Tài liệu Nghiên cứu vật liệu xúc tác trên cơ sở coban cho quá trình chuyển hóa khí tổng hợp thành hydrocacbon lỏng

  • Số trang: 129 |
  • Loại file: PDF |
  • Lượt xem: 51 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 27125 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI ------------------- Đỗ Thị Thanh Hà NGHIÊN CỨU VẬT LIỆU XÚC TÁC TRÊN CƠ SỞ COBAN CHO QUÁ TRÌNH CHUYỂN HÓA KHÍ TỔNG HỢP THÀNH HYDROCACBON LỎNG Chuyên ngành: Kỹ thuật hóa học Mã số: 62520301 LUẬN ÁN TIẾN SĨ KỸ THUẬT HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS.TS. PHẠM THANH HUYỀN 2. PGS.TS. NGUYỄN HỒNG LIÊN Hà Nội – 2014 MỤC LỤC Trang LỜI CAM ĐOAN......................................................................................................... LỜI CẢM ƠN............................................................................................................... DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT................................................... DANH MỤC CÁC BẢNG ........................................................................................... DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ...................................................................... MỞ ĐẦU ......................................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN.......................................................................................... 3 1.1. Lịch sử nghiên cứu và phát triển quá trình Fischer-Tropsch .................................... 3 1.2. Hóa học quá trình chuyển hóa khí tổng hợp ............................................................. 7 1.3. Nguyên liệu cho quá trình FT ................................................................................... 7 1.4. Cơ chế của phản ứng FT........................................................................................... 8 1.4.1. Cơ chế carbide bề mặt (surface carbide mechanism) ..................................... 8 1.4.2. Cơ chế qua giai đoạn tạo hợp chất trung gian chứa oxy (oxygenate mechanism) ................................................................................. 9 1.5. Sản phẩm của quá trình FT ....................................................................................... 10 1.6. Xúc tác cho quá trình FT .......................................................................................... 11 1.6.1. Kim loại hoạt động ......................................................................................... 12 1.6.1.1. Sắt ................................................................................................ 13 1.6.1.2. Coban ........................................................................................... 13 1.6.2. Chất mang ...................................................................................................... 15 1.6.2.1. Oxit nhôm .................................................................................... 15 1.6.2.2. Oxit silic ....................................................................................... 17 1.6.3. Chất trợ xúc tác. ............................................................................................. 21 1.6.3.1. Platin............................................................................................ 21 1.6.3.2. Rutheni ......................................................................................... 22 1.6.3.3. Kali .............................................................................................. 23 1.6.3.4. Reni .............................................................................................. 23 1.6.4. Hợp phần xúc tác điển hình trên cơ sở coban ................................................ 24 1.7. Công nghệ tổng hợp FT ............................................................................................ 24 1.8. Các yếu tố ảnh hƣởng đến quá trình FT ................................................................... 25 1.8.1. Nhiệt độ ......................................................................................................... 25 i 1.8.2. Áp suất .......................................................................................................... 26 1.8.3. Tỷ lệ nguyên liệu ........................................................................................... 26 1.8.4. Ảnh hƣởng của nƣớc ..................................................................................... 27 1.8.5. Các nguyên nhân gây mất hoạt tính xúc tác .................................................. 27 1.9. Định hƣớng nghiên cứu của luận án .................................................................... 29 CHƯƠNG 2. THỰC NGHIỆM VÀ CÁC PHƯƠNG PHÁP NGHIÊN CỨU ........... 30 2.1. Tổng hợp -Al2O3 ................................................................................................. 30 2.1.1. Hóa chất sử dụng ........................................................................................... 30 2.1.2. Qui trình tổng hợp ......................................................................................... 30 2.2. Biến tính -Al2O3 bằng SiO2 ................................................................................ 31 2.2.1. Hóa chất sử dụng ........................................................................................... 31 2.2.2. Qui trình tổng hợp ......................................................................................... 31 2.3. Tổng hợp xúc tác.................................................................................................. 32 2.3.1. Hóa chất sử dụng ........................................................................................... 32 2.3.2. Qui trình tổng hợp ......................................................................................... 32 2.4. Phƣơng pháp nghiên cứu đánh giá đặc trƣng hóa lý của chất mang và xúc tác33 2.4.1. Đặc trƣng pha tinh thể bằng nhiễu xạ tia X (XRD) ....................................... 33 2.4.2. Xác định diện tích bề mặt riêng và cấu trúc mao quản bằng đẳng nhiệt hấp phụ vật lý nitơ (BET) ............................................................................... 33 2.4.3. Xác định độ phân tán kim loại trên chất mang bằng hấp phụ hóa học xung CO (TP CO) ............................................................................. 34 2.4.4. Xác định trạng thái oxy hóa khử của oxit kim loại bằng khử hóa theo chƣơng trình nhiệt độ (TPR H2) ................................................ 34 2.4.5. Xác định hàm lƣợng kim loại mang trên chất mang bằng hấp thụ nguyên tử (AAS) ....................................................................... 35 2.4.6. Xác định hình thái vật liệu bằng ảnh hiển vi điện tử quét (SEM).................. 35 2.4.7. Xác định thành phần nguyên tố trong xúc tác ................................................ 35 2.4.8. Phổ hồng ngoại (FTIR)................................................................................... 36 2.5. Nghiên cứu đánh giá hoạt tính và độ chọn lọc của xúc tác ................................. 36 2.5.1. Hệ thống phản ứng FT ................................................................................... 36 2.5.2. Hoạt hóa xúc tác ............................................................................................. 37 2.5.3. Tiến hành phản ứng chuyển hóa khí tổng hợp ............................................... 38 2.5.4. Đánh giá hoạt tính và độ chọn lọc của xúc tác ............................................... 38 ii CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN .................................................................. 40 3.1. Nghiên cứu lựa chọn chất mang cho xúc tác ....................................................... 40 3.1.1. Đặc trƣng hóa lý của các xúc tác coban trên các chất mang khác nhau ........ 40 3.1.1.1. Đặc trưng pha tinh thể của xúc tác Co mang trên chất mang khác nhau.................................................................................................... 40 3.1.1.2. Diện tích bề mặt riêng và cấu trúc mao quản của các mẫu xúc tác mang trên các chất mang khác nhau .................................................. 41 3.1.1.3. Hình thái bề mặt xúc tác mang trên các chất mang khác nhau ............. 45 3.1.2. Ảnh hƣởng của chất mang tới độ chuyển hóa CO và độ chọn lọc sản phẩm lỏng ............................................................................. 47 3.1.2.1. Ảnh hưởng của chất mang tới độ chuyển hóa CO ................................. 47 3.1.2.2. Ảnh hưởng của chất mang tới độ chọn lọc sản phẩm lỏng .................... 48 3.2. Ảnh hƣởng của hàm lƣợng kim loại hoạt động tới đặc trƣng hóa lý và khả năng làm việc của xúc tác .................................................................................. 52 3.2.1. Ảnh hƣởng của hàm lƣợng kim loại hoạt động tới đặc trƣng hóa lý của xúc tác ............................................................................................................. 53 3.2.1.1. Ảnh hưởng của hàm lượng kim loại hoạt động tới đặc trưng pha tinh thể của xúc tác ........................................................................... 53 3.2.1.2. Ảnh hưởng của hàm lượng Co tới độ phân tán của kim loại trên chất mang ......................................................................................... 54 3.2.1.3. Ảnh hưởng của hàm lượng Co tới diện tích bề mặt riêng và cấu trúc mao quản của xúc tác ................................................................ 55 3.2.2. Ảnh hƣởng của hàm lƣợng kim loại hoạt động tới độ chuyển hóa CO và độ chọn lọc sản phẩm lỏng ............................................................................. 57 3.2.2.1. Ảnh hưởng của hàm lượng kim loại hoạt động tới độ chuyển hóa CO......................................................................................... 57 3.2.2.2. Ảnh hưởng của hàm lượng kim loại hoạt động tới độ chọn lọc sản phẩm lỏng .......................................................................................... 58 3.3. Ảnh hƣởng của kim loại phụ trợ tới đặc trƣng hóa lý và khả năng làm việc của xúc tác ..................................................................................................................... 59 3.3.1. Ảnh hƣởng của kim loại phụ trợ tới đặc trƣng hóa lý của xúc tác................. 60 3.3.1.1. Ảnh hưởng của kim loại phụ trợ tới diện tích bề mặt riêng và cấu trúc mao quản của xúc tác ............................................................... iii 60 3.3.1.2. Ảnh hưởng của kim loại phụ trợ tới độ phân tán của kim loại trên chất mang ...................................................................................... 62 3.3.1.3. Ảnh hưởng của kim loại phụ trợ tới khả năng khử oxit coban. 63 3.3.2. Ảnh hƣởng của kim loại phụ trợ tới độ chuyển hóa CO và độ chọn lọc sản phẩm lỏng ................................................................................................ 66 3.3.2.1. Ảnh hưởng của kim loại phụ trợ tới độ chuyển hóa CO ........................ 66 3.3.2.2. Ảnh hưởng của kim loại phụ trợ tới độ chọn lọc sản phẩm lỏng .......... 67 3.4. Ảnh hƣởng của nguồn muối kim loại hoạt động đến đặc trƣng hóa lý và khả năng làm việc của xúc tác .................................................................................. 69 3.4.1. Ảnh hƣởng của nguồn muối kim loại tới đặc trƣng hóa lý của xúc tác......... 69 3.4.1.1. Ảnh hưởng của nguồn muối kim loại tới diện tích bề mặt riêng và cấu trúc mao quản của xúc tác .......................................................... 69 3.4.1.2. Ảnh hưởng của nguồn muối kim loại tới độ phân tán của kim loại trên chất mang ........................................................................................ 72 3.4.2. Ảnh hƣởng của nguồn muối tới độ chuyển hóa CO và độ chọn lọc sản phẩm lỏng................................................................................................. 72 3.4.2.1. Ảnh hưởng của nguồn muối kim loại đến độ chuyển hóa CO ............... 72 3.4.2.2. Ảnh hưởng của nguồn muối kim loại đến chọn lọc sản phẩm lỏng 73 3.5. Ảnh hƣởng của điều kiện hoạt hoá đến khả năng làm việc của xúc tác .......... 76 3.5.1. Ảnh hƣởng của nhiệt độ hoạt hoá đến khả năng làm việc của xúc tác......... 76 3.5.2. Ảnh hƣởng của lƣu lƣợng H2 trong quá trình hoạt hoá đến khả năng làm việc của xúc tác ....................................................................................... 78 3.5.3. Ảnh hƣởng của thời gian hoạt hoá đến khả năng làm việc của xúc tác. ...... 80 3.6. Ảnh hƣởng của điều kiện tiến hành phản ứng đến hiệu quả quá trình FT....... 81 3.6.1. Ảnh hƣởng của nhiệt độ phản ứng đến hiệu quả quá trình FT ..................... 81 3.6.2. Ảnh hƣởng của áp suất phản ứng đến hiệu quả quá trình FT ....................... 83 3.6.3. Ảnh hƣởng của tốc độ không gian thể tích khí tổng hợp đến hiệu quả quá trình FT ..................................................................................... 84 3.7. Nghiên cứu biến tính -Al2O3 bằng SiO2 làm chất mang xúc tác cho quá trình chuyển hóa khí tổng hợp .......................................................................................... 86 3.7.1. Ảnh hƣởng của việc biến tính chất mang tới các đặc trƣng hóa lý và khả năng làm việc của xúc tác ....................................................................... 87 3.7.1.1. Ảnh hưởng của việc biến tính chất mang tới đặc trưng pha tinh thể của xúc tác .......................................................................... 87 iv 3.7.1.2. Ảnh hưởng của việc biến tính chất mang tới diện tích bề mặt riêng và cấu trúc mao quản của xúc tác .......................................................... 89 3.7.1.3. Ảnh hưởng của việc biến tính chất mang tới hình thái bề mặt của xúc tác .....................................................................................................90 3.7.1.4. Ảnh hưởng của việc biến tính chất mang tới nhiệt độ khử oxit coban ................................................................................................ 93 3.7.2. Ảnh hƣởng của việc biến tính chất mang tới độ chuyển hóa CO và độ chọn lọc sản phẩm lỏng ............................................................................. 95 3.7.2.1. Ảnh hưởng của việc biến tính chất mang tới độ chuyển hóa CO .......... 95 3.7.2.2. Ảnh hưởng của việc biến tính chất mang tới độ chọn lọc sản phẩm lỏng ...................................................................... 96 3.7.2.3. Ảnh hưởng của trợ xúc tác tới độ chuyển hóa và độ chọn lọc sản phẩm lỏng trên xúc tác biến tính bằng SiO2 ..................................... 96 KẾT LUẬN ..................................................................................................................... 99 CÁC ĐIỂM MỚI CỦA LUẬN ÁN ................................................................................. 100 TÀI LIỆU THAM KHẢO ............................................................................................... 101 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN........................... 112 PHỤ LỤC ........................................................................................................................ 113 v LỜI CAM ĐOAN Tôi xin cam đoan luận án này là công trình nghiên cứu thực sự của tác giả, đƣợc thực hiện dƣới sự hƣớng dẫn khoa học của PGS.TS. Phạm Thanh Huyền và PGS.TS. Nguyễn Hồng Liên. Các số liệu và kết quả đƣợc nêu trong luận án là trung thực và chƣa đƣợc công bố trong bất kỳ công trình nào khác. Hà Nội, ngày 18 tháng 12 năm 2014 TÁC GIẢ LUẬN ÁN ĐỖ THỊ THANH HÀ LỜI CẢM ƠN Luận án “Nghiên cứu vật liệu xúc tác trên cơ sở coban cho quá trình chuyển hóa khí tổng hợp thành hydrocacbon lỏng” đã đƣợc hoàn thành dƣới sự hƣớng dẫn tận tình của PGS.TS. Phạm Thanh Huyền và PGS.TS. Nguyễn Hồng Liên với sự hỗ trợ của đề tài độc lập cấp Nhà nƣớc ĐTĐL2009/G46. Ngoài sự cố gắng của bản thân, tôi đã nhận đƣợc rất nhiều sự quan tâm hƣớng dẫn, sự giúp đỡ nhiệt tình của các Thầy Cô và đồng nghiệp trong Bộ môn Công nghệ Hữu cơ Hóa dầu, Phòng thí nghiệm Công nghệ Lọc hóa dầu và Vật liệu xúc tác hấp phụ trƣờng Đại học Bách khoa Hà nội. Trƣớc tiên, tôi xin chân thành cảm ơn PGS.TS. Phạm Thanh Huyền và PGS.TS. Nguyễn Hồng Liên vì những giúp đỡ quí báu và hƣớng dẫn tận tình để luận án đƣợc hoàn thành. Tôi xin trân trọng cám ơn Trƣờng Đại học Bách khoa Hà Nội, Viện đào tạo sau đại học, Viện Kỹ thuật Hóa học trƣờng Đại học Bách khoa Hà Nội đã giúp đỡ và tạo điều kiện trong suốt quá trình thực hiện luận án. Tôi xin trân trọng cám ơn các nhà Khoa học đã có nhiều ý kiến đóng góp cho luận án đƣợc hoàn chỉnh. Cuối cùng xin bày tỏ lòng cảm ơn sâu sắc tới gia đình, ngƣời thân và bạn bè đã giúp đỡ, động viên tôi trong quá trình nghiên cứu, thực hiện luận án. TÁC GIẢ LUẬN ÁN ĐỖ THỊ THANH HÀ DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT BET Brunauer - Emmentt - Teller BPR Back Pressure - Bộ điều chỉnh áp suất thấp ĐHCT Định hƣớng cấu trúc ĐHQG HN Đại học Quốc gia Hà Nội EDX Energy - Dispersive X-ray spectroscopy - Phổ tán xạ năng lƣợng tia X EXAFS Extended X-Ray Absorption Fine Structure FID Flame Ionization Detector - Detector ion hóa ngọn lửa FT Fischer - Tropsch GC Gas Chromatography - Sắc ký khí GC-MS Gas Chromatography Mass Spectrometry - Sắc ký khí khối phổ HTFT High Temperature Fischer Tropsch LTFT Low Temperature Fischer Tropsch SEM Scanning Electron Microscope - Hiển vi điện tử quét Syngas Khí tổng hợp TCD Thermal Conductivity Detector - Detector dẫn nhiệt TEM Transmission Electron Microscopy - Hiển vi điện tử truyền qua TEOS TetraEthylOrthoSilicat TLPT Trọng lƣợng phân tử TPR Temperature-Programmed Reduction - Khử hóa theo chƣơng trình nhiệt độ XANES X-ray Absorption Near Edge Structure XRD X-Ray Diffaction - Nhiễu xạ tia X XPS X-ray Photoelectron Spectroscopy - Phổ quang điện tử tia X %kl Phần trăm khối lƣợng WGS Water Gas Shift - Phản ứng chuyển hóa CO bằng hơi nƣớc DANH MỤC CÁC BẢNG Bảng 1.1. Các đặc tính của xúc tác FT trên cơ sở Ni, Fe, Co, Ru ...................................... 12 Bảng 1.2. So sánh một số đặc tính của xúc tác Fe và xúc tác Co ....................................... 14 Bảng 1.3. Một số tính chất của silicagel .............................................................................. 17 Bảng 1.4. Sự phân bố sản phẩm của tổng hợp FT ............................................................... 25 Bảng 2.1. Các thông số cơ bản của quá trình chuyển hóa khí tổng hợp ............................. 38 Bảng 3.1. Các mẫu xúc tác Co mang trên các chất mang khác nhau .................................. 40 Bảng 3.2. Diện tích bề mặt riêng và đƣờng kính mao quản các mẫu xúc tác mang trên các chất mang khác nhau .................................................................................. Bảng 3.3. Phân bố mạch C trong thành phần sản phẩm chuyển hóa khí tổng hợp trên các xúc tác Co mang trên các chất mang khác nhau ................................................. 50 Bảng 3.4. Các mẫu xúc tác Co/ -Al2O3 có hàm lƣợng Co khác nhau ................................. 52 Bảng 3.5. Hàm lƣợng kim loại trong xúc tác Co/ -Al2O3 ................................................... 52 Bảng 3.6. Độ phân tán Co trong các mẫu xúc tác có hàm lƣợng Co thay đổi .................... 54 Bảng 3.7. Diện tích bề mặt riêng và đƣờng kính mao quản của các mẫu xúc tác Co/ -Al2O3 chứa hàm lƣợng Co khác nhau...........................................................55 Bảng 3.8. Các mẫu xúc tác Co/ -Al2O3 chứa kim loại phụ trợ khác nhau .......................... 60 Bảng 3.9. Diện tích bề mặt riêng và đƣờng kính mao quản của các mẫu xúc tác Co/ -Al2O3 chứa kim loại phụ trợ khác nhau ....................................................... 60 Bảng 3.10. Độ phân tán Co trong các mẫu xúc tác chứa kim loại phụ trợ khác nhau ........ 63 Bảng 3.11. Thể tích H2 tiêu thụ trong quá trình khử các mẫu xúc tác chứa kim loại phụ trợ khác nhau .......................................................................................................... 65 Bảng 3.12. Các mẫu xúc tác tổng hợp từ nguồn muối khác nhau ...................................... 69 Bảng 3.13. Diện tích bề mặt riêng và đƣờng kính mao quản của các mẫu xúc tác Co-K/ -Al2O3 đi từ nguồn muối Co khác nhau................................................... 69 Bảng 3.14. Độ phân tán Co trong các mẫu xúc tác đi từ nguồn muối Co khác nhau ........ 72 Bảng 3.15. Các mẫu xúc tác Co/ -Al2O3 biến tính bằng SiO2 ............................................ 87 Bảng 3.16. Diện tích bề mặt riêng và cấu trúc mao quản của các mẫu xúc tác .................. 89 Bảng 3.17. Thể tích H2 tiêu thụ trong quá trình khử các mẫu xúc tác ................................ 94 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Số lƣợng các công trình nghiên cứu về tổng hợp FT đƣợc công bố từ năm 1991-2007 ...................................................................................................... 4 Hình 1.2. Cơ chế phản ứng FT trên bề mặt xúc tác qua giai đoạn tạo hợp chất trung gian chứa oxi ................................................................................................................. 10 Hình 1.3. Độ chọn lọc sản phẩm theo mô hình Anderson-Schulz-Flory ................................. 11 Hình 1.4. Sự chuyển pha theo nhiệt độ của các hydroxit và oxit nhôm ................................. 16 Hình 1.5. Cấu trúc của silicalit-1 ................................................................................................ 19 Hình 1.6. Cơ chế định hƣớng tạo MCM-41 theo cấu trúc tinh thể lỏng .................................. 20 Hình 2.1. Qui trình tổng hợp -Al2O3 ..................................................................................... 30 Hình 2.2. Quy trình tổng hợp chất mang γ-Al2O3 biến tính bởi SiO2 ..................................... 31 Hình 2.3. Qui trình tổng hợp xúc tác Co-Me/chất mang ........................................................ 32 Hình 2.4. Sơ đồ vi dòng hệ thiết bị phản ứng chuyển hóa khí tổng hợp thành nhiên liệu lỏng.............................................................................................. 37 Hình 3.1. Giản đồ XRD của mẫu 10Co(N)0.2K/silicagel (a); 10Co(N)0.2K/silicalit (b); 10Co(N)0.2K/MCM-41 (c); 10Co(N)0.2K/ -Al2O3 (d) ....................................... 41 Hình 3.2. Phân bố mao quản của các mẫu xúc tác 10Co(N)0.2K/silicagel (a), 10Co(N)0.2K/silicalit (b), 10Co(N)0.2K/MCM-41 (c), 10Co(N)0.2K/ -Al2O3 (d) ......................................... 43 Hình 3.3. Đƣờng đẳng nhiệt hấp phụ và khử hấp phụ nitơ trên 4 mẫu xúc tác 10Co(N)0.2K/silicagel (a), 10Co(N)0.2K/silicalit (b), 10Co(N)0.2K/MCM-41 (c) và 10Co(N)0.2K/ -Al2O3 (d) ..................................... 44 Hình 3.4. Ảnh SEM của mẫu 10Co(N)0.2K/silicagel ............................................................ 45 Hình 3.5. Ảnh SEM của mẫu 10Co(N)0.2K/silicalit.............................................................. 46 Hình 3.6. Ảnh SEM của mẫu 10Co(N)0.2K/MCM-41 .......................................................... 46 Hình 3.7. Ảnh SEM của mẫu 10Co(N)0.2K/ -Al2O3.............................................................. 47 Hình 3.8. Độ chuyển hóa CO theo thời gian phản ứng trên các xúc tác 10Co(N)0.2K/silicagel (a), 10Co(N)0.2K/silicalit (b), 10Co(N)0.2K/MCM-41 (c), 10Co(N)0.2K/ -Al2O3 (d) ......................................... 48 Hình 3.9. Phân bố thành phần sản phẩm lỏng của quá trình FT trên xúc tác 10Co(N)0.2K/silicagel (a), 10Co(N)0.2K/silicalit (b), 10Co(N)0.2K/MCM-41 (c) và 10Co(N)0.2K/ -Al2O3 (d) ................................. 49 Hình 3.10. Phân bố sản phẩm lỏng của quá trình chuyển hóa khí tổng hợp trên các mẫu xúc tác 10Co(N)0.2K/MCM-41 và 10Co(N)0.2K/ -Al2O3 ................................ 51 Hình 3.11. Giản đồ XRD của -Al2O3 (a); 10Co(N)/ -Al2O3 (b) và 20Co(N)/ -Al2O3 (c).53 Hình 3.12. Phân bố mao quản trong các mẫu chất mang -Al2O3 (a) và xúc tác 5Co(N)/ -Al2O3 (b); 10Co(N)/ -Al2O3 (c); 15Co(N)/ -Al2O3 (d); 20Co(N)/ -Al2O3 (e) ........................................................ 56 Hình 3.13. Hoạt tính xúc tác của các mẫu Co/ -Al2O3 chứa hàm lƣợng Co khác nhau ..... 57 Hình 3.14. Phân bố sản phẩm lỏng của quá trình FT trên xúc tác Co/ -Al2O3 chứa hàm lƣợng Co khác nhau .................................................................................... 58 Hình 3.15. Đƣờng đẳng nhiệt hấp phụ và khử hấp phụ N2 và phân bố mao quản của các mẫu xúc tác 10Co(N)/ -Al2O3 (a); 10Co(N)0.2K/ -Al2O3 (b) và 10Co(N)0.2Re/ -Al2O3 (c) .................................................................................. 61 Hình 3.16. Giản đồ TPR H2 của các mẫu xúc tác 10Co(N)/ -Al2O3 (a); 10Co(N)0.2K/ -Al2O3 (b); 10Co(N)0.2Re/ -Al2O3 (c) ....................................... 64 Hình 3.17. Độ chuyển hóa CO theo thời gian phản ứng trên các mẫu xúc tác đƣợc bổ sung các kim loại phụ trợ khác nhau .................................................... 66 Hình 3.18. Ảnh hƣởng của trợ xúc tác đến độ chọn lọc sản phẩm lỏng của quá trình FT trên xúc tác 10Co(N)/ -Al2O3; 10Co(N)0.2K/ -Al2O3 và 10Co(N)0.2Re/ -Al2O3 .............................................. 68 Hình 3.19. Đƣờng đẳng nhiệt hấp phụ và khử hấp phụ N2 của chất mang -Al2O3 (a) và xúc tác 10Co(N)0.2K/ -Al2O3 (b); 10Co(A)0.2K/ -Al2O3 (c) ....................... 71 Hình 3.20. Độ chuyển hóa CO trên các mẫu xúc tác tổng hợp từ nguồn muối nitrat và axetat ................................................................................................................... 73 Hình 3.21. Phân bố sản phẩm lỏng của quá trình dùng xúc tác 10Co(N)0.2K/ -Al2O3 (a) và 10Co(A)0.2K/ -Al2O3 (b) .................................... 73 Hình 3.22. Sắc ký đồ sản phẩm lỏng trên xúc tác 10Co(N)0.2K/γ-Al2O3 .......................... 74 Hình 3.23. Phổ MS của hợp chất chứa oxi có trong thành phần sản phẩm phản ứng sử dụng xúc tác đi từ nguồn muối nitrat ................................................ 74 Hình 3.24. Sắc ký đồ sản phẩm lỏng trên xúc tác 10Co(A)0.2K/γ-Al2O3 .............................. 75 Hình 3.25. Phổ MS của một số hợp chất có mặt trong thành phần sản phẩm phản ứng sử dụng xúc tác đi từ nguồn muối axetat ............................................... 76 Hình 3.26. Ảnh hƣởng của nhiệt độ hoạt hóa xúc tác tới độ chuyển hóa CO theo thời gian phản ứng ................................................................................................. 77 Hình 3.27. Ảnh hƣởng của nhiệt độ hoạt hóa xúc tác tới chọn lọc sản phẩm lỏng................ 77 Hình 3.28. Ảnh hƣởng của lƣu lƣợng hydro trong quá trình hoạt hóa tới độ chuyển hóa CO ................................................................................................. 78 Hình 3.29. Ảnh hƣởng của lƣu lƣợng hydro trong quá trình hoạt hóa xúc tác đến độ chọn lọc sản phẩm lỏng .................................................................................... 79 Hình 3.30. Ảnh hƣởng của thời gian hoạt hóa xúc tác tới độ chuyển hóa CO ....................... 80 Hình 3.31. Ảnh hƣởng của thời gian hoạt hóa xúc tác tới độ chọn lọc sản phẩm lỏng ......... 81 Hình 3.32. Ảnh hƣởng của nhiệt độ phản ứng tới độ chuyển hóa CO ................................... 82 Hình 3.33. Ảnh hƣởng của nhiệt độ phản ứng tới độ chọn lọc sản phẩm lỏng ...................... 82 Hình 3.34. Ảnh hƣởng của áp suất phản ứng đến độ chuyển hóa CO.................................... 83 Hình 3.35. Ảnh hƣởng của áp suất phản ứng tới độ chọn lọc sản phẩm lỏng ........................ 84 Hình 3.36. Ảnh hƣởng của tốc độ không gian thể tích đến độ chuyển hóa CO ..................... 85 Hình 3.37. Ảnh hƣởng của tốc độ không gian thể tích tới độ chọn lọc sản phẩm lỏng......... 86 Hình 3.38. Giản đồ XRD của mẫu 10Co(A)/ -Al2O3 (a) và 10Co(A)/ -Al2O3-SiO2 (b) ... 88 Hình 3.39. Giản đồ XRD của mẫu 20Co(A)/ -Al2O3 (a) và 20Co(A)/ -Al2O3-SiO2 (b) ... 88 Hình 3.40. Phân bố kích thƣớc mao quản trong mẫu xúc tác 10Co(A)/γ-Al2O3 (a) và 10Co(A)/γ-Al2O3-SiO2 (b) ................................................................................ 90 Hình 3.41. Ảnh SEM của mẫu xúc tác 10Co(A)/γ-Al2O3....................................................... 91 Hình 3.42. Ảnh SEM của mẫu xúc tác 10Co(A)/γ-Al2O3-SiO2.............................................. 91 Hình 3.43. Ảnh SEM của mẫu xúc tác 10Co(A)0.2K/γ-Al2O3-SiO2 ...................................... 92 Hình 3.44. Phổ EDX của mẫu xúc tác 10Co(A)0.2K/γ-Al2O3-SiO2 ...................................... 92 Hình 3.45. Phổ FTIR của mẫu 10Co(A)0.2K/γ-Al2O3-SiO2 .................................................. 93 Hình 3.46. Giản đồ TPR H2 của mẫu xúc tác 10Co(A)/γ-Al2O3 (a) và 10Co(A)/γ-Al2O3-SiO2 (b) ................................................................................ 93 Hình 3.47. Độ chuyển hóa CO trên mẫu xúc tác 10Co(A)/γ-Al2O3 và 10Co(A)/γ-Al2O3-SiO2 ...................................................................................... 95 Hình 3.48. Phân bố sản phẩm lỏng của quá trình FT trên xúc tác 10Co(A)/γ-Al2O3 và 10Co(A)/γ-Al2O3-SiO2 ...................................................................................... 96 Hình 3.49. Độ chuyển hóa CO trên xúc tác 10Co(A)/γ-Al2O3-SiO2; 10Co(A)0.2K/γ-Al2O3-SiO2; 10Co(A)0.2Re/γ-Al2O3-SiO2 ................................... 97 Hình 3.50. Phân bố sản phẩm lỏng của quá trình FT trên xúc tác 10Co(A)/γ-Al2O3-SiO2; 10Co(A)0.2K/γ-Al2O3-SiO2 và 10Co(A)0.2Re/γ-Al2O3-SiO2 ............................. 98 MỞ ĐẦU Hiện nay, nhiên liệu và nguyên liệu dùng cho các ngành sản xuất công nghiệp hóa chất trên thế giới chủ yếu dựa vào nguồn dầu mỏ. Trong khi nhu cầu tiêu thụ nhiên liệu và các sản phẩm dầu mỏ ngày càng tăng thì trữ lƣợng dầu mỏ ngày càng giảm, đồng thời giá dầu biến động liên tục theo chiều hƣớng gia tăng. Do đó, việc tìm kiếm nguồn nhiên liệu bổ sung và thay thế dần cho nguồn nhiên liệu từ dầu mỏ hiện đang là mối quan tâm đặc biệt của chính phủ và giới khoa học ở nhiều quốc gia trên thế giới. Một trong những hƣớng đi đó là chuyển hóa khí tổng hợp (hỗn hợp của CO và H2) thành nhiên liệu lỏng. Quá trình chuyển hóa khí tổng hợp thành nhiên liệu lỏng (tổng hợp Fischer-Tropsch) đƣợc hai nhà bác học ngƣời Đức là Franz Fischer và Hans Tropsch tìm ra vào năm 1923. Nhiên liệu lỏng thu đƣợc từ công nghệ này đã đƣợc nƣớc Đức và Nhật Bản sử dụng trong chiến tranh thế giới thứ hai. Quá trình này cũng đóng vai trò chủ chốt trong sản xuất nhiên liệu ở Nam Phi, một quốc gia không có dầu mỏ nhƣng lại có trữ lƣợng than đá rất lớn. Trong bối cảnh trữ lƣợng dầu mỏ đang giảm dần và giá dầu biến động theo chiều hƣớng gia tăng, các tập đoàn hóa dầu lớn trên thế giới bắt đầu quay trở lại với công nghệ Fischer-Tropsch. Ƣu điểm nổi bật của nhiên liệu lỏng hình thành từ quá trình Fischer-Tropsch là sản phẩm sạch, không chứa lƣu huỳnh, khác hẳn với nhiên liệu sản xuất từ dầu mỏ. Đặc tính thân thiện với môi trƣờng này rất phù hợp với xu hƣớng phát triển bền vững và bảo vệ môi trƣờng hiện nay trên thế giới. Sản phẩm của quá trình tổng hợp Fischer-Tropsch luôn là một hỗn hợp bao gồm các parafin, olefin và các hợp chất chứa oxy. Độ chọn lọc sản phẩm phụ thuộc vào rất nhiều yếu tố nhƣ xúc tác, thiết bị phản ứng, điều kiện phản ứng (nhiệt độ, áp suất, thành phần khí nguyên liệu…). Trong các yếu tố trên thì xúc tác là một trong những yếu tố quan trọng quyết định độ chọn lọc của sản phẩm và độ chuyển hóa quá trình. 1 Với nhu cầu cấp thiết nhằm tìm kiếm nguồn nhiên liệu bổ sung, vấn đề giảm thiểu ô nhiễm môi trƣờng, việc nghiên cứu tổng hợp xúc tác cho quá trình Fischer-Tropsch tạo ra nhiên liệu lỏng mang ý nghĩa thiết thực và có tính ứng dụng thực tiễn cao đối với Việt Nam, một đất nƣớc giàu nguồn than, khí tự nhiên cũng nhƣ biomass, những nguyên liệu đầu cho quá trình sản xuất khí tổng hợp. Chính vì vậy, luận án đã thực hiện “Nghiên cứu vật liệu xúc tác trên cơ sở coban cho quá trình chuyển hóa khí tổng hợp thành hydrocacbon lỏng”. 2 CHƢƠNG 1. TỔNG QUAN 1.1. Lịch sử nghiên cứu và phát triển quá trình Fischer–Tropsch Đức là một trong những quốc gia công nghiệp đầu tiên tổng hợp đƣợc nhiên liệu lỏng nhờ phát minh của hai nhà bác học Franz Fischer và Hans Tropsch vào năm 1923. Công trình nghiên cứu chuyển hóa than thành nhiên liệu lỏng của hai nhà khoa học này đã giúp cho nƣớc Đức, một quốc gia khan hiếm nguồn dầu mỏ nhƣng lại rất giàu than đá, có thể tự chủ về nguồn nhiên liệu [19,24,30,32,47]. Năm 1934, phát minh này đƣợc áp dụng vào thực tiễn với quy mô công nghiệp bởi Ruhrchemie AG (Oberhausen, Đức). Chỉ trong một thời gian ngắn, quá trình tổng hợp Fischer-Tropsch (FT) đã đƣợc triển khai một cách mạnh mẽ ở Đức với 9 nhà máy sản xuất dầu diesel. Trong khi đó rất nhiều nƣớc ở châu Âu (Pháp, Anh), châu Á (Nhật Bản), Bắc Mỹ (Hoa Kỳ) cũng bắt đầu xây dựng những kế hoạch nhằm phát triển công nghệ FT. Trong số đó, dự án sản xuất nhiên liệu lỏng từ cacbon monoxit và hydro đƣợc hiệp hội nghiên cứu hydrocacbon bang Texas (Mỹ) đề xuất và đƣợc đƣa vào hoạt động năm 1950 đã mang lại giá trị thƣơng mại rõ rệt [19,20,34,47]. Trong chiến tranh thế giới thứ 2, quân đội Đức đã sử dụng sản phẩm của quá trình tổng hợp Fischer-Tropsch làm nhiên liệu cho xe tăng, máy bay, ô tô. Cũng trong thời gian này, Nhật Bản với vai trò là một đồng minh đã đƣợc phía Đức chuyển giao nhiều phát minh về công nghệ khí hóa lỏng. Với tiềm năng về than, sắt, coban, Nhật Bản cũng đã nhanh chóng phát triển công nghệ FT trên quy mô rộng. Cuối thập niên 1940, Công ty Sasol đã đƣợc thành lập dƣới tên gọi Công ty Than và Dầu khí Nam Phi, với mục đích áp dụng công nghệ Fischer-Tropsch để giúp nƣớc này có thể tự cung cấp nhiên liệu ở mức cao nhất thông qua các nhà máy khí hóa than. Giữa thập niên 1950, khi chính sách phân biệt chủng tộc khiến cho nƣớc này ngày càng bị cô lập với thế giới, nhà máy khí hóa than theo phƣơng pháp Fischer-Tropsch với quy mô thƣơng mại đầu tiên đã đƣợc khánh thành tại Sasolburg [32,34]. Gần 80 năm sau ngày đƣợc phát minh, nhiên liệu lỏng thu đƣợc từ quá trình FischerTropsch đã thu hút đƣợc sự quan tâm đặc biệt trở lại. Số lƣợng các công trình nghiên cứu về tổng hợp FT đƣợc công bố (hình 1.1) tăng vọt từ năm 1980 [59]. 3 Số lượng trong một thập kỷ Patent Bài báo Hình 1.1. Số lượng các công trình nghiên cứu về tổng hợp FT được công bố từ năm 1991-2007 Các tập đoàn hóa dầu lớn trên thế giới nhƣ Shell, ExxonMobil, BP, Syntroleum, Rentech, ENI/IFP/AXENS, ConocoPhilips cũng đã đầu tƣ rất lớn cho nghiên cứu phát triển công nghệ tổng hợp FT. Sasol là tập đoàn sản xuất nhiên liệu và nguyên liệu hóa chất tổng hợp lớn nhất từ công nghệ FT. Tổng sản phẩm từ các dự án FT của Sasol ƣớc tính 200.000 thùng/ngày [32,34]. Năm 1999, nhiên liệu lỏng thu đƣợc từ quá trình Fischer-Tropsch đã đƣợc Không lực Hoa Kỳ đặc biệt quan tâm trƣớc tình hình giá dầu thô ngày càng tăng và phải đối mặt với những thách thức về tiêu hao nhiên liệu khổng lồ. Cụ thể, riêng Không lực Hoa Kỳ đã “ngốn” đến 2,6 tỉ gallon nhiên liệu máy bay hàng năm, trị giá 4,5 tỉ USD, còn các hãng hàng không dân sự Hoa Kỳ thì tiêu thụ mỗi ngày 53 triệu gallon, tƣơng đƣơng 19 tỉ 345 triệu gallon một năm. Do đó, sau nhiều nghiên cứu, vào ngày 27/9/2006, Không lực Hoa Kỳ đã lần đầu tiên thử nghiệm loại nhiên liệu tổng hợp này trên một pháo đài bay B-52, song chỉ ở 2/8 động cơ và với tỉ lệ pha 50-50 (nhiên liệu tổng hợp-xăng). Kết quả kiểm định môi trƣờng cho thấy lƣợng khí thải giảm 50% so với sử dụng nhiên liệu từ dầu mỏ. Tiếp đến, vào ngày 15/12/2006, Không lực Hoa Kỳ thông báo đã hoàn tất chuyến bay thử nghiệm của máy bay B-52 với tám động cơ có sử dụng loại nhiên liệu mới: hỗn hợp nhiên liệu tổng hợp theo phƣơng pháp Fischer-Tropsch. Điều này đã khẳng định thành công của việc ứng dụng công nghệ tổng hợp FT để sản xuất nhiên liệu bay, thay thế cho nhiên liệu từ dầu mỏ [93]. Quá trình chuyển hoá khí tổng hợp thành nhiên liệu lỏng đƣợc xúc tiến bởi nhiều loại xúc tác khác nhau và đã có rất nhiều nghiên cứu về cơ chế phản ứng để tìm ra 4 loại xúc tác thích hợp. Các kết quả nghiên cứu cho thấy, các kim loại chuyển tiếp thuộc nhóm 3, 4, 5 và 6 không phải là dạng xúc tác tốt cho phản ứng Fisher-Tropsch. Ir, Pt, Pd và các kim loại thuộc nhóm 11 và 12 cũng không hoạt động đối với phản ứng này. Thực tế, chỉ có Fe, Co, Ni, Ru, Os là các kim loại xúc tác tốt nhất và Re, Rh có khả năng xúc tiến ở mức trung bình cho phản ứng tổng hợp FT [27,47,89]. Hợp phần xúc tác sử dụng cho quá trình Fischer-Tropsch thƣờng không chỉ chứa thuần tuý kim loại hoạt động, mà các kim loại này thƣờng đƣợc phân tán trên các chất mang khác nhau. Điển hình, xúc tác coban dùng cho quá trình tổng hợp FischerTropsch chứa các hạt Co kim loại nhỏ mang trên các chất mang oxit nhƣ SiO2, Al2O3 hay TiO2. Mặc dù đã có những nghiên cứu chỉ ra rằng chất mang có thể đóng vai trò quan trọng trong việc quyết định sự phân bố thành phần sản phẩm, tuy nhiên hiệu ứng chất mang và cấu trúc xốp này vẫn chƣa đƣợc xác định một cách rõ ràng [20]. Gần đây, các vật liệu micropore và mesopore cũng đƣợc nghiên cứu thử nghiệm làm chất mang cho xúc tác Co với mục tiêu cải thiện hoạt tính và độ chọn lọc của quá trình tổng hợp Fischer-Tropsch bằng việc giữ các hạt kim loại ở bên trong hệ thống mao quản. Các vật liệu có cấu trúc mao quản trật tự này tạo ra sự cản trở về hình học cần thiết để kiểm soát sự phân bố các sản phẩm một cách hiệu quả. Phần lớn các nghiên cứu này tập trung vào loại vật liệu micropore thông thƣờng nhƣ zeolit ZSM-5, zeolit Y, mordenit và vật liệu mesopore MCM41, SBA15 [13,49,60]. Các kết quả nghiên cứu cho thấy, ƣu điểm chung của các chất mang dạng micropore là diện tích bề mặt riêng lớn, cho phép phân tán tốt các hạt kim loại Co trên đó, dẫn tới tăng hoạt tính xúc tác. Ngoài ra, cấu trúc mao quản của loại vật liệu này còn cho phép chọn lọc sản phẩm theo hƣớng mong muốn. Tuy nhiên, hệ mao quản quá nhỏ của chúng cũng có nhƣợc điểm là cản trở không gian việc vận chuyển các chất phản ứng cũng nhƣ sản phẩm. Việc tăng cƣờng hoạt tính, độ chọn lọc của xúc tác cũng nhƣ duy trì khả năng làm việc lâu dài của vật liệu ở điều kiện nhiệt độ cao và áp suất cao đối với phản ứng Fischer-Tropsch cũng là một vấn đề đƣợc chú trọng trong lĩnh vực nghiên cứu này. Những hƣớng nghiên cứu gần đây đã thử nghiệm đƣa nguyên tố kim loại thứ hai, đóng vai trò chất trợ xúc tác, vào hợp phần vật liệu và bƣớc đầu đã thu đƣợc những kết quả nhất định [50,86,87]. Các kim loại thứ hai này có thể đƣa vào dƣới dạng nguyên tố nhƣ K, Re hoặc dạng oxyt nhƣ K2O hoặc MgO, … Các nghiên cứu khác về điều kiện tiến hành phản ứng Fischer-Tropsch cho thấy có thể tiến hành phản ứng này ở hai chế độ nhiệt độ cao và nhiệt độ thấp, tuỳ thuộc xúc tác 5
- Xem thêm -