2 Dụng cụ và thiết bị ................................................................................... 32 2.3 Phương pháp nghiên cứu xử lý đóng rắn bùn đỏ ........................................ 33 2.3.1 Nghiên cứu ảnh hưởng của chất hoạt hóa ............................................... 33 2.3.2 Nghiên cứu ảnh hưởng của tỉ lệ cao lanh/tro bay đến tính chất của vật liệu. .................................................................................................................... 36 2.3.3 Nghiên cứu ảnh hưởng của thời gian dưỡng mẫu đến khả năng đóng rắn của vật liệu. ....................................................................................................... 37 2.3.4 .... Nghiên cứu ảnh hưởng nhiệt độ dưỡng mẫu đến khả năng đóng rắn của vật liệu. .............................................................................................................. 37 i 2.4 Phương pháp hóa lý xác định đặc trưng tính chất của nguyên vật liệu ..... 37 2.4.1 Phương pháp phổ huỳnh quang tia X ....................................................... 37 2.4.2 Phương pháp nhiễu xạ tia X ..................................................................... 38 2.4.3 Phương pháp phổ hồng ngoại .................................................................. 40 2.4.4 Phương pháp chụp ảnh hiển vi điện tử quét ............................................ 40 2.4.5 Phương pháp tán xạ năng lượng tia X ..................................................... 41 2.5 Đánh giá thông số chất lượng của vật liệu geopolyme................................. 42 2.5.1 Phương pháp xác định cường độ chịu nén............................................... 42 2.5.2 Phương pháp xác định độ hút nước ......................................................... 44 2.5.3 Phương pháp kiểm tra độ pH ................................................................... 44 2.5.4 Phương pháp đo mức độ an toàn của vật liệu ......................................... 45 Chƣơng 3. KẾT QUẢ VÀ THẢO LUẬN ............................................................. 46 3.1 Thành phần và tính chất của nguyên vật liệu .............................................. 46 3.1.1 Bùn đỏ....................................................................................................... 46 3.1.2 Cao lanh ................................................................................................... 48 3.1.3 Tro bay ..................................................................................................... 50 3.2 Kết quả nghiên cứu đóng rắn xử lý bùn đỏ bằng chất kết dính vô cơ trên cơ sở hỗn hợp cao lanh và tro bay ............................................................................ 52 3.2.1 Ảnh hưởng của tỉ lệ thành phần cao lanh/tro bay tới tính chất vật liệu .. 52 3.2.2 Ảnh hưởng của chất kiềm hoạt hóa tới tính chất vật liệu ........................ 54 3.2.3 Ảnh hưởng của thời gian lưu dưỡng mẫu ................................................ 62 3.2.4 Ảnh hưởng của nhiệt độ dưỡng mẫu ........................................................ 64 3.3 Nghiên cứu một số tính chất của vật liệu geopolyme sau đóng rắn xử lý bùn đỏ ........................................................................................................................... 67 3.3.1 Đặc trưng cấu trúc của vật liệu bằng SEM, XRD, FT-IR ........................ 67 3.3.2 Độ hút nước của vật liệu .......................................................................... 71 3.3.3 Sự thay đổi pH nước ngâm mẫu vật liệu theo thời gian........................... 72 3.3.4 Mức độ an toàn môi trường của vật liệu .................................................. 73 Chƣơng 4. KẾT LUẬN ........................................................................................... 75 TÀI LIỆU THAM KHẢO ...................................................................................... 76 ii DANH MỤC HÌNH Hình 1.1. Một số hình ảnh thảm họa ô nhiễm từ bùn đỏ. ........................................... 9 Hình 1.2. Các dạng cấu trúc cơ bản của geopolyme. ................................................ 15 Hình 1.3. Hình ảnh geopolyme được chụp qua kính hiển vi điện tử quét. ............... 17 Hình 1.4. Cơ chế quá trình geopolymer hóa [35]. .................................................... 20 Hình 2.1. Hình ảnh khuôn đúc viên vật liệu. ............................................................ 32 Hình 3.1. Giản đồ nhiễu xạ tia X của mẫu bùn đỏ. ................................................... 47 Hình 3.2. Ảnh SEM bùn đỏ Tân Rai. ........................................................................ 47 Hình 3.3. Giản đồ nhiễu xạ tia X của mẫu cao lanh. ................................................ 49 Hình 3.4. Ảnh SEM của cao lanh ở độ phóng đại khác nhau. .................................. 50 Hình 3.5. Ảnh SEM của tro bay Phả Lại II ở độ phóng đại khác nhau. ................... 51 Hình 3.6. Giản đồ XRD của tro bay Phả Lại II. ........................................................ 52 Hình 3.7. Cường độ chịu nén của vật liệu polyme vô cơ chế tạo được với tỉ lệ cao lanh/tro bay khác nhau. ............................................................................................. 53 Hình 3.8. Cường độ chịu nén của vật liệu polyme vô cơ sử dụng chất hoạt hóa là NaOH với các nồng độ khác nhau. ........................................................................... 55 Hình 3.9. Ảnh vật liệu geopolyme chế tạo được với chất hoạt hóa NaOH với nồng độ khác nhau: (a) 4M, (b) 6M, (c) 8M, (d) 10M, (e) 12M. ....................................... 56 Hình 3.10. Cường độ chịu nén của vật liệu geopolyme theo hàm lượng Ca(OH)2 ở nồng độ NaOH 4M (a), 6M (b), 8M (c), 10M (d). ................................................... 58 Hình 3.11. Cường độ chịu nén của vật liệu với chất hoạt hóa: NaOH và hỗn hợp NaOH + Ca(OH)2 theo dõi sau 7 ngày (a) và sau 28 ngày (b). ............................... 59 Hình 3.12. Ảnh mẫu vật liệu geopolyme chế tạo được khi dùng NaOH + Ca(OH)2.61 Hình 3.13. Cường độ chịu nén của vật liệu chế tạo được khi chất hoạt hóa là hỗn hợp NaOH + Thủy tinh lỏng + Ca(OH)2. .................................................................. 62 Hình 3.14. Cường độ chịu nén của vật liệu ở các thời gian dưỡng mẫu khác nhau. 63 Hình 3.15. Cường độ chịu nén theo thời gian của các vật liệu chế tạo được với nhiệt độ dưỡng khác nhau trong 24h đầu tiên. ................................................................... 65 iii Hình 3.16. Ảnh các mẫu vật liệu sau 7 ngày dưỡng ở nhiệt độ khác nhau: nhiệt độ phòng (a); 600C (b) và 800C (c). ............................................................................... 66 Hình 3.17. Kết quả SEM-EDX của mẫu geopolyme XV13: (a) Ảnh SEM và các điểm đo; (b),(c),(d),(e),(f) lần lượt là các điểm đo EDX số 1,2,3,4,5. ...................... 68 Hình 3.18. Ảnh SEM của mẫu XV13 ở độ phóng đại khác nhau. ............................ 69 Hình 3.19. Giản đồ nhiễu xạ tia X của mẫu XV13. .................................................. 70 Hình 3.20. Phổ hồng ngoại của mẫu geopolyme XV13............................................ 70 Hình 3.21. Giá trị pH của dung dịch ngâm mẫu vật liệu .......................................... 73 iv DANH MỤC BẢNG Bảng 2.1. Danh mục hóa chất, nguyên liệu sử dụng trong nghiên cứu .................... 31 Bảng 2.3. Thành phần phối liệu chế tạo polyme vô cơ sử dụng chất hoạt hóa NaOH34 Bảng 2.4. Thành phần phối liệu chế tạo polyme vô cơ sử dụng chất hoạt hóa NaOH và Ca(OH)2 ................................................................................................................ 35 Bảng 2.5. Thành phần phối liệu chế tạo polyme vô cơ sử dụng chất hoạt hóa là hỗn hợp NaOH, Ca(OH)2 và thủy tinh lỏng ..................................................................... 36 Bảng 2.6. Ảnh hưởng của tỉ lệ cao lanh/ tro bay (g/g) đến tính chất vật liệu ........... 36 Bảng 3.1. Thành phần hóa học của bùn đỏ Tân Rai theo phương pháp XRF .......... 46 Bảng 3.2. Thành phần hóa học của cao lanh Trúc Thôn theo phương pháp XRF .... 48 Bảng 3.3. Thành phần hóa học của tro bay Phả Lại II theo phương pháp XRF ....... 50 Bảng 3.4. Ảnh hưởng của tỉ lệ cao lanh/tro bay đến cường độ chịu nén của vật liệu53 Bảng 3.5. Ảnh hưởng của NaOH đến cường độ chịu nén của vật liệu ..................... 54 Bảng 3.6. Ảnh hưởng của hỗn hợp NaOH + Ca(OH)2 đến cường độ chịu nén của vật liệu ............................................................................................................................. 57 Bảng 3.7. Bảng so sánh cường độ chịu nén của vật liệu khi sử dụng chất hoạt hóa là NaOH và hỗn hợp NaOH + Ca(OH)2 sau 7 ngày và 28 ngày dưỡng ....................... 59 Bảng 3.8. Cường độ chịu nén của vật liệu sử dụng chất hoạt hóa là hỗn hợp NaOH + thủy tinh lỏng + Ca(OH)2....................................................................................... 61 Bảng 3.9. Cường độ chịu nén của vật liệu với thời gian dưỡng mẫu khác nhau ...... 63 Bảng 3.10. Cường độ chịu nén theo thời gian của vật liệu geopolyme dưỡng ở nhiệt độ khác nhau trong 24 giờ đầu tiên ........................................................................... 65 Bảng 3.11. Độ hút nước của một số mẫu vật liệu ..................................................... 71 Bảng 3.12. Kết quả đo pH của dung dịch ngâm các mẫu vật liệu sau 28 ngày dưỡng ....... 72 Bảng 3.13. Kết quả đo nồng độ kim loại trong các dung dịch ngâm các mẫu vật liệu sau 28 ngày dưỡng .................................................................................................... 74 v DANH MỤC CHỮ VIẾT TẮT Energy Dispersive X-ray EDX: Tán xạ năng lượng tia X L.O.I Mất khi nung QCVN Quy chuẩn Việt Nam SEM Hiển vi điện tử quét TCVN Tiêu chuẩn Việt Nam XRD Nhiễu xạ tia X X-Ray diffraction XRF Huỳnh quang tia X X-ray fluorescence FA Tro bay Fly ash RM Bùn đỏ Red mud GP Polyme vô cơ Geopolyme KTV Spectrometry Loss On Ignition Scanning Electron Microscopy Tập đoàn công nghiệp Than khoáng sản Việt Nam BOD Nhu cầu oxy sinh học Biochemical oxygen demand COD Nhu cầu oxy hóa học Chemical oxygen demand C-S-H Canxi silicat hydrat C-A-S-H Canxi alumin silicat hydrat vi MỞ ĐẦU Trong những năm qua, công cuộc công nghiệp hóa, hiện đại hóa đã đưa nền kinh tế đất nước ta có những bước phát triển đáng kể. Tuy nhiên, đồng hành với sự phát triển này cũng kéo theo nhiều hệ lụy ảnh hưởng đến môi trường sinh thái chúng ta, tài nguyên thiên nhiên đang dần cạn kiệt, môi trường thì ô nhiễm một cách nghiêm trọng, đặc biệt là các loại chất thải rắn như chất thải sinh hoạt, chất thải công nghiệp, nông nghiệp… Bùn đỏ là bã thải trong quá trình sản xuất oxit nhôm đi từ boxit theo phương pháp Bayer. Việc xử lý bùn đỏ đang là mối quan tâm của rất nhiều quốc gia trên thế giới đặc biệt là những quốc gia sản xuất nhôm. Tại Việt Nam, chỉ tính riêng nhà máy sản xuất Alumin Nhân Cơ-Tây Nguyên, phần đuôi quặng nước thải và bùn thải có khối lượng 11 triệu m3/năm, tổng diện tích hồ thải sau 15 năm khoảng 8,7 triệu m3. Với dự án Tân Rai, lượng bùn đỏ thải ra môi trường trong suốt quá trình dự án Tân Rai hoạt động là 80 ÷ 90 triệu m3, nhưng tổng diện tích hồ chứa của dự án chỉ có 20,25 triệu m3. Như vậy, cùng với sự phát triển xây dựng và vận hành các nhà máy nhôm ở Việt Nam, sẽ thải ra một lượng chất thải bùn đỏ rất lớn, chiếm một diện tích đất rất lớn để tồn trữ và là gánh nặng về môi trường, tác động đáng kể đến hệ sinh thái và xã hội. Do trong thành phần hóa học của bùn đỏ có chứa kiềm, dễ ngấm xuống đất gây ô nhiễm nguồn nước, thoái hóa đất trồng hoặc trong thành phần có thể có chất phát phóng xạ…rất khó lưu giữ và quản lý. Vì vậy, hiện nay có rất nhiều giải pháp khoa học đang được đưa ra để xử lý vấn đề môi trường do bùn đỏ gây ra. Trên thế giới đã và đang có rất nhiều nghiên cứu về bùn đỏ như thu hồi kim loại từ bùn đỏ, tái sử dụng bùn đỏ làm các vật liệu để sản xuất xi măng, gạch block, gạch nung, xây dựng đường cao tốc, sản xuất vật liệu công năng. Thời gian gần đây, bùn đỏ còn được nghiên cứu để ứng dụng trong lĩnh vực phục hồi môi trường, đây là một hướng đi hết sức có ý nghĩa. Các nhà nghiên cứu đã tận dụng đặc điểm của bùn đỏ là có diện tích bề mặt lớn, khả năng trao đổi ion cao để chế tạo vật liệu hấp phụ xử lý các chất ô nhiễm trong nước thải. Ở Việt Nam, do ngành công nghiệp chế biến nhôm 1 mới phát triển nên các công trình nghiên cứu về tái sử dụng bùn đỏ thành vật liệu xây dựng vẫn còn hạn chế. Với mục đích sử dụng bùn đỏ cùng với một số phối liệu khác như cao lanh, tro bay làm gạch không nung đang là một hướng đi mới, không những mang lại giá trị kinh tế cao mà còn góp phần làm giảm thiểu nguy cơ ô nhiễm môi trường, chúng tôi đã lựa chọn đề tài: “Nghiên cứu xử lý đóng rắn bùn đỏ Alumina- Tây Nguyên bằng công nghệ Geopolyme định hướng làm vật liệu không nung”. 2 Chƣơng 1. TỔNG QUAN 1.1 Giới thiệu về bùn đỏ 1.1.1 Khái niệm Bùn đỏ là tên gọi của chất thải từ quá trình hòa tách khoáng sản alumin ngậm nước của boxit theo phương pháp Bayer. Hiện nay, khoảng 90% alumin trên thế giới được sản xuất bằng công nghệ Bayer (sáng chế của Bayer năm 1887) [6], đây là công nghệ thủy luyện. Quá trình sản xuất Alumina thực chất là quá trình làm giàu Al2O3 nhằm tách lượng Al2O3 trong boxit ra khỏi các hợp chất khác. Trong boxit có đến 30÷54% là Al2O3, phần còn lại là các silica, oxit Fe, TiO2. Alumin (Al2O3) phải được tinh chế trước khi có thể sử dụng để điện phân sản xuất ra nhôm kim loại. Trong quy trình Bayer, boxit bị chuyển hóa bởi dung dịch NaOH nóng đến 1750C để trở thành hydroxyt nhôm, Al(OH)3 tan trong dung dịch hydroxyt theo phản ứng: Al2O3 + 2OH− + 3H2O → 2[Al(OH)4]− Các thành phần khác không hòa tan theo phản ứng trên sẽ được lọc và loại bỏ ra khỏi dung dịch tạo thành bã thải màu đỏ và đó chính là bùn đỏ. Chính thành phần bùn đỏ này gây nên vấn đề môi trường liên quan đến đổ thải. Tiếp theo, dung dịch hydroxyt được làm lạnh và hydroxyt nhôm ở dạng hòa tan phần lắng tạo thành một dạng chất rắn, bông, có màu trắng. Khi nung nóng lên tới 10500C (quá trình canxi hóa), hydroxyt nhôm phân hủy vì nhiệt trở thành alumin và giải phóng hơi nước 2Al(OH)3 → Al2O3 + 3H2O Về cơ bản trong bùn đỏ vẫn là các nguyên tố có trong thành phần boxit không hòa tan trong kiềm như Ga, Vanadi, P, Nikel, Cr, Mg và có thêm thành phần Na hoặc Ca [7]. Khối lượng và chất lượng bùn đỏ rất khác nhau tại các nhà máy luyện alumin khác nhau. Để hiểu rõ hơn về bản chất của bùn đỏ người ta thường tách nó ra thành hai pha: pha rắn và pha lỏng để phân tích. - Pha rắn: được đặc trưng bởi các yếu tố chính như thành phần hóa học, khoáng vật, cỡ hạt,...; + Thành phần hóa học: theo báo cáo tổng hợp của UNIDO, tài liệu chuyển giao cho Việt Nam trong khuôn khổ dự án DPVIE 85-006. 3 + Thành phần khoáng vật: về định tính thì tương tự như thành phần của boxit nhưng thay đổi về định lượng và có thêm hai pha mới là Na2O.Al2O3.2SiO2.nH2O và hợp chất có thành phần dao động của CaO với các cấu tử Al2O3, Na2O và SiO2. + Thành phần hạt: cỡ hạt từ mịn đến rất mịn (do Bauxite khi đem đưa vào hòa tách phải nghiền đến cỡ hạt nhỏ, tỏng quá trình cũng tự vỡ vụn), đa phần có cấp hạt 100% dưới sàng 100 µm, bùn đỏ (bauxite Jamaica) dưới sàng 44 µm tới 90 %. Thành phần khoáng học và hoá học cũng như đặc tính vật lý của bùn đỏ từ các nhà máy luyện alumin trên thế giới được nêu ở các bảng dưới đây [8]. Bảng 1.1. Thành phần hóa học của các loại bùn đỏ, (%) [8] Nhiệt Boké Weipa Tromnetas South Darling Iszka Pamasse độ hòa (Guinea) (Úc) (Brasil) Manchester Range (Hungary) (Hi (Jamaica) (Úc) 143 245 143 240 260 tách Lạp) (0C) 240 Al2O3 14,0 17,2 13,0 10,7 14,9 14,4 13,0 SiO2 7,0 15,0 12,9 3,0 42,6 12,5 12,0 Fe2O3 32,1 36,0 52,1 61,9 28,0 38,0 41,0 TiO2 27,4 12,0 4,2 8,1 2,0 5,5 6,2 Na2O 4,0 9,0 9,0 2,3 1,2 7,5 7,5 CaO 3,2 - 1,4 2,8 2,4 7,6 10,9 Khác 2,3 3,5 1,0 2,8 2,4 4,9 2,3 MKN 10,0 7,3 6,4 8,4 6,5 9,6 7,1 240 Bảng 1.2. Thành phần hóa học pha rắn của bùn đỏ [8] STT Thành phần hóa học Tỉ lệ (%) 1 Al2O3 5÷25 2 SiO2 1÷20 3 Fe2O3 25÷60 4 TiO2 1÷10 5 CaO 2÷8 6 Na2O 1÷10 7 MKN (H2O liên kết) 5÷15 4 Bảng 1.3. Thành phần khoáng hóa của các loại bùn đỏ [8]. Hợp chất Boké (%) (Guinea) Weipa Tromnetas (Úc) (Brasil) South Darling Iszka Pamasse Manchester Range (Hungary) (Hi (Jamaica) (Úc) Lạp) Gibbsite - 33,0 - 33,0 5,6 - - Hematite 20,0 3,5 38,0 3,5 14,5 33,0 38,0 Goethite 16,0 18,0 19,0 10,0 14,5 6,0 1,0 22, 16,0 Cancrinite SAHS 21,0 27,0 27,0 27,0 5,4 - Sodalite - - - - - 10,0 10,0 Illite - 2,0 - 2,0 4,7 - - Boehmite 5,0 2,0 0,6 2,0 3,5 0,8 0,6 Diaspore 1,2 - 1,2 2,0 2,5 0,7 0,6 Ca-Al-Si - - - - 1,7 12,5 10,0 CaTiO2 2,0 - 1,5 - - 7,0 10,0 Calcite 4,6 0,5 1,4 0,5 2,3 3,0 3,6 Quartz - 6,0 2,2 6,0 37,1 - - Anatase 7,0 2,0 2,5 2,0 1,0 - - Rutile 19,0 6,0 0,8 6,0 - - - Na- 2,0 - - - 0,6 - - Magnetite - - - - 1,3 - - Chamosite - - - - - - 0,6 Ilmenite - - - - 1,0 - - 2,2 - 5,8 3.4 5,0 3,7 Titanates Khác - Pha lỏng của bùn đỏ được đặc trưng bởi thành phần hóa học của 3 cấu tử Na2Ot (NaOH + Na2CO3), Na2Oc (NaOH) và Al2O3. Cũng theo tài liệu đã dẫn ở trên, thành phần hóa học của pha lỏng có thể dao động như sau: (Na2Ot= 0,6÷8,0 g/l; Na2Oc= 0,5÷6,0 g/l. Al2O3 = 0,5÷3,0 g/l). Như vậy, bùn ở pha rắn có Na2O ở dạng liên kết còn ở pha lỏng Na2O ở dạng tự do (NaOH). Na2O ở pha rắn ít độc hại hơn khi ở trong pha lỏng. 5 Ngoài ra, độ kiềm trong bùn đỏ được tích lũy do phương pháp xử lý và lưu trữ để tận thu kiềm lên độ kiềm ở mức rất cao lên đến pH >13 ảnh hưởng tới môi trường nghiêm trọng nếu không được thu gom, cách ly. Đặc biệt dung dịch này sẽ thấm vào đất, ảnh hưởng tới cây trồng, xâm nhập vào mạch nước ngầm gây ô nhiễm nguồn nước. Phần bùn thải khô là các hạt bụi mịn nhỏ (< 60% là các hạt có kích thước < 1µm) nên dễ phát tán vào không khí gây ô nhiễm môi trường, gây ra các bệnh về da và mắt. Nước thải khi tiếp xúc với da làm mất đi lớp nhờn, làm da khô ráp, sần sùi, đau rát, có thể sưng tấy, loét mủ. 1.1.2 Hiện trạng phát thải bùn đỏ ở một số quốc gia trên thế giới và Việt Nam. Song song với các hoạt động khai thác quặng Boxit là tình trạng suy giảm tài nguyên và ô nhiễm môi trường. Đặc biệt là vấn đề xả thải bùn đỏ có nguy cơ ảnh hưởng xấu đến nguồn nước ngầm, nước mặt, phá hủy môi trường sinh thái và sức khỏe người dân địa phương. Thông thường sản xuất ra một tấn nhôm oxit sẽ thải ra 0,5 ÷ 1,5 tấn bùn đỏ. Thế giới mỗi năm sản sinh ra khoảng 80 triệu tấn bùn đỏ và lượng bùn đỏ có tích trữ lớn nhất nằm tại Trung Quốc, năm 2010 lượng bùn đỏ sản sinh ra tại Trung Quốc là trên 30 triệu tấn, và tại thời điểm hiện tại đã đạt tới 200 triệu tấn, dự kiến đến năm 2015 bùn đỏ tích lũy của Trung Quốc vào khoảng 350 triệu tấn[45]. Ở Việt Nam, theo tính toán, nhà máy alumin Nhơn Cơ với công suất 650.000 tấn/năm sẽ thải ra 1.200.000 tấn bùn đỏ/năm, nhà máy Tân Rai công suất 650.000 tấn/năm sẽ thải ra 1.500.000 tấn bùn đỏ/năm. Theo đà phát triển như vậy, tính đến năm 2025 thì lượng bùn đỏ thải ra là 15 triệu tấn đối với nhà máy Tân Rai và 12 triệu tấn đối với nhà máy Nhơn Cơ. Theo tập đoàn than và khoáng sản Việt Nam, quy hoạch phát triển bauxit ở Tây Nguyên đến năm 2015, mỗi năm sản xuất khoảng 7 triệu tấn, tương đương với việc cho ra 10 triệu tấn bùn đỏ. Cứ như thế sau 50 năm sẽ có 1,15 tỉ tấn bùn đỏ tồn đọng trên vùng đất Tây Nguyên. Do vậy, vấn đề cấp bách đặt ra là một lượng lớn bùn đỏ thải ra ngoài môi trường như vậy nếu không được quản lý và xử lý đúng sẽ gây ra những hậu quả nghiêm trọng. 1) Một lượng bùn thải lớn như vậy cần sử dụng một diện tích để lưu trữ tương đối lớn nên làm mất khả năng sử dụng đất trong thời gian dài. 6 2) Trong bùn đỏ vẫn chứa một lượng kiềm dư và dung dịch aluminat natri không thể thu hồi hết được nên dung dịch bùn đỏ mang tính kiềm cao. Dung dịch bùn đỏ phân ly thành nhiều pha với các kích cỡ hạt khác nhau, trong đó pha cỡ hạt siêu nhỏ, mịn gồm các kim loại nặng độc hại sẽ ngấm sâu xuống đất, còn pha có cỡ hạt lớn lại không thể liên kết với nhau nên khi gặp mưa rất nguy hiểm, dễ bị trôi lấp nên khi thấm vào đất gây ô nhiễm nghiêm trọng nguồn nước, cả với nguồn nước ngầm. Các hạt bùn đỏ khi khô có khả năng phát tán vào không khí, ảnh hưởng đến sức khỏe của con người đặc biệt là đường hô hấp. 3) Các đập của hồ chứa bùn đỏ sẽ giống như đập hồ thủy điện, phải chịu áp lực do áp lực thủy tĩnh của bùn đỏ ướt tạo ra nên rất kém an toàn. Bùn đỏ có thể gây ra sự cố nghiêm trọng (ăn mòn) dẫn đến làm hỏng đường ống dẫn khí hay đường sắt. 4) Đặc biệt là nguy cơ bùn đỏ làm ô nhiễm các nguồn nước hạ lưu khi bể chứa bị vỡ. Sự cố vỡ đập chứa bùn đỏ của nhà máy Alumin Ajka ở Hungary ngày 4 tháng 10 năm 2010 chính là một minh chứng cho hậu quả của việc ô nhiễm bùn đỏ. Sự cố này đã làm rung động cả thế giới và được coi là thảm họa tràn hóa chất nghiêm trọng nhất trong lịch sử Hungary [47]. Khoảng 700 000m3 bùn đỏ tràn ra dưới dạng sóng 12m, gây ngập lụt các địa phương lân cận. Ít nhất 10 người thiệt mạng và 120 người bị thương (người chết đuối, người bị bỏng do dung dịch có nồng độ kiềm cao). Khoảng 40km2 đất nông nghiệp dọc theo sông Torna và Marcal bị ảnh hưởng nặng nề của thảm họa này. Ba tỉnh của Hungary được đặt trong tình trạng báo động về môi trường. Sau mấy ngày, bùn đỏ khô đã trở thành mối nguy hiểm mới đó là bụi bùn đỏ khô có chứa chất kiềm có thể gây bệnh nặng khi xâm nhập vào đường hô hấp của con người. Như vậy, mặc dù việc xây dựng hồ đập đã được tính toán thiết kế để đảm bảo an toàn cao nhất, nhưng cũng khó lường hết rủi ro có thể xảy ra. Đây là một lời cảnh báo đối với những nước đang triển khai các dự án khai thác và tinh chế quặng bauxit. Việc nghiên cứu các giải pháp làm giảm sức ép về khối lượng và tính độc hại của bùn đỏ trong các hồ chứa là vấn đề hết sức cần thiết, đòi hỏi sự tham gia tích cực của các nhà quản lý cũng như giới khoa học công nghệ. Hiện nay, việc lưu trữ bùn đỏ tại một số nước lựa chọn một trong số các cách [28]: phương pháp đổ thải xuống biển đổ thải trực tiếp bùn đỏ xuống biển, 7 thường là được dẫn ra xa bờ và đổ vào biển sâu. Phương pháp này đến nay đã ngừng áp dụng vì tuy làm giảm áp lực về nhu cầu sử dụng đất, không cần tiến hành cải tạo đóng cửa bãi thải tuy nhiên nó lại làm ô nhiễm vùng biển, tăng độ đục của nước biển dẫn đến nguy cơ phá hủy hoàn toàn môi trường sông của sinh vật sống dưới đáy thủy vực; phương pháp thải bùn đỏ thải vào vùng trũng tận dụng vùng có địa hình tự nhiên hoặc các lòng moong khai thác mỏ hoặc đất tạo thành, có lót một lớp đất sét hoặc kết hợp các màng nhự chống thấm, vải kỹ thuật để đổ bùn đỏ vào đó để lưu giữ, mặc dù phương pháp này giảm chi phí sử dụng đất, hạn chế được ô nhiễm nhưng cần có hồ chứa có diện tích lớn để lưu giữ, cần có kế hoạch và vốn để đáp ứng yêu cầu đóng cửa phục hồi bãi thải. Ngoài ra, bùn đỏ cần được trung hòa nếu không sẽ tạo nên dạng hồ có độ kiềm cao và chất độc hại cao thoát ra gây ô nhiễm môi trường nước mặt và nước ngầm, chi phí xây dựng và duy trì cao; phương pháp đổ thải khô trải nhiều lớp bùn đỏ được rửa rồi cô đặc ở dạng hỗn hợp sau đó tiến hành đổ thải, được tháo khô và bay hơi dưới mặt trời để bùn đỏ khô, áp dụng cho nơi thiếu diện tích đất. Phương pháp này mặc dù an toàn, giảm nguy hại cho con người và động vật hoang dã, tuy nhiên sử dụng hạn chế vì đắt và những nơi đất bằng phẳng sẽ thẩm thấu nhiều hơn., khó khăn ở những nơi có mưa nhiều, khả năng bốc hơi kém, bùn trước khi thải phải cô đặc; phương pháp thải khô bùn đỏ sau quá trình rửa được lọc khô thành bánh. Phương pháp này giảm thiểu diện tích bãi thải, phù hợp với mọi địa hình, không cần đập lớn, không có nguy cơ thảm họa địa chấn mà phương pháp này là đầu tư thiết bì cao và chi phí vận hành tốn cho khâu lọc khô bùn đỏ trước khi đổ thải. Ở Trung Quốc, toàn bộ bùn đỏ đều tích chứa lộ thiên, hơn nữa phần lớn đập bãi chứa dùng bùn đỏ xây dựng. Tuy nhiên, bùn đỏ lộ thiên vẫn có thể hình thành bụi theo gió cuốn lên gây ô nhiễm không khí, tạo ảnh hưởng tiêu cực đối với sự sinh tồn của nhân loại và động thực vật, môi trường sinh thái bị chuyển biến xấu. Còn ở nước ta, trong dự án khai thác mỏ bauxit, Tập đoàn công nghiệp than khoáng sản Việt Nam (TKV) cũng đã đề cập đến một số phương án xử lý bùn đỏ, trong đó phương án khả thi nhất là chôn lấp. Hiện nay, TKV đã tính toán cụ thể khối lượng bùn đỏ thải, khu vực thải và việc xử lý chất thải theo nhiều phương án khả thi. Ở Lâm Đồng đã xây dựng hồ chứa bùn đỏ với tổng diện tích lên tới 318 ha nằm ở 8 thung lũng để tránh nguy cơ trôi chảy bùn đỏ đến nơi khác. Còn về dự án sản xuất alumin Nhân Cơ, khi công suất hoạt động đạt 650 ngàn tấn /năm thì lượng bùn đỏ thải ra đạt gần 1,4 triệu tấn/năm (tương đương khoảng 954 ngàn m3). Dự án này cũng đề ra biện pháp xử lý bùn đỏ bằng cách chôn lấp, sau đó sẽ tiến hành hoàn thổ, phục hồi môi trường. Bùn đỏ trước khi thải ra sẽ được rửa ngược dòng 6 bước nhằm tận thu kiềm và alumin. Tuy nhiên vấn đề đặt ra hiện nay là việc giảm tích trữ và sử dụng lượng lớn bùn đỏ vì tích trữ bùn đỏ không chỉ chiếm dụng nhiều diện tích, tiêu hao chi phí xây dựng, bảo vệ đồng thời còn tiềm ẩn nhiều rủi ro về an toàn và môi trường. Giải quyết vấn đề bùn đỏ không chỉ là lưu giữ an toàn mà thế giới đã và đang nỗ lực nghiên cứu bùn đỏ như một nguồn tài nguyên trong đó Trung Quốc là nước có nhu cầu bức thiết hơn cả. Tỉ lệ sử dụng tổng hợp bùn đỏ ở Trung Quốc hiện đạt khoảng 5,24% [2]. Giải quyết vấn đề bùn đỏ không những chỉ là lưu giữ an toàn mà các nghiên cứu hiện nay đang hướng tới việc sử dụng bùn đỏ như một nguồn tài nguyên để sản xuất ra các vật liệu cung cấp cho ngành xây dựng, giao thông như sản xuất xi măng, gạch không nung, bê tông... gần đây, bùn đỏ còn được nghiên cứu để ứng dụng trong lĩnh vực phục hồi môi trường, đây là hướng đi hết sức ý nghĩa, lấy “chất thải xử lý chất thải” [3]. Hình 1.1. Một số hình ảnh thảm họa ô nhiễm từ bùn đỏ. 9 1.1.3 Nghiên cứu xử lý, tái sử dụng bùn đỏ trên thế giới và Việt Nam Hiện trên thế giới và cả ở Việt Nam, công nghiệp sản xuất nhôm vẫn đã và đang phát triển, lượng bùn đỏ thải ra môi trường ngày càng tăng không ngừng làm cho các nhà quản lý và các nhà khoa học cần phải có nhiều nghiên cứu hơn nữa trong việc xử lý bùn đỏ và mục đích lớn hơn là tái sử dụng nó trở thành vật liệu thân thiện với môi trường. Những năm gần đây, bùn đỏ được nghiên cứu ứng dụng trong nhiều lĩnh vực như ứng dụng để sản xuất xi măng, sản xuất gạch, xây dựng đường cao tốc,…hiện nay bùn đỏ còn được nghiên cứu sản xuất thành vật liệu đa công năng, tách chiết các nguyên tố quý hiếm… 1.1.3.1 Ứng dụng làm vật liệu xây dựng * Ứng dụng trong sản xuất xi măng Bùn đỏ có chứa β-2CaO.SiO2 chính là một chất kết dính rất hay dùng trong sản xuất vật liệu xây dựng. Cho đến năm 1998, tại Trung Quốc hơn 6 triệu tấn bùn đỏ đã được sử dụng để sản xuất xi măng, hàm lượng bùn đỏ trong xi măng có thể lên tới 50% [40] . Trong một nghiên cứu của các nhà khoa học Ấn Độ, xi măng giàu sắt được chế tạo bằng cách trộn hỗn hợp vôi, bùn đỏ, boxit, gypsum ở nhiệt độ nung tốt nhất là 12500C, thành phần của xi măng được chia làm 2 nhóm: nhóm A có tỉ lệ của vôi là 47,5%, Gypsum 7.5% còn nhóm B có tỉ lệ của vôi la 32,5% và Gypsum là 12.5%, tỉ lệ của bùn đỏ và boxit không đổi trong khoảng từ 0-50%. Tùy vào yêu cầu tính chất của xi măng mà lựa chọn các tỉ lệ thành phần khác nhau[42]. * Chế tạo gạch nung và gạch không nung Do bùn đỏ có kích thước hạt nhỏ với thành phần chính là các oxit kim loại (Fe2O 3, Al2O 3, SiO2 , Na2O,...) và một lượng lớn kiềm (NaOH) nên thích hợp để sản xuất gạch không nung và gạch nung ở nhiệt độ thấp trên cơ sở nguyên lý chế tạo vật liệu geopolyme. Một số công trình đã nghiên cứu tái sử dụng bùn đỏ làm gạch không nung bằng cách thêm đưa thêm các phụ gia giàu Si, Ca như tro bay, Gypsum và đưa ra tỷ lệ sử dụng trong các vật liệu nghiên cứu: bùn đỏ 25- 40%; tro bay là 18- 28%; vôi 8- 10%; gypsum là 1-3% và xi măng Porland là 1%. [40]. 10 Tác giả Arun thì đã đưa ra quy trình chế tạo gạch không nung như sau: bùn đỏ chứa 30% nước, pH >13; bổ sung thêm 0.2% sắt nguyên tố; tiếp theo thêm 12,5% dung dịch axit H3PO4 85%, khuấy và đổ vào khuôn 20cm x 10cm x 6cm, nén ở áp suất 1000psi và để ổn định trong 1 ngày. Viên gạch tạo ra có thể chịu được lực nén tối thiểu là 20Mpa. Cơ sở của nghiên cứu này chính là quá trình Geopolyme phosphat sử dụng bùn đỏ dựa trên phản ứng axit – bazơ giữa axit photphoric với các ion sắt và các chất rắn khác [13]. Trong môi trường pH từ 2÷ 7, xảy ra phản ứng phân ly tạo thành ion HPO42-, đồng thời FeO bị hòa tan trong môi trường có tính axit, phân ly thành ion Fe2+. Sau đó xảy ra phản ứng giữa Fe2+ và HPO42- để tạo thành sản phẩm cuối cùng là FeHPO4. FeHPO4 chính là tác nhân tạo chất kết dính giữa các pha rắn với nhau. Tuy nhiên, sắt trong bùn đỏ thường tồn tại dưới dạng hematit (Fe2O3), do vậy cần phải khử Fe3+ về Fe2+ để làm việc đó người ta sử dụng cơ chế khử bằng cách bổ sung một ít sắt nguyên tố để thúc đẩy phản ứng khử Fe2O3 về FeO: Fe2O3 + δFe = δFeO + Fe2O3-δ Ở Việt Nam, ngành công nghiệp chế biến nhôm mới phát triển nên các công trình nghiên cứu về tái sử dụng bùn đỏ thành vật liệu xây dựng vẫn còn hạn chế. Những nghiên cứu ban đầu có thể kể đến là nhóm nghiên cứu thuộc trường Đại học Bách khoa Hà Nội làm vật liệu chịu từ bùn đỏ[9], sau đó là nghiên cứu làm vật liệu xốp [10]. Tác giả đã xử lý bùn đỏ bằng khí SO2 sau đó chế tạo vật liệu đóng rắn nung và không nung từ bùn đỏ. Phối liệu gồm có bùn đỏ: đất sét: chất khoáng hóa Na2SiF6 với tỉ lệ khối lượng 80:20:1, nung 90 phút ở 10000C thu được gạch nung có cường độ nén đạt 102,7kg/cm2, đáp ứng tiêu chuẩn gạch đặc đất sét nung. Vật liệu đóng rắn không nung với tỉ lệ phối liệu xi măng là 15%, bùn đỏ 50% (hoặc 55%), cát sông 35% (hoặc 30%) có cường độ nén đạt cực đại khoảng 57- 58kg/cm2 sau thời gian 4 tuần đóng rắn. Một công trình nghiên cứu nữa của PGS.TS Vũ Đức Lợi về chế tạo gạch không nung từ bùn đỏ theo công nghệ Geopolyme, sử dụng hai phương pháp nén ép và đổ khuôn, sản phẩm gạch đạt TCVN 6476: 1999, các chỉ tiêu về cường độ nén đạt mác cao hơn so với tiêu chuẩn quy định và đảm bảo các quy định về môi trường. [4]. 11
- Xem thêm -

Tài liệu liên quan