Đăng ký Đăng nhập
Trang chủ Nghiên cứu xây dựng phương pháp nội suy theo thời gian thực các biên dạng tự do ...

Tài liệu Nghiên cứu xây dựng phương pháp nội suy theo thời gian thực các biên dạng tự do trong tạo hình bề mặt chi tiết gia công trên máy công cụ cnc 3 trục

.PDF
136
287
52

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Tất cả các số liệu và kết quả nghiên cứu trong luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nghiên cứu nào khác. Người hướng dẫn khoa học Nghiên cứu sinh GS. TSKH. Bành Tiến Long Nguyễn Hữu Quang i LỜI CẢM ƠN Tôi xin gửi lời cảm ơn chân thành và sâu sắc nhất tới GS. TSKH. NGND. Bành Tiến Long, người Thầy đã hết lòng hướng dẫn và động viên tôi hoàn thành luận án này. Tôi xin chân thành cảm ơn Bộ môn Gia công vật liệu và Dụng cụ công nghiệp, Viện Cơ khí, Trường Đại học Bách khoa Hà Nội đã tạo mọi điều kiện thuận lợi và giúp đỡ tôi hoàn thành luận án này. Tôi xin gửi lời cảm ơn tới gia đình, bạn bè, đồng nghiệp, những người đã luôn luôn giúp đỡ và ủng hộ tôi. Hà nội, ngày …. tháng … năm 2017 Nghiên cứu sinh Nguyễn Hữu Quang ii MỤC LỤC DANH MỤC CÁC CHỮ VIẾT TẮT ..................................................................... vi DANH MỤC CÁC KÝ HIỆU ................................................................................ vii DANH MỤC CÁC BẢNG....................................................................................... ix DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ............................................................ x MỞ ĐẦU .................................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN .................................................................................... 5 1.1. Khái quát về hệ thống điều khiển số CNC và phương pháp nội suy NURBS ............... 5 Cấu trúc bộ điều khiển số CNC .............................................................................. 5 Chức năng nội suy trên máy công cụ điều khiển số CNC ...................................... 7 Gia công CNC các chi tiết với biên dạng và bề mặt tự do.................................... 10 Phương pháp nội suy biên dạng tự do NURBS theo thời gian thực (nội suy NURBS) .............................................................................................................. 14 1.2. Tổng quan tình hình nghiên cứu phương pháp nội suy biên dạng tự do NURBS theo thời gian thực trên các hệ thống điều khiển số CNC ................................................... 16 Kết luận chương 1 ............................................................................................................... 23 CHƯƠNG 2. PHƯƠNG PHÁP BIỂU DIỄN ĐƯỜNG VÀ MẶT TRONG CÁC HỆ CAD/CAM SỬ DỤNG PHƯƠNG TRÌNH THAM SỐ NURBS ........ 24 2.1. Đường NURBS ............................................................................................................. 24 Hàm cơ sở B-spline............................................................................................... 24 Định nghĩa đường NURBS ................................................................................... 26 Một số trường hợp đặc biệt của đường NURBS ................................................... 28 Đường NURBS và phép chiếu xuyên tâm ............................................................ 30 2.2. Thuật toán chèn nút và thuật toán DeBoor ................................................................... 31 2.3. Đạo hàm cấp một và cấp hai của đường NURBS ........................................................ 35 2.4. Một số tính chất hình học vi phân của đường NURBS ................................................ 37 2.5. Phương pháp tham số biểu diễn bề mặt trong hệ CAD/CAM ...................................... 39 Kết luận chương 2 ............................................................................................................... 41 CHƯƠNG 3. XÂY DỰNG PHƯƠNG PHÁP NỘI SUY THEO THỜI GIAN THỰC CÁC BIÊN DẠNG TỰ DO NURBS......................................................... 43 3.1. Giới thiệu ...................................................................................................................... 43 iii 3.2. Nguyên lý cơ bản nội suy biên dạng tự do NURBS theo thời gian thực...................... 43 3.3. Đánh giá sai số nội suy ................................................................................................. 46 3.4. Yêu cầu điều khiển tốc độ tiến dao khi nội suy biên dạng tự do NURBS theo thời gian thực ....................................................................................................................... 48 3.5. Các điều kiện giới hạn tốc độ tiến dao trong chuyển động nội suy .............................. 49 Điều kiện giới hạn sai số nội suy .......................................................................... 49 Điều kiện đảm bảo giới hạn gia tốc hướng tâm .................................................... 50 Điều kiện đảm bảo giới hạn gia tốc tiếp tuyến ..................................................... 50 Điều kiện tổng hợp giới hạn tốc độ tiến dao ......................................................... 51 Khó khăn khi điều khiển tốc độ tiến dao qua vùng giới hạn ................................ 53 3.6. Phương pháp điều khiển tốc độ tiến dao ...................................................................... 53 Những vị trí “quan trọng” trên biên dạng tự do NURBS ..................................... 54 So sánh miền ảnh hưởng của hai điểm “quan trọng” ............................................ 56 Tiền xử lý biên dạng tự do NURBS...................................................................... 57 Thuật toán tính tốc độ tiến dao theo thời gian thực .............................................. 59 3.7. Đề xuất phương pháp nội suy biên dạng tự do NURBS theo thời gian thực ............... 61 3.8. Tính chiều dài đường NURBS ..................................................................................... 62 3.9. Kết quả mô phỏng ........................................................................................................ 63 Mô phỏng nội suy biên dạng chữ alpha ................................................................ 63 Mô phỏng nội suy biên dạng NURBS phức tạp - biên dạng hình cánh bướm ..... 69 Mô phỏng nội suy biên dạng đường tròn theo phương pháp nội suy NURBS ..... 71 Kết luận chương 3 ............................................................................................................... 74 CHƯƠNG 4. NGHIÊN CỨU PHÁT TRIỂN PHẦN MỀM NỘI SUY BIÊN DẠNG TỰ DO NURBS THEO THỜI GIAN THỰC DỰA TRÊN HỆ ĐIỀU KHIỂN CÓ KIẾN TRÚC MỞ .............................................................................. 75 4.1. Giới thiệu về hệ điều khiển có kiến trúc mở (OAC - Open Architecture Controller) ...................................................................................................................................... 75 4.2. Hệ điều khiển số có kiến trúc mở - LinuxCNC ............................................................ 77 4.3. Phát triển phần mềm nội suy biên dạng tự do NURBS theo thời gian thực ................. 80 Xây dựng các cấu trúc dữ liệu .............................................................................. 81 Xây dựng các hàm xử lý mức thấp ....................................................................... 82 Xây dựng các hàm xử lý mức cao......................................................................... 86 Mã lệnh nội suy NURBS: G6.2 ............................................................................ 87 iv Kết quả phát triển phần mềm nội suy NURBS ..................................................... 88 4.4. Giao diện CAD/CAM cho phần mềm nội suy NURBS ............................................... 88 4.5. Kết quả thử nghiệm phần mềm nội suy NURBS.......................................................... 91 Thử nghiệm 1: Gia công biên dạng phức tạp biểu diễn bằng một đường NURBS ................................................................................................................ 93 Thử nghiệm 2: Gia công biên dạng phức tạp biểu diễn bằng nhiều đường NURBS ................................................................................................................ 97 Thử nghiệm 3: Gia công biên dạng đường thân khai ........................................... 99 Kết luận chương 4 ............................................................................................................. 103 KẾT LUẬN VÀ KIẾN NGHỊ .............................................................................. 105 TÀI LIỆU THAM KHẢO.................................................................................... 108 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ............ 111 PHỤ LỤC .............................................................................................................. 112 Phụ lục 1: Thông số NURBS của biên dạng hình cánh bướm. ......................................... 112 Phụ lục 2: Chương trình mô phỏng trên phần mềm Matlab .............................................. 113 Phụ lục 3: Chương trình xuất file NC sử dụng định dạng G6.2 để mô tả biên dạng NURBS, được phát triển trong môi trường RhinoScript của phần mềm Rhinoceros .................................................................................................................................... 116 Phụ lục 4: Một số cấu trúc dữ liệu và chương trình con được phát triển cho phần mềm nội suy NURBS.......................................................................................................... 118 v DANH MỤC CÁC CHỮ VIẾT TẮT Chữ viết tắt 2D, 3D, 2.5D CAD/CAM NC CNC DNC NCK MMI PLC BLU DDA OAC STEP STEP-NC SERCOS NURBS ADCBI ADCAI CC CL APT Giải thích ý nghĩa Các chữ viết tắt chỉ số chiều trong công nghệ gia công CNC Computer Aided Design / Computer Aided Manufacturing Thiết kế / Sản xuất với sự hỗ trợ của máy tính Numerical Control Điều khiển số Computerized Numerical Control Điều khiển số trên nền tảng máy tính Direct Numerical Control Numerical Control Kernel Lõi điều khiển số Man Machine Interface Giao diện người máy Programmable Logic Controller Bộ điều khiển logic khả trình Basic Length Unit Độ phân giải vị trí của hệ thống điều khiển số Digital Differential Analyzer Mạch tích phân cứng, được sử dụng trong thời kỳ đầu của bộ nội suy Open Architecture Controller Hệ điều khiển số có kiến trúc mở STandard for the Exchange of Product model data Tiêu chuẩn về định dạng dữ liệu mô hình sản phẩm Mô hình trao đổi dữ liệu giữa hệ CAD/CAM và CNC tương thích với chuẩn STEP SErial Realtime COmmunication System Hệ thống truyền thông số phục vụ trao đổi dữ liệu giữa bộ điều khiển CNC và thiết bị điều khiển truyền động Non-Uniform Rational B-Spline Một mô hình tham số biểu diễn đường và mặt trong các hệ CAD/CAM Accelleration/Deccelleration Control Before Interpolation Điều khiển tăng tốc, giảm tốc trước nội suy Accelleration/Deccelleration Control After Interpolation Điều khiển tăng tốc, giảm tốc sau nội suy Cutter Contact Vị trí tiếp xúc của dụng cụ và phôi Cutter Location Vị trí tâm dụng cụ Automatically Programmed Tool Ngôn ngữ định nghĩa đường dụng cụ trên các máy CNC vi DANH MỤC CÁC KÝ HIỆU Các đại lượng vector được ký hiệu bằng các chữ cái in đậm (ví dụ, P, C, …). Các đại lượng vô hướng được ký hiệu bằng các chữ cái in thường (ví dụ, V, A,…). A Phép tính biên độ của một vector. A, B Phép tính tích vô hướng của hai vector. AB Phép tính tích có hướng của hai vector. AT Phép tính chuyển vị của một vector. a Phép tính giá trị tuyệt đối của một đại lượng vô hướng. d dt Phép tính đạo hàm theo biến thời gian, t. d du Phép tính đạo hàm theo biến tham số, u. m Đơn vị đo chiều dài: mét mm Đơn vị đo chiều dài: mili-mét (10-3 m) µm Đơn vị đo chiều dài: micro-mét (10-6 m) s Đơn vị đo thời gian: giây ms Đon vị đo thời gian: mili-giây mm/min Đơn vị đo tốc độ: mili-mét/phút mm/s Đơn vị đo tốc độ: mili-mét/giây mm/s2 Đơn vị đo gia tốc: mili-mét/giây bình phương 1/mm Đơn vị đo độ cong V chord (u ) Giá trị giới hạn tốc độ tiến dao tại vị trí C(u ) nhằm đảm bảo điều kiện sai số nội suy Vkchord Giá trị V chord (uk ) V acc (u ) Giá trị giới hạn tốc độ tiến dao tại vị trí C(u ) nhằm đảm bảo điều kiện gia tốc hướng tâm Vkacc Giá trị V acc (uk ) Vmax Tốc độ tiến dao được lập trình trong chương trình NC (đã nhân với hệ số điều chỉnh của người vận hành máy) Vr (u ) Giá trị nhỏ nhất trong các giá trị V chord (u ) , V acc (u ) , Vmax vii Vr ,k Giá trị Vr (uk ) At (u ) Gia tốc tiếp tuyến tại vị trí C(u ) At ,k Giá trị At (uk ) An (u ) Gia tốc hướng tâm tại vị trí C(u ) An ,k Giá trị An (uk ) At ,max Giá trị giới hạn của gia tốc tiếp tuyến An ,max Giá trị giới hạn của gia tốc hướng tâm emax Giá trị giới hạn của sai số nội suy L(u ) Chiều dài đường NURBS từ vị trí bắt đầu tới vị trí C(u ) T Chu kỳ nội suy (ms) viii DANH MỤC CÁC BẢNG Bảng 1.1: Chức năng nội suy đường NURBS trên các bộ điều khiển CNC thương mại ..... 22 Bảng 3.1: Các thông số NURBS của biên dạng chữ alpha. ................................................ 63 Bảng 3.2: Các tham số của chương trình mô phỏng nội suy biên dạng chữ alpha. ............ 64 Bảng 3.3: Giá trị tham số của các điểm “quan trọng” và các điểm có độ cong lớn nhất cục bộ trên biên dạng chữ alpha khi Vmax  50(mm/s) .............................................................. 64 Bảng 3.4: Các tham số sử dụng trong chương trình mô phỏng nội suy NURBS với biên dạng hình cánh bướm ................................................................................................................... 70 Bảng 3.5: Các thông số NURBS của biên dạng đường tròn. .............................................. 71 Bảng 3.6: Các tham số sử dụng trong chương trình mô phỏng nội suy NURBS với biên dạng đường tròn ........................................................................................................................... 72 Bảng 4.1: Quy ước cách đặt tên một số biến được sử dụng bởi các hàm xử lý mức thấp... 83 Bảng 4.2: Thời gian gia công biên dạng cánh bướm theo phương pháp nội suy NURBS (mã G6.2) và phương pháp nội suy tuyến tính (mã G01). .......................................................... 97 Bảng 4.3: Thời gian gia công biên dạng thân khai theo phương pháp nội suy NURBS (mã G6.2) và phương pháp nội suy tuyến tính (mã G01). ........................................................ 102 ix DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1: Các thành phần cơ bản của hệ thống điều khiển số .............................................. 5 Hình 1.2: Luồng thông tin trong hệ thống điều khiển số CNC. ............................................. 6 Hình 1.3: Hai phương án thực hiện chuyển động điểm-điểm từ vị trí A tới vị trí B. ............. 7 Hình 1.4: Phối hợp tốc độ của các trục thành phần trong chuyển động nội suy. ................. 8 Hình 1.5: Minh họa chuyển động nội suy tuyến tính và nội suy cung tròn ........................... 8 Hình 1.6: Xấp xỉ biên dạng phức tạp bằng chuỗi đoạn thẳng. .............................................. 9 Hình 1.7: Biểu đồ hình thang (a) Tốc độ tiến dao; (b) Gia tốc tiếp tuyến; (c) Biểu đồ hình thang suy biến thành biểu đồ tam giác .................................................................................. 9 Hình 1.8: Một số kiểu đường dụng cụ khi gia công bề mặt tự do trên máy công cụ CNC. . 10 Hình 1.9: Độ phân giải của dữ liệu đường dụng cụ. .......................................................... 11 Hình 1.10: Giao diện STEP-NC trên một bộ điều khiển CNC, cho phép xử lý nhiều thông tin hơn của chi tiết gia công ..................................................................................................... 13 Hình 1.11: So sánh phương pháp nội suy tuyến tính xấp xỉ và phương pháp nội suy NURBS ............................................................................................................................................. 14 Hình 1.12: Giao diện phần mềm chuyển đổi từ chương trình NC do phần mềm CAM thông dụng tạo ra (với mã G1) thành chương trình NC sử dụng định dạng NURBS được công bố trong [50]. ............................................................................................................................ 16 Hình 1.13: Cấu trúc bộ nội suy NURBS trong [16]. ............................................................ 19 Hình 1.14: Biểu đồ tốc độ tại vị trí xung đột trình bày trong [20]. ..................................... 21 Hình 1.15: Tổng hợp các kết quả nghiên cứu về phương pháp nội suy biên dạng tự do NURBS theo thời gian thực ............................................................................................................... 22 Hình 2.1: Các hàm cơ sở B-spline bậc 1 với vector tham số nút U={0,0,1,2,3,4,4}. ......... 25 Hình 2.2: Các hàm cơ sở B-spline bậc 2 với vector tham số nút U={0,0,0,1,2,3,4,4,4}. ... 25 Hình 2.3: Các hàm cơ sở B-spline bậc 3 với vector tham số nút U={0,0,0,0,1,2,3,4,4,4,4} ............................................................................................................................................. 25 Hình 2.4: Minh họa việc hình thành đường NURBS. .......................................................... 26 Hình 2.5: Điều chỉnh hình dạng đường NURBS thông qua điểm điều khiển và trọng số. .. 27 Hình 2.6: Biểu diễn góc phần tư đường tròn dưới dạng đường Bezier phân thức .............. 29 Hình 2.7: Minh họa đường Bezier với bậc khác nhau. ........................................................ 29 Hình 2.8: Ứng dụng đường Bezier trong việc thiết kế font chữ........................................... 30 Hình 2.9: Quan hệ giữa đường NURBS và phép chiếu xuyên tâm. ..................................... 31 Hình 2.10: Các điểm điều khiển được tính trong thuật toán DeBoor. ................................ 34 Hình 2.11: Minh họa thuật toán DeBoor............................................................................. 35 x Hình 2.12: Các đường tham số tiêu chuẩn (isoparametric curves) trên bề mặt. ................ 40 Hình 3.1: Nguyên lý cơ bản nội suy biên dạng tự do NURBS theo thời gian thực.............. 45 Hình 3.2: Chuyển động của dụng cụ trong một chu kỳ nội suy biên dạng tự do NURBS. .. 45 Hình 3.3: Ước lượng sai số dây cung trong phương pháp nội suy NURBS. ....................... 46 Hình 3.4: Đường giới hạn tốc độ tiến dao phụ thuộc vào độ cong. .................................... 47 Hình 3.5: Cấu trúc thuật toán nội suy biên dạng tự do NURBS với khả năng điều khiển tốc độ tiến dao theo thời gian thực ............................................................................................ 48 Hình 3.6: (a) Minh họa biên dạng tự do NURBS có các vùng giới hạn tốc độ tiến dao; (b) Dạng biểu đồ tốc độ tiến dao cho phép khi đi qua một vùng giới hạn .......................... 52 Hình 3.7: Vị trí của bộ tiền xử lý đường NURBS. ............................................................... 54 Hình 3.8: Miền ảnh hưởng của điểm “quan trọng”. ........................................................... 55 Hình 3.9: So sánh miền ảnh hưởng của hai điểm “quan trọng”......................................... 56 Hình 3.10: Minh họa các điểm “quan trọng” phân chia đường NURBS thành các phân đoạn ............................................................................................................................................. 59 Hình 3.11: Tính tốc độ tiến dao trên một phân đoạn đường NURBS.................................. 60 Hình 3.12: (a) Biên dạng chữ alpha (nét liền) và đa giác điều khiển (nét đứt); (b) Biểu đồ độ cong của biên dạng chữ alpha (nét liền) và một số giá trị độ cong giới hạn (nét đứt) ....... 64 Hình 3.13: (a),(c),(e) Các điểm “quan trọng” được xác định bởi bước tiền xử lý; (b),(d),(f) Tốc độ tiến dao bị giới hạn theo điều kiện (3.17) ............................................... 65 Hình 3.14: Kết quả mô phỏng tốc độ tiến dao khi nội suy biên dạng chữ alpha theo thời gian thực. ..................................................................................................................................... 66 Hình 3.15: Kết quả mô phỏng gia tốc tiếp tuyến khi nội suy biên dạng chữ alpha theo thời gian thực. ............................................................................................................................. 67 Hình 3.16: Kết quả mô phỏng sai số dây cung khi nội suy biên dạng chữ alpha................ 68 Hình 3.17: Biên dạng hình cánh bướm ............................................................................... 69 Hình 3.18: Biểu đồ độ cong của biên dạng hình cánh bướm. ............................................. 69 Hình 3.19: Kết quả mô phỏng nội suy NURBS với biên dạng hình cánh bướm. ................. 70 Hình 3.20: Biên dạng đường tròn (R = 25 mm). ................................................................. 72 Hình 3.21: Kết quả mô phỏng nội suy NURRBS với biên dạng đường tròn. ...................... 73 Hình 4.1: Xu hướng thay đổi tỉ lệ giá trị giữa phần cứng và phần mềm ............................. 75 Hình 4.2: Cấu trúc cơ bản của hệ điều khiển số sử dụng phần mềm LinuxCNC. ............... 77 Hình 4.3: Kiến trúc module hóa của phần mềm LinuxCNC ............................................... 78 Hình 4.4: Giao diện phần mềm Eclipse được sử dụng để phát triển chức năng nội suy NURBS ............................................................................................................................................. 80 Hình 4.5: Minh họa cách sử dụng mã lệnh G6.2 để định nghĩa đường NURBS. ................ 87 xi Hình 4.6: (a) Giao diện phần mềm Rhinoceros; (b) Chương trình viết bằng ngôn ngữ RhinoScript để vẽ biên dạng chữ alpha ............................................................................... 89 Hình 4.7: Chương trình CreateNurbsCode() để sinh ra file NC sử dụng mã G6.2............. 90 Hình 4.8: Giao diện CAD/CAM cho phần mềm nội suy NURBS. ....................................... 91 Hình 4.9: Hệ thống thiết bị được sử dụng để thử nghiệm thuật toán nội suy NURBS. ....... 91 Hình 4.10: (a) Biên dạng cánh bướm được thiết kế trên phần mềm Rhinoceros; (b) Chương trình gia công biên dạng cánh bướm sử dụng mã lệnh G6.2........................... 92 Hình 4.11: Giao diện AXIS của phần mềm LinuxCNC cho phép xem trước đường dụng cụ được mô tả bằng mã G6.2 ................................................................................................... 93 Hình 4.12: Kết quả gia công biên dạng hình cánh bướm theo phương pháp nội suy NURBS ............................................................................................................................................. 93 Hình 4.13: Giao diện phần mềm Rhinoceros và RhinoCAM............................................... 94 Hình 4.14: Tọa độ các điểm nội suy trong phương pháp nội suy NURBS và nội suy tuyến tính xấp xỉ (kết quả thực nghiệm). ....................................................................................... 96 Hình 4.15: So sánh tốc độ tiến dao khi nội suy NURBS và nội suy tuyến tính xấp xỉ (kết quả thực nghiệm). ......................................................................................................... 96 Hình 4.16: Đồ thị so sánh thời gian gia công biên dạng cánh bướm theo phương pháp nội suy NURBS và nội suy tuyến tính xấp xỉ .............................................................................. 97 Hình 4.17: Biên dạng gia công gồm nhiều đoạn đường NURBS. ....................................... 98 Hình 4.18: Gia công biên dạng phức tạp biểu diễn bằng nhiều đường NURBS: (a) Giao diện của phần mềm điều khiển số; (b) Kết quả gia công ............................................................ 98 Hình 4.19: Nguyên lý hình thành đường thân khai của đường tròn. ................................... 99 Hình 4.20: Cặp bánh răng trụ thân khai ............................................................................. 99 Hình 4.21: Thiết kế biên dạng thân khai bằng công cụ đường NURBS trên phần mềm Rhinoceros. ........................................................................................................................ 100 Hình 4.22: Chương trình gia công biên dạng thân khai sử dụng mã lệnh G6.2 ............... 101 Hình 4.23: Giao diện AXIS của phần mềm điều khiển số khi nạp chương trình gia công biên dạng thân khai theo phương pháp nội suy NURBS ........................................................... 102 Hình 4.24: Kết quả gia công biên dạng thân khai theo phương pháp nội suy NURBS ..... 102 Hình 4.25: Đồ thị so sánh thời gian gia công biên dạng thân khai theo phương pháp nội suy NURBS và nội suy tuyến tính xấp xỉ. ................................................................................. 103 xii MỞ ĐẦU 1. Lý do chọn đề tài Sự ra đời của công nghệ điều khiển số các máy công cụ (CNC) là một bước tiến quan trọng của công nghệ sản xuất, mang lại năng suất và chất lượng cho sản phẩm. Với việc các hệ thống máy tính và vi xử lý ngày càng có năng lực tính toán mạnh, các hệ thống điều khiển số ngày nay có nhiều tính năng tiên tiến và ngày càng trở nên “thông minh hơn”. Xu hướng hiện nay trong các hệ thống điều khiển số là tăng tỉ lệ phần mềm và giảm tỉ lệ phần cứng. Đồng thời các hệ thống điều khiển số đang được phát triển theo hướng “mở” hơn, linh hoạt hơn, có khả năng đáp ứng những yêu cầu chuyên biệt hơn. Chức năng nội suy là một trong những chức năng thuộc phần lõi điều khiển số (numerical control kernel), có ý nghĩa rất quan trọng đối với việc tạo nên sự chính xác và linh hoạt của các máy CNC. Trong hệ thống điều khiển số, chức năng nội suy được định nghĩa là quá trình tổng hợp chuyển động của dụng cụ theo một quỹ đạo xác định từ các chuyển động theo bước cơ sở (Basic Length Unit - BLU) của các trục thành phần. Mỗi bước cơ sở có giá trị rất bé, thường là 0.001 mm. Các hệ thống điều khiển CNC thông thường hỗ trợ hai thuật toán nội suy cơ bản là nội suy tuyến tính và nội suy cung tròn. Các thuật toán này đáp ứng tốt trong các trường hợp mà đường dụng cụ là đường thẳng hoặc cung tròn. Trong những trường hợp đường dụng cụ là những đường cong phức tạp thì phương pháp phổ biến hiện nay là xấp xỉ đường dụng cụ bằng chuỗi các đoạn thẳng để đưa về việc sử dụng thuật toán nội suy tuyến tính. Quá trình xấp xỉ như vậy gặp phải vấn đề mâu thuẫn sau đây: Một mặt, số lượng đoạn thẳng cần phải đủ lớn để sai số xấp xỉ nằm trong giới hạn cho phép, cũng như làm giảm ảnh hưởng của chuyển động không liên tục giữa các đoạn thẳng. Mặt khác, số lượng đoạn thẳng lớn lại dẫn tới nhiều nhược điểm không mong muốn, như kích thước lớn của file G-code, sự không ổn định và suy giảm tốc độ tiến dao dẫn tới giảm chất lượng bề mặt chi tiết và tăng thời gian gia công, …[26]. Vấn đề mâu thuẫn nói trên càng trở nên quan trọng khi xuất hiện ngày càng nhiều nhu cầu gia công các chi tiết phức tạp với các biên dạng và bề mặt tự do (free-form curve, freeform surface). Điều này đặt ra yêu cầu cần phải nghiên cứu và đề xuất các thuật toán nội suy mới nhằm loại bỏ việc xấp xỉ các đường dụng cụ phức tạp bằng chuỗi đoạn thẳng. Hiện nay nhiều nhà nghiên cứu trên thế giới đã tập trung phát triển các thuật toán nhằm tổng hợp chuyển động của dụng cụ theo các biên dạng tự do. Các thuật toán này tổng quát và phức tạp hơn nhiều so với các thuật toán nội suy tuyến tính và nội suy cung tròn. Các biên dạng tự do thường được mô tả bởi các phương trình tham số, như Bezier, B-spline, NURBS, ... Mỗi phương trình tham số biểu diễn các hình dạng khác nhau thông qua một tập hợp các thông số hình học, như bậc, điểm điều khiển, trọng số, tham số nút, ... Các thuật toán nội suy biên dạng tự do cần phải xử lý trực tiếp các thông số hình học của phương trình tham số để tính toán theo thời gian thực các giá trị đặt cho các vòng điều khiển vị trí của các trục máy. Đây là các thuật toán nội suy tiên tiến, có thể mang tới những khả năng mới cho hệ điều khiển số, giúp nâng cao hơn nữa năng suất và chất lượng bề mặt chi tiết. Hiện nay, công nghệ CAD/CAM/CNC đã được ứng dụng rộng rãi trong nền sản xuất của nước ta. Do những hiệu quả mà các công nghệ này mang lại nên các vấn đề thuộc lĩnh vực CAD/CAM/CNC luôn được quan tâm và theo dõi. Tuy nhiên, các nghiên cứu trong 1 nước thuộc lĩnh vực này còn tương đối ít. Đặc biệt, các nghiên cứu về bản chất và các thuật toán bên trong hệ thống điều khiển số thì hầu như không có công bố. Chính vì thế, NCS thấy rằng việc nghiên cứu phương pháp nội suy theo thời gian thực các biên dạng tự do trên hệ thống CNC vừa có tính khoa học vừa có tính thực tiễn cao, làm phong phú thêm các nghiên cứu trong nước, cũng như cập nhật theo xu hướng nghiên cứu của thế giới trong lĩnh vực công nghệ điều khiển số. Được sự đồng ý của giáo viên hướng dẫn, NCS đã lựa chọn đề tài luận án: “Nghiên cứu xây dựng phương pháp nội suy theo thời gian thực các biên dạng tự do trong tạo hình bề mặt chi tiết gia công trên máy công cụ CNC 3 trục”. 2. Mục đích nghiên cứu Nghiên cứu phương pháp nội suy theo thời gian thực các biên dạng tự do nhằm đáp ứng các yêu cầu ngày càng cao về năng suất và chất lượng khi gia công tạo hình bề mặt các chi tiết phức tạp trên máy công cụ CNC. 3. Đối tượng, phạm vi và phương pháp nghiên cứu Luận án nghiên cứu phương pháp nội suy theo thời gian thực các biên dạng tự do trong tạo hình bề mặt chi tiết gia công trên máy công cụ CNC. Các biên dạng tự do thường được mô tả bởi các phương trình tham số, như Bezier, B-spline, NURBS, ... Trong đó, phương trình tham số NURBS là tổng quát nhất, phương trình Bezier hay B-spline đều có thể xem là các trường hợp đặc biệt của NURBS. Trong luận án, phương trình tham số NURBS được lựa chọn làm công cụ biểu diễn các biên dạng tự do. Như vậy, đối tượng nghiên cứu của luận án được xác định là phương pháp nội suy theo thời gian thực các biên dạng tự do NURBS, hay phương pháp nội suy NURBS trong hệ thống điều khiển số. Phạm vi nghiên cứu được giới hạn ở các hệ thống CNC 3 trục, với dụng cụ cắt không thay đổi hướng khi di chuyển trên quỹ đạo. Do đó, thuật toán nội suy theo thời gian thực chỉ có nhiệm vụ tính toán vị trí của dụng cụ trong không gian tọa độ Đề-các, và vị trí này có thể chuyển đổi một cách tự nhiên thành vị trí các trục thành phần X, Y, Z của máy công cụ trong không gian khớp mà không cần giải bài toán động học ngược. Phương pháp nghiên cứu là kết hợp giữa nghiên cứu lý thuyết với mô phỏng kiểm chứng trên phần mềm Matlab/Simulink và nghiên cứu thực nghiệm trên hệ thống thiết bị và phần mềm cụ thể. 4. Ý nghĩa khoa học và thực tiễn của đề tài Ý nghĩa khoa học - - - Đã phát triển được một phương pháp nội suy theo thời gian thực các biên dạng tự do được biểu diễn bằng phương trình tham số NURBS (gọi ngắn gọn là biên dạng tự do NURBS, hoặc biên dạng NURBS). Đã đặt ra và giải quyết được các vấn đề quan trọng khi thực hiện chuyển động tạo hình theo các biên dạng tự do NURBS, đó là: vấn đề giới hạn sai số nội suy và vấn đề điều khiển tốc độ tiến dao trong giới hạn của máy công cụ về gia tốc tiếp tuyến và gia tốc hướng tâm. Các nội dung nghiên cứu của luận án góp phần làm phong phú và sâu sắc thêm các kiến thức chuyên ngành trong lĩnh vực điều khiển số các máy công cụ. 2 Ý nghĩa thực tiễn - - Phương pháp nội suy theo thời gian thực các biên dạng tự do NURBS có ý nghĩa quan trọng đối với việc nâng cao năng suất và chất lượng khi gia công tạo hình bề mặt các chi tiết phức tạp trên máy công cụ CNC. Do đó các kết quả nghiên cứu của luận án mang ý nghĩa thực tiễn, có nhiều tiềm năng ứng dụng trong công nghiệp và nền sản xuất tự động hóa. Ngoài ra, luận án cũng đã nghiên cứu hệ điều khiển số có kiến trúc mở (OAC - Open Architecture Controller) và dựa trên nền tảng mở để cài đặt và thử nghiệm các thuật toán nội suy mới. Kết quả là đã phát triển được một phần mềm điều khiển số kiểu PC-based với khả năng nội suy các biên dạng tự do NURBS theo thời gian thực. Phần mềm hoạt động trên nền tảng máy tính PC và có thể tích hợp với các hệ truyền động servo thông dụng để tạo thành một hệ thống điều khiển CNC hoàn chỉnh. 5. Những kết quả đạt được và đóng góp mới của luận án Những kết quả chính và cũng là những đóng góp mới của luận án như sau: - - - - - Đã nghiên cứu những nguyên lý cơ bản của phương pháp nội suy theo thời gian thực các biên dạng tự do NURBS và nêu lên những ưu điểm nổi trội của phương pháp trong việc nâng cao chất lượng bề mặt chi tiết và năng suất gia công, đặc biệt là khi gia công với tốc độ tiến dao lớn. Đã đề xuất được một phương pháp điều khiển tốc độ tiến dao khi thực hiện chuyển động nội suy theo biên dạng tự do NURBS. Phương pháp đề xuất bao gồm hai bước: bước tiền xử lý đường NURBS (offline) và bước tính tốc độ tiến dao theo thời gian thực (online). Với phương pháp đề xuất, sai số nội suy được đảm bảo nằm trong giới hạn cho phép, đồng thời tốc độ tiến dao trong chuyển động nội suy được tự động điều chỉnh, phù hợp với các giới hạn động học của máy công cụ (về gia tốc tiếp tuyến và gia tốc hướng tâm). Đã phát triển được một phần mềm nội suy biên dạng tự do NURBS theo thời gian thực dựa trên hệ điều khiển số có kiến trúc mở. Phần mềm hoạt động trên nền tảng máy tính PC (PC-based controller) và có thể tích hợp với các hệ truyền động servo thông dụng để tạo thành một hệ thống điều khiển CNC hoàn chỉnh. Đã xây dựng được một hệ thống thiết bị để phục vụ cho các thử nghiệm trong thực tế của phương pháp nội suy NURBS. Hệ thống thiết bị gồm có máy phay CNC mini 3 trục NOVAMILL với phần điện và phần điều khiển số được thiết kế lại hoàn toàn theo hướng sử dụng máy tính PC làm bộ điều khiển trung tâm (PC-based). Đã gia công thử nghiệm được một số biên dạng phức tạp theo phương pháp nội suy NURBS, dựa trên hệ thống thiết bị được xây dựng trong luận án. Các kết quả ghi nhận được trong quá trình gia công thực tế đã làm sáng rõ thêm các ưu điểm của phương pháp nội suy NURBS. 6. Bố cục của luận án Sau phần Mở đầu với các mục theo quy định, các nội dung nghiên cứu của luận án được trình bày trong 4 chương như sau: Chương 1: Tổng quan 3 Chương 2: Phương pháp biểu diễn đường và mặt trong các hệ CAD/CAM sử dụng phương trình tham số NURBS. Chương 3: Xây dựng phương pháp nội suy theo thời gian thực các biên dạng tự do NURBS. Chương 4: Nghiên cứu phát triển phần mềm nội suy biên dạng tự do NURBS theo thời gian thực dựa trên hệ điều khiển có kiến trúc mở. Phần cuối cùng là Kết luận và Kiến nghị sẽ tổng kết các kết quả nghiên cứu của đề tài và đề xuất một số hướng nghiên cứu tiếp theo. 4 CHƯƠNG 1. TỔNG QUAN 1.1. Khái quát về hệ thống điều khiển số CNC và phương pháp nội suy NURBS Cấu trúc bộ điều khiển số CNC Các máy CNC là những sản phẩm cơ điện tử điển hình, có cấu tạo cơ bản gồm có máy công cụ với các thành phần cơ khí và hệ thống điều khiển số. Mục đích khi phát triển các máy CNC là để gia công chính xác các chi tiết phức tạp. Ban đầu hệ thống điều khiển số chủ yếu được áp dụng cho các máy phay (milling machines) và máy doa (boring machines). Sau đó, việc ứng dụng công nghệ điều khiển số được mở rộng cho các loại máy công cụ khác, như máy tiện, máy tạo ren, trung tâm gia công, ... Hiện nay, công nghệ điều khiển số còn được ứng dụng cho cả các máy gia công phi truyền thống, như máy gia công tia lửa điện, máy cắt dây, máy cắt laser, máy cắt tia nước, máy cắt plasma, …, bên cạnh các máy gia công truyền thống [7, 11, 42]. Hình 1.1: Các thành phần cơ bản của hệ thống điều khiển số [42]. Cấu trúc cơ bản của hệ thống điều khiển số bao gồm ba thành phần chính, đó là: - - Thành phần giao diện người-máy, MMI (Man Machine Interface). Thành phần này thực hiện chức năng giao diện giữa người và máy, tiếp nhận các thao tác điều khiển máy từ người vận hành, hiển thị thông tin trạng thái của máy, cũng như cung cấp các chức năng cho phép người vận hành nhập và chỉnh sửa các chương trình gia công NC. Thành phần lõi điều khiển số, NCK (Numerical Control Kernel). Đây là thành phần quan trọng nhất, quyết định chất lượng của một hệ điều khiển số. Thành phần này thực hiện các chức năng cơ bản, như dịch các mã lệnh trong chương trình gia công (NC code interpreter), thực hiện các thuật toán nội suy (interpolator), điều khiển vị trí các trục máy (position control) và bù sai số (error compensation), … Tín hiệu từ 5 - NCK được đưa tới hệ thống điều khiển truyền động để thực hiện các chuyển động chính xác của máy CNC. Thành phần điều khiển logic, PLC (Programmable Logic Controller). Thành phần này thực hiện các chức năng điều khiển logic trên máy, như điều khiển tuần tự quá trình thay dao tự động, thay phôi tự động, điều khiển tốc độ trục chính, điều khiển hệ thống bôi trơn, làm mát, hệ thống đèn tín hiệu cảnh báo, chức năng dừng khẩn cấp E-STOP, … Các thành phần của hệ thống điều khiển số được minh họa trên Hình 1.1. Trên Hình 1.2 minh họa luồng thông tin trong hệ thống điều khiển số CNC. Chương trình gia công NC khi truyền tới bộ điều khiển CNC được xử lý qua bộ dịch mã (interpreter). Với các lệnh chuyển động nội suy (G01/G02/G03), bộ dịch mã sẽ trích xuất dữ liệu đường dụng cụ và tốc độ tiến dao để gửi tới bộ nội suy. Tại đây, bộ nội suy tính giá trị đặt cho các vòng điều khiển vị trí của các trục máy. Các chức năng dịch mã, nội suy và điều khiển vị trí thường được tích hợp trong phần lõi điều khiển số của bộ điều khiển CNC. Hình 1.2: Luồng thông tin trong hệ thống điều khiển số CNC. Tín hiệu ra từ module điều khiển vị trí thường là giá trị đặt tốc độ cho từng trục, và được đưa tới hệ thống truyền động servo để thực hiện chuyển động của máy công cụ. Ban đầu, tín hiệu giá trị đặt tốc độ thường được truyền từ bộ điều khiển CNC tới hệ thống điều khiển truyền động dưới dạng điện áp tương tự (analog velocity command). Tuy nhiên, giải pháp này có nhược điểm là dễ bị nhiễu, dẫn tới yêu cầu phát triển các giao diện truyền thông số. SERCOS là chuẩn truyền thông số phổ biến nhất được sử dụng cho mục đích giao tiếp giữa hệ thống điều khiển số và hệ thống truyền động servo. Các giao diện số có ưu điểm là có khả năng chống nhiễu tốt hơn, đồng thời có khả năng mang nhiều thông tin hơn, nên cho phép thực hiện các chức năng tiên tiến, như cài đặt tham số của hệ truyền động từ trên hệ thống điều khiển số, giám sát trạng thái hệ truyền động, … 6 Chức năng nội suy trên máy công cụ điều khiển số CNC Các máy CNC thường có một số trục chuyển động thẳng hoặc tròn, được điều khiển vị trí và tốc độ chính xác nhờ ứng dụng các loại động cơ servo và công nghệ điều khiển truyền động. Các chuyển động trên máy CNC có thể chia thành hai dạng cơ bản: chuyển động điểmđiểm (point-to-point) và chuyển động nội suy (còn gọi là chuyển động theo quỹ đạo, contour motion). Chuyển động điểm-điểm có chức năng đưa dụng cụ (hoặc phôi) tới vị trí công tác. Trong chuyển động điểm-điểm, chỉ có vị trí cuối là quan trọng, các vị trí trung gian có thể thay đổi tùy theo thuật toán khác nhau. Hình 1.3 minh họa hai phương án thực hiện chuyển động điểm-điểm từ vị trí A tới vị trí B được hỗ trợ trên các bộ điều khiển số của hãng Fanuc. Trong phương án 1, cả hai trục X và Y đều chuyển động với tốc độ chạy nhanh (rapid rate). Do hành trình theo trục Y ngắn hơn hành trình theo trục X, nên chuyển động theo trục Y sẽ kết thúc trước tại vị trí trung gian C. Sau đó trên đoạn từ C tới B chỉ còn chuyển động theo trục X. Trong phương án 2, chuyển động được thực hiện theo đường thẳng từ A tới B. Do hành trình theo trục Y ngắn hơn hành trình theo trục X nên chuyển động theo trục X được thực hiện với tốc độ chạy nhanh, còn chuyển động theo trục Y được thực hiện với tốc độ được điều chỉnh giảm đi theo tỉ lệ hành trình trên mỗi trục. Hình 1.3: Hai phương án thực hiện chuyển động điểm-điểm từ vị trí A tới vị trí B. Chuyển động nội suy là chuyển động phối hợp của một số trục máy, nhằm tạo ra chuyển động tổng hợp của dụng cụ (so với phôi) bám theo một quỹ đạo xác định. Khác với chuyển động điểm-điểm, tốc độ của các trục máy trong chuyển động nội suy được phối hợp sao cho từng trục di chuyển đến vị trí đích trong cùng một khoảng thời gian. Ngoài ra, sự phối hợp tốc độ của các trục máy còn phải tạo ra vector vận tốc tổng hợp của dụng cụ luôn có phương tiếp tuyến với quỹ đạo chuyển động, đồng thời có độ lớn được lập trình trong chương trình gia công NC. Yêu cầu phải phối hợp tốc độ của các trục thành phần trong chuyển động nội suy được minh họa trên Hình 1.4. Để thực hiện chuyển động nội suy theo đường thẳng từ vị trí A tới vị trí B với tốc độ tiến dao yêu cầu là V thì tốc độ của trục X là Vx , còn tốc độ của trục Y là Vy . Hai trục X và Y đồng thời chuyển động trong cùng một khoảng thời gian. Trên các máy CNC 3 trục, chuyển động nội suy là chuyển động phối hợp của các trục vuông góc X, Y, Z. Các máy CNC thông thường hỗ trợ hai dạng chuyển động nội suy cơ bản, đó là nội suy tuyến tính và nội suy cung tròn (Hình 1.5). Với dạng nội suy tuyến tính, 7 chuyển động của dụng cụ được thực hiện theo đường thẳng, với tọa độ điểm đầu, tọa độ điểm cuối và tốc độ tiến dao được xác định trong chương trình NC. Với dạng nội suy cung tròn, chuyển động của dụng cụ bám theo một cung tròn có tọa độ tâm hoặc bán kính, cùng với tọa độ điểm đầu, tọa độ điểm cuối và tốc độ tiến dao xác định. Ta có nhận xét rằng, mặc dù trên các hệ thống điều khiển số CNC tiên tiến, nhưng các dạng chuyển động nội suy được hỗ trợ vẫn là những chuyển động theo các biên dạng rất cơ bản (đường thẳng và cung tròn). Hình 1.4: Phối hợp tốc độ của các trục thành phần trong chuyển động nội suy. Hình 1.5: Minh họa chuyển động nội suy tuyến tính và nội suy cung tròn trên các hệ điều khiển số. Trong khi đó, các chuyển động tạo hình cần được thực hiện trên các máy công cụ CNC không chỉ gồm có chuyển động thẳng và chuyển động tròn. Với các chuyển động tạo hình phức tạp hơn, thông thường đường dụng cụ được xấp xỉ thành chuỗi các đoạn thẳng hoặc cung tròn (như minh họa trên Hình 1.6), để phù hợp với khả năng thực hiện chuyển động nội suy của hệ thống điều khiển số. 8
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất