Tài liệu Nghiên cứu ứng dụng vật liệu nano tio2 vào xử lý một số hợp chất hữu cơ trong nước

  • Số trang: 61 |
  • Loại file: DOC |
  • Lượt xem: 177 |
  • Lượt tải: 0
tailieuonline

Đã đăng 39837 tài liệu

Mô tả:

 Khóa luận tốt nghiệp Sưu tầm: Thạc sĩ. Ngô thị thuỳ Dương http://ngothithuyduong.violet.vn MỞ ĐẦU Khoa học nano chỉ mới xuất hiện cách đây vài thập kỉ nhưng đã có những bước phát triển mạnh mẽ và đạt được nhiều thành tựu quan trọng. Đến nay khoa học nano đã mở rộng và người ta đã tìm thấy nhiều vật liệu nano như C, kim loại, oxit kim loại, chất bán dẫn,… Trong số đó TiO 2 với những tính chất ưu việt như quang xúc tác, siêu thấm ướt đồng thời rất bền, không độc, trữ lượng cao,... được nghiên cứu và ứng dụng rộng rãi nhất. Những lĩnh vực ứng dụng của TiO 2 phải kể đến đó là y học, năng lượng, đặc biệt là trong lĩnh vực môi trường như xử lý nước, làm sạch không khí, gạch tự làm sạch, chống bám bẩn,... Việt Nam nằm trong vùng cận nhiệt đới xích đạo nên thời lượng chiếu sáng của mặt trời hàng năm rất cao. Do đó tiềm năng ứng dụng vật liệu xúc tác quang TiO2 ở Việt Nam là rất lớn. Mặt khác nguồn nguyên liệu TiO 2 ở Việt Nam rất phong phú. Nhiều địa phương có trữ lượng TiO2 cao như Núi Chúa Thái Nguyên (ở dạng quặng titan gốc) và dạng quặng sa khoáng ở ven biển miền Trung,... nhưng việc khai thác và sử dụng chưa hiệu quả. Trong khi đó tình trạng ô nhiễm môi trường đã trở thành một vấn đề có tính chất toàn cầu và là một trong những mục tiêu thiên niên kỉ của Liên hợp quốc. Đối với nước ta, việc xử lý những nguồn nước bị ô nhiễm bởi sinh hoạt và sản xuất đang là vấn đề nan giải đặt ra cho các nhà khoa học môi trường. Do đó việc nghiên cứu ứng dụng vật liệu xúc tác quang TiO 2 vào xử lý nước bị ô nhiễm là một vấn đề có ý nghĩa thực tiễn rất cao. Xuất phát từ những lý do trên tôi đã quyết định chọn đề tài “Nghiên cứu ứng dụng vật liệu nano TiO2 vào xử lý một số hợp chất hữu cơ trong nước”, với những mục tiêu nghiên cứu như sau:  Điều chế và nghiên cứu tính chất vật liệu xúc tác quang TiO2.  Hồ Thị Nguyệt – Sư phạm hóa K29 1  Khóa luận tốt nghiệp  Pha tạp và khảo sát hoạt tính quang xúc tác của vật liệu theo thời gian, hàm lượng xúc tác, loại ánh sáng kích thích, nghiên cứu động học trên dung dịch metyl da cam.  Ứng dụng vào xử lý một số loại nước thải công nghiệp và tạo xi măng chống rêu mốc.  Hồ Thị Nguyệt – Sư phạm hóa K29 2  Khóa luận tốt nghiệp Chương 1. TỔNG QUAN 1.1. Giới thiệu về vật liệu nano TiO2 1.1.1. Cấu trúc Titandioxit (TiO2) là chất bán dẫn, cấu trúc tinh thể gồm 3 dạng: anatase, rutile và brookite. Cấu trúc tinh thể của anatase và rutile được dẫn ra ở Hình 1. 1.1.1.1. Rutile Rutile là trạng thái tinh thể bền của TiO 2. Rutile ở dạng Bravais tứ phương với các hình bát diện tiếp xúc ở đỉnh. Rutile là pha có độ xếp chặt cao nhất so với hai pha còn lại. 1.1.1.2. Anatase Dạng có hoạt tính quang hóa mạnh nhất trong 3 pha. Anatase ở dạng Bravais tứ phương với các hình bát diện tiếp xúc ở cạnh với nhau và trục c của tinh thể bị kéo dài. Anatase thường có màu nâu sẫm, đôi khi có thể có màu vàng hoặc xanh, có độ sáng bóng như tinh thể kim loại. Tuy nhiên lại rất dễ rỗ bề mặt, các vết xước có màu trắng. 1.1.1.3. Brookite Có hoạt tính quang hóa rất yếu, thường rất ít gặp nên ít được đề cập trong các nghiên cứu và ứng dụng. Hình 1 mô tả cấu trúc tinh thể của anatase và rutile. Hình 1. Cấu trúc tinh thể anatase và rutile  Hồ Thị Nguyệt – Sư phạm hóa K29 3  Khóa luận tốt nghiệp Cả hai dạng anatase và rutile đều được tạo nên từ các đa diện phối trí TiO 6 (bát diện). Các bát diện này sắp xếp khác nhau trong không gian. Đối với rutile mỗi nguyên tử O được bao xung quanh bởi 3 nguyên tử Ti tạo thành tam giác đều. Các bát diện TiO 6 có 1 cạnh chung dọc theo trục [001] và 1 đỉnh chung với các bát diện nằm kề. Khoảng cách Ti-O là 1,959 nm; Ti-Ti là � 2,96 nm và 3,57 nm. Góc TiOTi là 1200. Anatase có cấu trúc tứ phương dãn dài với các bát diện bị biến dạng mạnh hơn nhưng độ dài liên kết Ti-O lại hầu như bằng nhau về mọi phía, trung bình là 1,917 Å. Sự khác nhau về cấu trúc tinh thể ảnh hưởng đến mật độ khối và cấu trúc điện tử của 2 dạng tinh thể kéo theo sự khác nhau về tính chất vật lý và tính chất hoá học. Bảng 1 nêu một số tính chất vật lý của TiO2 ở dạng anatase và rutile. Bảng 1. Một số tính chất vật lý của TiO2 ở dạng anatase và rutile Tính chất Hệ tinh thể Nhóm không gian Anatase Tetragonal I41/amd Rutile Tetragonal P42/mnm o 3,78 A Thông số mạng a o 4,58 A o Thông số mạng c Khối lượng riêng Độ khúc xạ Độ cứng (thang Mox) Hằng số điện môi Nhiệt độ nóng chảy 9,49 A 3,895 g/cm3 2,52 5,5-6,0 31 Nhiệt độ cao chuyển sang dạng rutile o 2,95 A 4,25 g/cm3 2,71 6,0-7,0 114 18580C 1.1.2. Tổng hợp 1.1.2.1. Phương pháp cổ điển [2] Người ta điều chế TiO2 tinh khiết bằng cách kết tủa axit titanic khi cho NH 4OH tác dụng lên dung dịch TiCl4 (hoặc Ti(SO4)2), rửa kết tủa sấy khô rồi nung. TiCl4 + 4 NH4OH = Ti(OH)4 + 4NH4Cl (1.1) Ti(OH)4 = TiO2 + 2H2O (1.2) 1.1.2.2. Phương pháp tổng hợp ngọn lửa [3]  Hồ Thị Nguyệt – Sư phạm hóa K29 4  Khóa luận tốt nghiệp TiO2 được sản xuất với quá trình oxy hoá TiCl4 xảy ra trong một lò sol khí ngọn lửa. Các hạt TiO2 hầu hết kết tinh ở dạng anatase và rutile. Phản ứng thường được thực hiện ở nhiệt độ cao hơn 1000 0C để thu được sản phẩm có chất lượng cao. TiCl4 + O2  TiO2 + 2Cl2  (1.3) TiO2 P25 (Degussa) là một sản phẩm thương mại được điều chế bằng phương pháp nhiệt phân TiCl4 trong ngọn lửa có nhiệt độ cao hơn 1200C với sự có mặt của hiđro và oxy. TiO2 sau đó được xử lý bằng dòng hơi để loại bỏ HCl. 1.1.2.3. Phân huỷ quặng illmenit [4,5,6] Đây là phương pháp đầu tiên được sử dụng để sản xuất TiO2. Quá trình điều chế gồm 3 giai đoạn:  Phân huỷ quặng illmenite bằng H2SO4 TiO2 + 2H2SO4 = Ti(SO4)2 + 2H2O (1.4) FeO + H2SO4 = FeSO4 + H 2O (1.5) Fe2O3+ 3H2SO4 = Fe2(SO4)3 + 3H2O (1.6)  Thuỷ phân dung dịch muối titan mTi(SO4)2 + 3(m-1)H2O = [TiO(OH)2]m-1Ti(SO4)2 + 2(m-1)H2SO4 (1.7) mTiO(SO4) + 2(m-1)H2O = [TiO(OH)2]m-1TiO(SO4) +(m-1)H2SO4 (1.8)  Nung sản phẩm thuỷ phân [TiO(OH)2]m-1Ti(SO4)2 = mTiO2 + 2SO3 + (m-1)H2O (1.9) 1.1.2.4. Phương pháp ngưng tụ hơi hoá học [7] Đây là phương pháp điều chế bột TiO2 có kích thước nanomet ở nhiệt độ thấp dưới 6000C. TiCl4 được làm bay hơi ở các nhiệt độ khác nhau để thu được các áp suất hơi khác nhau, sau đó hơi được chuyển vào lò phản ứng. Hơi nước cũng được đưa vào lò. Hơi TiCl4 và hơi nước được trộn với nhau một cách nhanh chóng quanh miệng lò và tạo thành sol khí TiO 2 ở áp suất không khí. Ở lỗ thoát của miệng lò, sản phẩm được tổng hợp lại bằng màng lọc sợi thuỷ tinh thành bột khô. 1.1.2.5. Sản xuất TiO2 bằng phương pháp plasma [8,9] Được tiến hành trong một bình kín có thể hút chân không rồi cho chất khí (thường là khí trơ) thổi qua với áp suất thấp để có thể phóng hồ quang.  Hồ Thị Nguyệt – Sư phạm hóa K29 5  Khóa luận tốt nghiệp Trong bình có 2 điện cực nối với một điện thế khoảng vài chục vôn. Khi mồi cho phóng điện sẽ xuất hiện hồ quang giữa 2 điện cực. Khí giữa 2 điện cực sẽ có nhiệt độ cao. Thực chất trong quá trình này, các nguyên tử bị mất điện tử trở thành các ion và điện tử tự do, đó chính là plasma. Nguyên tử tại anôt bị điện tử bắn phá làm cho bốc hơi và bay lên, trở thành ion dương và hướng về phía catôt. Nhờ đó catôt sẽ được phủ một lớp vật chất bay sang từ anôt và cũng có một số hạt bị rơi xuống trên đường chuyển động. Khi chọn được chế độ phóng điện hồ quang thích hợp sẽ có được các hạt ở dạng nano rơi xuống dưới hoặc tập trung tại catôt. 1.1.2.6. Phương pháp vi nhũ tương [9] Đây là một trong những phương pháp triển vọng để điều chế các hạt có kích thước nano. Hệ vi nhũ tương gồm có một pha dầu, một pha chất có hoạt tính bề mặt và một pha nước. Hệ này là hệ phân tán bền, đẳng hướng của pha nước trong pha dầu. Đường kính các giọt khoảng 5-20 nm. Các phản ứng hoá học xảy ra khi các giọt chất nhũ tương tiếp xúc nhau và hình thành nên các hạt có kích thước nanomet. 1.1.2.7. Phương pháp sol-gel Sol-gel là quá trình chế tạo vật liệu oxit kim loại từ dung dịch, thông qua các phản ứng thuỷ phân-ngưng tụ muối vô cơ kim loại hoặc tiền chất alkoxide kim loại. Quá trình sol-gel gồm 5 giai đoạn sau:  Giai đoạn 1: Tạo hệ sol.  Giai đoạn 2: Gel hoá.  Giai đoạn 3: Định hình.  Giai đoạn 4: Sấy.  Giai đoạn 5: Kết khối. 1.1.2.8. Phương pháp thuỷ nhiệt [19] Thuỷ nhiệt là sự tiến hành các phản ứng hoá học với sự có mặt của dung môi (có thể là nước) trong một hệ kín ở điều kiện nhiệt độ phòng và áp suất lớn hơn 1 atm. Phương pháp thuỷ nhiệt được ứng dụng để:  Hồ Thị Nguyệt – Sư phạm hóa K29 6  Khóa luận tốt nghiệp  Tổng hợp những vật liệu phức tạp.  Chế tạo vật liệu có cấu trúc nano.  Tách kim loại ra khỏi quặng. Gần đây, phương pháp thuỷ nhiệt đã được nâng cao bằng cách kết hợp với phương pháp vi sóng và phương pháp siêu âm, trộn cơ học, phản ứng điện cơ. Bằng phương pháp này, ta có thể thu được các tinh thể nano, dây nano, thanh nano, ống than nano.  Zang và cộng sự đã thu được các thanh nano TiO 2 khi thuỷ nhiệt dung dịch loãng TiCl4 trong môi trường axit hoặc muối vô cơ ở 60-1500C trong 12 giờ.  Kasuga và cộng sự lại thu được các ống nano TiO 2 anatase khi thuỷ nhiệt bột TiO2 trong dung dịch NaOH 2,5-10M ở nhiệt độ 20-1100C trong 20 giờ.  Các tác giả này cũng đã công bố tổng hợp thành công dây nano TiO 2 anatase khi thuỷ nhiệt bột TiO2 trong môi trường NaOH 10-15M ở 150-2000C trong 24-72 giờ. 1.1.2.9. Phương pháp siêu âm Siêu âm là một lĩnh vực nghiên cứu quan trọng mới được phát triển gần đây, sử dụng tác động đặc biệt của siêu âm công suất cao vào việc điều khiển các phản ứng hoá học. Siêu âm công suất cao có tác dụng mạnh đến phản ứng hoá học thông qua hiệu ứng sinh lỗ hổng. Trong môi trường đàn hồi như nước, khi biên độ của sóng âm thanh tăng lên thì chất lỏng bị loãng và gây ra sự tạo bọt khí. Các bọt khí dao động, giằng xé dữ dội và dẫn đến sự nổ tung gây nên sóng xung kích phát ra từ nơi bọt vỡ. Khi xảy ra sự nổ tung các bọt khí nhiệt độ có thể đạt đến 5000K và áp suất có thể đạt tới 1000 atm. Nhiệt độ cao làm phản ứng dễ dàng xảy ra và làm tăng số lượng phân tử va chạm, tăng độ linh động phân tử dẫn đến tăng tốc độ phản ứng. Áp suất hơi của chất lỏng càng cao thì năng lượng cần thiết để tạo bọt khí càng cao đồng thời năng lượng sóng xung kích tạo ra khi các bọt khí bị xé tung càng lớn. 1.1.2.10. Phương pháp vi sóng  Hồ Thị Nguyệt – Sư phạm hóa K29 7  Khóa luận tốt nghiệp Vi sóng là một kỉ thuật cấp nhiệt bằng việc tạo dao động phân tử ở tốc độ rất cao, khả năng cấp nhiệt nhanh và đồng nhất, giống như quá trình thuỷ nhiệt ở nhiệt độ cao. Đây là sự kết hợp của quá trình nung nóng thông thường theo sự chuyển đổi năng lượng sóng siêu âm thành nhiệt và do sự cọ xát của các phân tử. Ưu điểm chính của việc đưa vi sóng vào trong hệ phản ứng là tạo động học cho sự tổng hợp cực nhanh. Phương pháp này đơn giản và dễ lặp lại. Phương pháp vi sóng đã được áp dụng rất thành công trong tổng hợp hữu cơ, tinh chế tinh dầu, hoà tan và tinh chế quặng, điều chế các loại gốm đặc biệt,... Đối với quá trình tổng hợp vật liệu kích thước nano thì phương pháp này đến nay ít được quan tâm nghiên cứu. 1.1.3. Biến tính vật liệu TiO2 1.1.3.1. Pha tạp với các chất kim loại và phi kim:  Một số kim loại như Ag, Pt, Li, Zn, Cd, Mn, Ce, Cr, Fe, Al, Ln, Sn,… được kết hợp với TiO2 tạo ra những điểm giữ electron quang sinh, nhờ đó hạn chế được quá trình tái kết hợp và đồng nghĩa với sự nâng cao hoạt tính quang xúc tác của TiO2. Nhưng người ta lo ngại việc có thể xảy ra phản ứng giữa các ion trên bề mặt với H2O2 tại vị trí ấy, điều này có thể gây nên hiện tượng phân rã từng phần của các ion dương này trong trường hợp là dung môi lỏng. Ngược lại đối với những ion liên kết chặt chẽ bên trong tinh thể khi nung trong không khí sẽ cho hoạt tính trong vùng ánh sáng khả kiến. Nồng độ các ion dương tăng lên trong khoảng 50200 nm từ bề mặt tính vào. Vì vậy các lớp nguyên tử sâu bên trong vẫn tạo ra được cặp điện tử-lỗ trống khi được kích thích bằng ánh sáng khả kiến. Nguyên nhân là do có sự chuyển dịch điện tử từ bên trong tới bề mặt ngoài. Và như vậy khi các tinh thể TiO2 pha tạp được bao quanh bởi các tinh thể TiO 2 không pha tạp thì vẫn sẽ có hiện tượng quang xúc tác với ánh sáng khả kiến mà không cần phải lo ngại việc xảy ra phản ứng giữa các ion dương trên bề mặt với H2O2 tại vị trí ấy.  Hồ Thị Nguyệt – Sư phạm hóa K29 8  Khóa luận tốt nghiệp  Khi pha tạp N và các nguyên tố phi kim như: S, C, P, F,… người ta nhận thấy có sự chuyển dịch bước sóng hấp thụ về vùng ánh sáng khả kiến, đồng thời có sự thay đổi cấu trúc tinh thể. Các nghiên cứu gần đây chỉ ra rằng khi các ion nitơ thay thế khoảng 2,25% các ion âm trong tinh thể TiO 2 thì bước sóng kích thích nó sẽ dịch chuyển về khoảng 400-500 nm. Khi pha tạp nitơ thì sẽ có sự hình thành liên kết Ti-O-N chứ không phải Ti-N. Nguyên nhân là do có sự lai hoá obital của O và N. Vận tốc phân huỷ hợp chất hữu cơ sẽ tăng gấp 3 lần nếu mẫu TiO 2 pha tạp nitơ được kích thích ở bước sóng 436 nm.  Kết hợp TiO2 với một chất hấp thụ khác: Để nâng cao hiêu quả xúc tác người ta còn kết hợp TiO 2 với một vật liệu nền như SiO 2 hoặc polymer,... Vật liệu nền dùng để kết hợp phải thoả mãn điều kiện: o Không được giải phóng các thành phần của TiO 2 trong quá trình xúc tác. o Không bị giảm hoạt tính trong quá trình xúc tác. o Nếu giá cả và điều kiện sử dụng cho phép, các polymer phải được phủ một lớp chất như Si và Al, những chất trơ với phản ứng quang xúc tác. Ngoài những điều kiện trên, việc chọn vật liệu nền còn phụ thuộc điều kiện sử dụng, đặc tính cơ học, giá cả,... Thuỷ tinh, silic nóng chảy, gốm, gạch men, bê tông, kim loại, các loại polymer, giấy và các loại vải,... đều có thể dùng làm vật liệu nền. 1.2. Ứng dụng quang xúc tác của vật liệu TiO2 1.2.1. Tính chất quang xúc tác của TiO2 * Các chất bán dẫn có Eg < 3,5 eV đều có thể làm quang xúc tác. Vì khi đươc kích thích bởi các photon ánh sáng các electron trên vùng hoá trị của chất bán dẫn sẽ bị kích thích và nhảy lên vùng dẫn với điều kiện năng lượng của các photon phải lớn hơn năng lượng vùng cấm Eg. Kết quả là trên vùng dẫn sẽ có các electron mang điện tích âm do quá trình bức xạ photon tạo ra, gọi là electron quang sinh và trên vùng hoá trị sẽ có các lỗ trống mang điện tích dương h +, được  Hồ Thị Nguyệt – Sư phạm hóa K29 9  Khóa luận tốt nghiệp gọi là các lỗ trống quang sinh (Hình 2). Electron quang sinh và lỗ trống quang sinh chính là nguyên nhân dẫn đến các quá trình hoá học xảy ra, bao gồm quá trình oxy hoá đối với lỗ trống quang sinh và quá trình khử đối với electron quang sinh. Khả năng khử và khả năng oxy hoá của các electron quang sinh và lỗ trống quang sinh là rất cao so với các tác nhân oxy hoá khử đã biết trong hoá học. Các electron quang sinh có khả năng khử từ +0,5 đến -1,5 V, các lỗ trống quang sinh có khả năng oxy hoá từ +1,0 đến +3,5 V [12]. Hình 2. Cơ chế quá trình xúc tác quang trên vật liệu bán dẫn Các electron quang sinh và lỗ trống quang sinh có thể di chuyển ra bề mặt hạt xúc tác và tác dụng trực tiếp hay gián tiếp với các chất hấp phụ trên bề mặt. Nếu chất hấp phụ trên bề mặt là chất cho electron thì các lỗ trống quang sinh sẽ tác dụng trực tiếp hoặc gián tiếp để tạo ra ion dương. Tương tự nếu chất hấp phụ trên bề mặt là chất nhận electron thì electron quang sinh sẽ tác dụng trực tiếp hoặc gián tiếp tạo ra ion âm. Mặt khác để phản ứng oxy hoá xảy ra trực tiếp trên bề mặt bán dẫn, biên năng lượng vùng hoá trị VB của xúc tác bán dẫn phải có thế oxy hoá cao hơn thế oxy hoá của chất phản ứng trong điều kiện khảo sát [12].  Hồ Thị Nguyệt – Sư phạm hóa K29 10  Khóa luận tốt nghiệp Một số chất bán dẫn là oxit kim loại đơn giản và sunfua kim loại có vùng cấm Eg nằm dưới mức 3,5 eV như TiO2 (Eg = 3,2 eV), WO3 (Eg = 2,8 eV), SrTiO3 (Eg = 3,2 eV), ZnO (Eg = 3,2 eV), ZnS (Eg = 3,6 eV), CdS (Eg =2,5 eV) đều có thể làm xúc tác quang trên lý thuyết, nhưng trên thực tế chỉ có TiO 2 là thích hợp hơn cả. Lý do là vì TiO2 có hoạt tính xúc tác cao nhất, trơ về mặt hoá học và sinh học bền vững, không bị ăn mòn dưới tác dụng của ánh sáng và các hoá chất [14]. TiO2 ở dạng anatase có hoạt tính quang hoá cao hơn hẳn rutile. Điều này được giải thích dựa trên giản đồ năng lượng. Giản đồ vùng năng lượng của anatase và rutile được chỉ ra ở Hình 3. Hình 3. Giản đồ vùng năng lượng của anatase và rutile Vùng hoá trị của anatase và rutile được chỉ ra trên giản đồ là xấp xỉ bằng nhau và cũng rất dương, điều này chứng tỏ chúng có tính oxy hoá rất mạnh. Khi vật liệu nano TiO2 được kích thích bởi ánh sáng có bước sóng thích hợp sẽ sinh ra các electron quang sinh và lỗ trống quang sinh. Các electron quang sinh và lỗ trống quang sinh sinh ra sẽ di chuyển đến bề mặt và tương tác với các hoá chất hấp phụ lên bề mặt. Đối với TiO2, electron quang sinh có thể bị bắt trên bề mặt trong khoảng 30 pico giây, lỗ trống quang sinh bị bắt trong khoảng 250 nano giây ngay sau khi bị kích thích. Các lỗ trống có tính oxy hoá mạnh và có khả năng oxy hoá nước thành HO. hVB+ + H2O  HO + H+  Hồ Thị Nguyệt – Sư phạm hóa K29 (1.13) 11  Khóa luận tốt nghiệp hVB+ + OH-  HO (1.14) Các electron quang sinh trên bề mặt chất xúc tác có khả năng khử mạnh. Nếu có mặt O2 hấp phụ lên bề mặt xúc tác sẽ xảy ra phản ứng tạo O2- (ion super oxit) trên bề mặt và tiếp sau đó xảy ra phản ứng với H2O như sau: eCB- + O2 2 O2- + 2H2O eCB- + H2O2     O2- (1.15) H2O2 + 2OH- + 2 O2  OH + OH- (1.16) (1.17) Ion OH- lại có thể tác dụng với lỗ trống quang sinh trên vùng hoá trị để tạo ra gốc tự do OH theo phản ứng (1.14). Các bước xảy ra trong quá trình quang xúc tác trên chất bán dẫn TiO 2 trong môi trường nước có O2 được tóm tắt như sau:  Bức xạ UV kích thích các electron từ vùng hoá trị lên vùng dẫn, tạo lỗ trống quang sinh trên vùng hoá trị và electron quang sinh trên vùng dẫn.  Các electron quang sinh và lỗ trống quang sinh di chuyển ra bề mặt hạt xúc tác.  Các electron quang sinh và lỗ trống quang sinh tái kết hợp bên trong và trên bề mặt xúc tác.  Các lỗ trống quang sinh trên bề mặt hạt xúc tác oxy hoá H 2O và OHtạo ra gốc tự do OH.  Các electron quang sinh trên bề mặt hạt xúc tác khử O 2 tạo ra gốc tự do  O 2 -.  Các gốc trung gian OH, O2-, H2O2, O2,... đóng vai trò quan trọng trong cơ chế quang phân huỷ hợp chất hữu cơ. Trong đó gốc tự do OH là một tác nhân oxy hoá rất mạnh, không chọn lọc và có khả năng oxy hoá nhanh chóng hầu hết các chất hữu cơ. Thế oxy hoá của gốc tự do OH được so sánh với thế oxy hoá của các chất oxy hoá truyền thống được sử dụng trong lĩnh vực môi trường tại Bảng 2.  Hồ Thị Nguyệt – Sư phạm hóa K29 12  Khóa luận tốt nghiệp Bảng 2. Thế oxi hóa của một số chất oxi hóa [15,16,17] Chất oxi hóa Iod Brom Clo Hypoiodic axit Hypocloric axit Clo dioxyt Permanganat Gốc tự do pehydroxyl HO2 Hydro peroxyt Ozon Oxy nguyên tử Gốc tự do OH Lỗ trống mang điện tích dương trên Thế oxi hóa (eV) 0,54 1,09 1,36 1,45 1,49 1,57 1,68 1,70 1,78 2,07 2,42 2,80 3,20 TiO2 (h+) Bảng 3 so sánh hằng số tốc độ phản ứng của OH và O3 đối với một số hợp chất hữu cơ trong môi trường nước [18]. Bảng 3. Hằng số tốc độ phản ứng của OH và O3 đối với một số hợp chất hữu cơ trong môi trường nước Hợp chất hữu cơ Anken chứa clo Chất hữu cơ chứa S Phenol Hợp chất chứa N Hợp chất chứa nhân thơm Xeton Alcohol Aldehyt Các ankan Hằng số tốc độ phản ứng, M-1s-1  O3 OH -3 -4 -9 10 -10 10 -10-11 10-1,6.103 10-9-10-10 103 10-9-10-10 10-102 1-102 1 10-2-1 10 10-2 10-8-10-10 10-8-10-10 10-9-10-10 10-8-10-10 10-9 10-6-10-10 Qua 2 bảng trên nhận thấy gốc tự do OH có thế oxy hoá rất cao. Hơn thế nữa, gốc tự do OH có khả năng phản ứng với các chất hữu cơ với tốc độ nhanh hơn từ  Hồ Thị Nguyệt – Sư phạm hóa K29 13  Khóa luận tốt nghiệp hàng triệu tới hàng chục tỉ lần so với các chất oxy hoá vẫn được coi là mạnh nhất trong công nghệ xử lý nước như ozon. * Một số đặc tính ảnh hưởng đến hoạt tính quang xúc tác của vật liệu nano TiO2:  Thành phần pha anatase và rutile [15] Trong nhiều nghiên cứu người ta thấy rằng TiO 2 ở dạng anatase có hoạt tính quang xúc tác mạnh hơn rutile. Sự khác nhau về hoạt tính quang xúc tác của 2 dạng có thể do nhiều nguyên nhân. Trong đó nguyên nhân chính là tốc độ tái kết hợp của lỗ trống quang sinh và electron quang sinh của rutile lớn hơn anatase. Mặt khác do sự hình thành tinh thể rutile chỉ xảy ra ở nhiệt độ cao làm cho quá trình đề hiđrat hóa trên bề mặt của rutile xảy ra triệt để và không thuận nghịch. Trong khi đó với anatase vì sự hình hành tinh thể ở nhiệt độ thấp hơn nên bề mặt đã được hiđrat hoá tạo các nhóm hiđroxyl trên bề mặt TiO 2 (Ti4+OH) thuận lợi cho sự hấp phụ O2. Chính O2 này sẽ kết hợp eCB để thực hiện quá trình khử nhờ đó góp phần ngăn chặn quá trình tái kết hợp e CB- và hVB+ làm cho hoạt tính quang xúc tác của anatase lớn hơn rutile. Sự khác biệt về cấu trúc của 2 dạng này cũng là một nguyên nhân. Vùng cấm của anatase là 3,2 eV, trong khi của rutile là 3 eV. Vị trí đáy vùng dẫn của anatase cao hơn rutile 0,2 eV. Vị trí đáy vùng dẫn của rutile rất sát với điểm khử của nước và oxi. Điều này làm giảm khả năng bắt điện tử của nước và oxi. Do vậy hoạt tính quang xúc tác của rutile không mạnh bằng anatase. Nhưng hoạt tính quang xúc tác cao nhất không phải ở dạng anatase tinh khiết mà ứng với một tỉ lệ cấu trúc anatase/rutile thích hợp [16,17]. Các công trình nghiên cứu đã chỉ ra rằng hoạt tính quang xúc tác khi dùng anatase tinh khiết (99,9%) thấp hơn trong trường hợp tỉ lệ anatase/rutile = 70/30 như TiO 2 Degussa P25. Điều này có thể được giải thích là do mức năng lượng vùng dẫn của anatase có giá trị dương hơn rutile khoảng 0,3 eV, trong khi mức năng lượng vùng hoá trị của anatase và rutile xấp xỉ nhau. Do đó, electron trên băng dẫn e CB- của anatase sẽ nhảy xuống băng dẫn rutile có mức năng lượng ít dương hơn, từ đó kéo dài thời gian sống của chúng. Kết quả giúp hạn chế việc tái kết hợp của electron quang sinh eCB- và lỗ trống quang sinh hVB+ của anatase.  Hồ Thị Nguyệt – Sư phạm hóa K29 14  Khóa luận tốt nghiệp  Kích thước hạt [18] Kích thước hạt càng nhỏ, cấu trúc tinh thể không có lỗ xốp thì hoạt tính quang xúc tác càng mạnh. Đoạn đường đi của e CB- và hVB+ càng dài thì quá trình tái kết hợp diễn ra càng mạnh. Do đó việc điều chế TiO 2 có kích thước bé sẽ hạn chế quá trình tái kết hợp của eCB- và hVB+, làm tăng quá trình sinh tạo gốc OH tức làm tăng hoạt tính quang xúc tác. Đồng thời hạt có kích thước càng bé thì tổng diện tích bề mặt chất xúc tác càng lớn. Do đó khả năng tiếp nhận tia UV và tiếp xúc với chất hữu cơ tăng và tạo điều kiện cho việc xúc tác quang hoá phân huỷ chất hữu cơ. Cấu trúc tinh thể không có lỗ xốp cho phép sự chiếu sáng lên các hạt là đồng đều do đó làm tăng hoạt tính xúc tác. Dạng hình học và kích thước hạt có thể được điều khiển bằng cách điều chỉnh nhiệt độ, tốc độ dòng khí (H 2 và O2) và nồng độ của hợp chất tạo thành oxit. Trong trường hợp của TiO 2, vật liệu P25 gồm cấu trúc anatase có chứa 1 phần nhỏ rutile được chế tạo bằng phương pháp này.  Tính chất hấp phụ Trong phản ứng xúc tác quang hoá dị thể, phần lớn các trường hợp tốc độ phản ứng tỉ lệ thuận với độ hấp phụ các chất trên bề mặt xúc tác. Độ hấp phụ cao làm gia tăng sự tiếp xúc của chất xúc tác với hợp chất hữu cơ, tạo điều kiện thuận lợi cho quá trình phản ứng. Độ hấp phụ phụ thuộc vào: o Diện tích bề mặt chất xúc tác: Chất xúc tác có diện tích bề mặt lớn, độ xốp cao sẽ dễ dàng hấp phụ các hợp chất hữu cơ trong nước. o Tính chất axit bazơ: Chất xúc tác có bề mặt mang tính axit sẽ hấp phụ tốt các chất hữu cơ mang tính bazơ. Và ngược lại chất xúc tác có bề mặt mang tính bazơ sẽ hấp phụ tốt các chất hữu cơ mang tính axit. Nguyên nhân là do hiệu ứng tĩnh điện. o Tính chất ưa nước và kị nước của hợp chất hữu cơ: Các chất xúc tác TiO2, Al2O3 hấp phụ rất kém các hợp chất hữu cơ kị nước như clorophenol.  Điểm đẳng điện pzc  Hồ Thị Nguyệt – Sư phạm hóa K29 15  Khóa luận tốt nghiệp Điểm đẳng điện của một oxit kim loại được định nghĩa là giá trị pH của dung dịch mà tại đó bề mặt trung hoà không mang điện tích. Cơ sở của phương pháp xác định điểm đẳng điện dựa trên phản ứng trung hoà điện tích bề mặt. Điện tích bề mặt của một oxit kim loại trong môi trường nước là kết quả của quá trình proton hoá và tách proton trên bề mặt cân bằng, được biểu thị là MOH, trong đó M là kim loại. MOH + H+  MOH2+ (1.18) MOH  MO- + H+ (1.19) Thông thường phản ứng trên bề mặt diễn ra cùng với phản ứng trung hoà trong dung dịch: OH- + H+  H2O (1.20) Đối với điểm đẳng điện của TiO2 bên cạnh tác dụng đánh giá độ sạch trong xúc tác còn là một thông số quan trọng nhằm tìm ra giá trị pH thích hợp của môi trường để làm tăng khả năng hấp phụ của chất phản ứng lên chất xúc tác, từ đó làm tăng tốc độ phản ứng. o Khi pH của môi trường nhỏ hơn điểm đẳng điện của TiO 2, bề mặt của TiO2 tích điện dương làm tăng khả năng hấp phụ các anion trên bề mặt chất xúc tác. o Khi pH của môi trường lớn hơn điểm đẳng điện của TiO 2, bề mặt của TiO2 tích điện âm làm giảm khả năng hấp phụ các anion trên bề mặt chất xúc tác.  Các đặc tính quang học Sự hấp thụ photon là bước đầu tiên của quá trình quang xúc tác của chất bán dẫn. Do đó các đặc tính quang học của tinh thể nano TiO2 ảnh hưởng rất lớn đến khả năng quang xúc tác và việc sử dụng ánh sáng kích thích cần được nghiên cứu cẩn thận. Khi các lỗ xốp tăng có thể làm tăng phạm vi hấp thụ các phân tử nhưng bề mặt bên trong của các lỗ không được chiếu sáng đầy đủ cho nên lượng photon bị hấp thụ bên trong cũng ít hơn so với bề mặt bên ngoài. Các photon không chỉ bị hấp thụ mà còn bị phản xạ và tán xạ bởi các hạt trong tinh thể dù mẫu ở dạng bột hay màng. Tất nhiên kết cấu, độ gồ ghề bề mặt và sự kết tụ của các hạt ảnh  Hồ Thị Nguyệt – Sư phạm hóa K29 16  Khóa luận tốt nghiệp hưởng đến phần nhỏ photon mà nó hấp thụ và vì vậy cũng ảnh hưởng đến các chuyển đổi hoá học của quá trình quang xúc tác. Thêm vào đó sự tán xạ phụ thuộc vào chỉ số phản xạ trung bình và vì vậy cũng phụ thuộc vào TiO 2 tiếp xúc với không khí hay nước. 1.2.2. Ứng dụng tính chất quang xúc tác của TiO2 trong xử lý nước Khả năng quang xúc tác của nano TiO 2 được ứng dụng rộng rãi trong xử lý môi trường, làm sạch không khí, diệt vi khuẩn, tiêu diệt các tế bào ung thư,… [9,19]. Đặc biệt nhiều công trình nghiên cứu ứng dụng hệ xúc tác TiO 2/UV trong phân huỷ các chất hữu cơ gây ô nhiễm môi trường nước như thuốc nhuộm, thuốc trừ sâu, thuốc diệt cỏ, hợp chất phênol,… [19,20,21,22,23] đã được thực hiện và có nhiều hệ thống xử lý đã được áp dụng trong thực tế. 1.2.2.1 Cơ chế phân huỷ các hợp chất hữu cơ gây ô nhiễm [9,17] Vật liệu nano TiO2 hấp thụ năng lượng photon ánh sáng kích thích và hình thành các gốc, sản phẩm trung gian như OH, O2-, H2O2, O2,... theo cơ chế được trình bày ở phần 1.2.1. Các gốc và sản phẩm trung gian như OH, O2-, H2O2, O2,... oxy hoá các thành phần hữu cơ: R + HO  R R  H2O + CO2 + axit vô vơ + H2O (1.21) (1.22)  Khi hợp chất hữu cơ chứa N, azo phản ứng oxi hoá quang phân huỷ xảy ra theo cơ chế sau: RN=N-R’ + HO  R-N=N + R’-OH (1.23) R -N=N-R’ + H   R-N=N + R’-H (1.24) R-N=N R (1.25)  + N2  Khi các hợp chất hữu cơ chứa lưu huỳnh dạng –SH, -SO 3, cơ chế phân huỷ xảy ra như sau: R-SO3 + HO  R-OH + SO3- SO3- + HO-  SO42- + H R-OH + HO   Hồ Thị Nguyệt – Sư phạm hóa K29 CO2 (1.26) (1.27) + chất vô cơ(1.28) 17  Khóa luận tốt nghiệp Như vậy sản phẩm của quá trình phân hủy chất hữu cơ gây ô nhiễm môi trường nước trên hệ xúc tác quang TiO 2 là H2O, CO2 và các chất vô cơ. Chẳng hạn các hợp chất hữu cơ chứa clo trước tiên sẽ bị oxy hóa mạnh thành các sản phẩm trung gian andehyt và axit cacboxylic, cuối cùng thành CO 2, H2O và ion clo. Nitơ trong hợp chất hữu cơ thường bị oxy hóa thành nitrat hoặc N2, S thành SO42- [18]. Tốc độ quá trình oxy hóa các gốc HO  phụ thuộc vào nồng độ gốc HO , nồng độ của O2, và nồng độ chất hữu cơ trong môi trường nước. Các yếu tố ảnh hưởng đến nồng độ của gốc HO bao gồm: pH, nhiệt độ, thành phần ion trong dung dịch phản ứng và bản chất của phản ứng,… Nói chung khi sử dụng thích hợp TiO2 sẽ có khả năng xử lý triệt để các chất ô nhiễm hữu cơ hoàn toàn thành những chất vô cơ không độc hại như CO 2, H2O, N2, H2SO4,… Phương pháp xử lý nước bị ô nhiễm bằng xúc tác quang TiO2 đang ngày càng được ứng dụng rộng rãi nhờ những tính chất ưu việt như:  Không có hóa chất độc hại được sử dụng. TiO 2 là một chất không độc thường đựoc sử dụng để thêm vào thực phẩm và dược phẩm.  Giá thành rẻ và có thể tổng hợp được lượng lớn dùng vào nhiều mục đích khác nhau.  Nồng độ chất bẩn loãng đi bằng cách hấp thụ tại bề mặt của TiO2 nơi tạo ra gốc hoạt tính. Điều này rất thích hợp cho việc làm sạch không khí trong nhà.  Không dựa vào hiện tượng hấp phụ do đó sản phẩm của chúng không cần phải trải qua một bước xử lý phụ nữa trước khi đưa ra môi trường. Toàn bộ chất bẩn đều được khoáng hóa hoàn toàn, hoặc ít nhất là nồng độ đủ nhỏ để có thể chấp nhận được. Tuy nhiên phương pháp này cũng có một số hạn chế nhất định như: Tốc độ quá trình quang xúc tác bị giới hạn bởi tốc độ tái hợp của lỗ trống-điện tử. Ngoài ra tốc độ này còn phụ thuộc vào các khuyết tật của cấu trúc và các ion dương ở bên ngoài. 1.2.2.2. Động học của quá trình quang xúc tác trên TiO2 Tương tự các quá trình xúc tác dị thể truyền thống, về mặt động học phản ứng quá trình xúc tác quang có thể chia làm 5 giai đoạn độc lập nối tiếp nhau như sau:  Hồ Thị Nguyệt – Sư phạm hóa K29 18  Khóa luận tốt nghiệp  Chuyển các chất phản ứng trong pha lỏng lên bề mặt xúc tác.  Hấp phụ ít nhất một trong những chất phản ứng lên bề mặt chất xúc tác.  Phản ứng trong pha hấp phụ (trên bề mặt chất xúc tác).  Giải hấp phụ các sản phẩm phản ứng.  Chuyển các sản phẩm phản ứng khỏi bề mặt phân giới giữa hai pha. Phản ứng xúc tác quang xảy ra trong pha hấp phụ (giai đoạn 3). Quá trình quang hóa xúc tác chỉ khác quá trình xúc tác dị thể truyền thống ở kiểu hoạt hóa xúc tác. Trong quang hóa xúc tác là quang hoạt hóa còn xúc tác dị thể truyền thống là hoạt hóa nhiệt. Quá trình phân hủy quang xúc tác tuân theo phương trình động học Langmuir-Hinshelwood đặc trưng cho quá trình xúc tác dị thể. Tốc độ phản ứng (r) tỉ lệ với phần bề mặt bị che phủ bởi chất phản ứng () theo phương trình: r = kKC/(1+KC) (1.29) Trong đó:  k là hằng số tốc độ phản ứng.  K là hệ số hấp phụ của chất phản ứng trên bề mặt TiO2.  C là nồng độ của chất phản ứng. Thỉnh thoảng người ta cũng sử dụng phương trình Eley-Rideal để mô tả cơ chế phản ứng của một chất không bị hấp phụ và một chất bị hấp phụ. Trong trường hợp tổng quát: r = kobsKC/(1+KC+KiCi) (1.30) Trong đó:  kobs là hằng số tốc độ phản ứng.  C là nồng độ chất hữu cơ.  i là trạng thái trung gian.  Hồ Thị Nguyệt – Sư phạm hóa K29 19  Khóa luận tốt nghiệp Chương 2. THỰC NGHIỆM 2.1. Hóa chất và dụng cụ 2.2.1. Hóa chất - Bột TiO2 (Merck). - HCl (Trung Quốc). - NaOH (Trung Quốc). - Urê. - Metyl da cam. (H 3C) 2N N N SO 3Na 2.2.2. Dụng cụ - Bộ Autoclave (thiết bị thủy nhiệt). - Máy siêu âm. - Lò nung. - Tủ sấy hiệu Lenton. - Cốc, khay thủy tinh và một số dụng cụ thủy tinh khác. - Máy khuấy từ. - Đèn halogen, đèn huỳnh quang. 2.2. Chế tạo vật liệu 2.2.1. Tổng hợp TiO2 nano Lấy một lượng chính xác 100 ml dung dịch NaOH 10M cho vào cốc 100 ml đặt vào máy khuấy từ, sau đó cân 4 g bột TiO 2 cho vào cốc trên và tiếp tục khuấy. Cho hỗn hợp vừa khuấy vào bình teflon có bọc thép và đặt trong tủ sấy ở nhiệt độ 1400C trong 14 giờ. Sau khi thủy nhiệt, bình được để nguội đến nhiệt độ phòng. Lọc lấy kết tủa trắng thu được cho vào cốc 1000 ml và cho nước cất vào đầy cốc. Để lắng và gạn bỏ phần nước trong rồi tiếp tục cho đầy nước vào. Lặp lại nhiều lần cho đến khi pH �7.  Hồ Thị Nguyệt – Sư phạm hóa K29 20
- Xem thêm -