Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Sư phạm Nghiên cứu tổng hợp vật liệu gốc pani bã mía định hướng hấp phụ ion fe2+trong mô...

Tài liệu Nghiên cứu tổng hợp vật liệu gốc pani bã mía định hướng hấp phụ ion fe2+trong môi trường nước

.PDF
54
26
89

Mô tả:

TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ====== NGUYỄN THỊ DƯƠNG NGHIÊN CỨU TỔNG HỢP VẬT LIỆU GỐC PANi/ BÃ MÍA ĐỊNH HƯỚNG HẤP PHỤ ION Fe2+ TRONG MÔI TRƯỜNG NƯỚC KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa Hữu cơ HÀ NỘI - 2019 TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ====== NGUYỄN THỊ DƯƠNG NGHIÊN CỨU TỔNG HỢP VẬT LIỆU GỐC PANi/ BÃ MÍA ĐỊNH HƯỚNG HẤP PHỤ ION Fe2+ TRONG MÔI TRƯỜNG NƯỚC KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa Hữu cơ Người hướng dẫn TS. Dương Quang Huấn HÀ NỘI - 2019 LỜI CẢM ƠN Với lòng biết ơn sâu sắc, em xin gửi lời cảm ơn tới TS. Dương Quang Huấn đã hướng dẫn, giúp đỡ em tận tình, đầy tâm huyết trong suốt quá trình nghiên cứu và hoàn thiện khóa luận này. Em xin chân thành cảm ơn TS. Nguyễn Quang Hợp cùng các thầy cô khóa Hóa học – Trường Đại học Sư phạm Hà Nội 2 đã truyền dạy những kiến thức thiết thực và tạo mọi điều kiện thuận lợi cho em học tập và hoàn thành khóa luận tốt nghiệp. Em xin cảm ơn sự trao đổi, góp ý của các bạn sinh viên khóa Hóa học – Trường Đại học Sư phạm Hà Nội 2 và sự động viên, tin tưởng của gia đình, bạn bè giúp em hoàn thành tốt khóa luận này. Dù đã cố gắng hết sức nhưng trong khi thực hiện khóa luận, em không thể tránh khỏi những sai sót. Vì vậy, em rất mong nhận được sự góp ý của thầy cô và các bạn. Em xin chân thành cảm ơn! Hà Nội, ngày... tháng... năm 2019 Sinh viên Nguyễn Thị Dương LỜI CAM ĐOAN Em xin cam đoan đây là công trình nghiên cứu của em, dưới sự hướng dẫn của TS. Dương Quang Huấn. Các nội dung và kết quả nghiên cứu trong đề tài này là hòan tòan trung thực và chưa từng được ai công bố trong bất cứ công trình nghiên cứu nào trước đây. Nếu có bất kỳ sự gian lận nào em xin chịu trách nhiệm hoàn toàn trước Hội đồng, cũng như kết quả khóa luận của mình. Hà Nội, ngày... tháng 5 năm 2019 Sinh viên Nguyễn Thị Dương DANH MỤC CÁC CHỮ VIẾT TẮT Chữ viết tắt Chữ viết đầy đủ AAS Atomic Absorption Spectophotometric ANi Aniline APS Ammonium persulfate BM Bã mía KLN Kim loại nặng IR Phổ hồng ngoại PANi Polyaniline PANi/BM11 Vật liệu tổng hợp Polyaniline tên chất mang bã mía tỉ lệ 11 PANi/BM12 Vật liệu tổng hợp Polyaniline tên chất mang bã mía tỉ lệ 12 PANi/BM21 Vật liệu tổng hợp Polyaniline tên chất mang bã mía tỉ lệ 21 SEM Scanning Electron Microscope TCCP Tiêu chuẩn cho phép VLHP Vật liệu hấp phụ MỤC LỤC MỞ ĐẦU ....................................................................................................... 1 1. Lý do chọn đề tài ........................................................................................ 1 2. Mục đích nghiên cứu .................................................................................. 1 3. Đối tượng nghiên cứu ................................................................................. 1 4. Phương pháp nghiên cứu ............................................................................ 2 5. Ý nghĩa khoa học và thực tiễn .................................................................... 2 CHƯƠNG 1. TỔNG QUAN .......................................................................... 3 1.1. Vấn đề ô nhiễm kim loại nặng trong nước hiện nay ................................. 3 1.1.1. Sơ lược về kim loại nặng (KLN)........................................................... 3 1.1.2. Tình hình ô nhiễm kim loại nặng (KLN) trong nước. ........................... 4 1.1.3. Tác dụng sinh hóa của KLN đối với con người và môi trường.............. 5 1.1.4. Ô nhiễm sắt trong nước ........................................................................ 6 1.1.5. Một số phương pháp xử lí KLN trong nước .......................................... 7 1.2. Bã mía ..................................................................................................... 7 1.2.1. Giới thiệu về vật liệu hấp phụ - bã mía ................................................. 7 1.2.2. Thành phần hóa học của bã mía ............................................................ 8 1.2.3. Ứng dụng của bã mía ............................................................................ 9 1.3. Polyaniline (PANi) .................................................................................. 9 1.3.1. Cấu trúc của PANi ................................................................................ 9 1.3.2. Tính chất của PANi ............................................................................ 10 1.3.3. Ứng dụng của PANi ........................................................................... 11 1.3.4. Phương pháp tổng hợp PANi .............................................................. 11 1.4. Khái quát về phương pháp hấp phụ ....................................................... 13 1.4.1. Một số khái niệm về hấp phụ .............................................................. 13 1.4.2. Động học hấp phụ............................................................................... 15 1.4.3. Phương trình hấp phụ đẳng nhiệt ........................................................ 15 CHƯƠNG 2. PHƯƠNG PHÁP NGHIÊN CỨU VÀ THỰC NGHIỆM ........ 21 2.1. Phương pháp nghiên cứu ....................................................................... 21 2.1.1. Phương pháp phổ hấp thụ hồng ngoại (IR) ......................................... 21 2.1.2. Phương pháp kính hiển vi điện tử quét (SEM) .................................... 21 2.1.3. Phương pháp phân tích phổ hấp thụ nguyên tử (AAS) ........................ 22 2.2. Thực nghiệm ......................................................................................... 23 2.2.1. Hóa chất, dụng cụ ............................................................................... 23 2.2.2. Máy móc, thiết bị................................................................................ 23 2.2.3. Tiến hành thí nghiệm ......................................................................... 23 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ................................................ 28 3.1. Đặc trưng của vật liệu tổng hợp ............................................................. 28 3.1.1. Hiệu suất của vật liệu tổng hợp hấp phụ PANi- bã mía ....................... 28 3.1.2. Phổ hồng ngoại IR trong quá trình tổng hợp ....................................... 29 3.1.3. Đặc trưng ảnh quét SEM của bã mía và PANi/BM ............................. 33 3.2. Khả năng hấp phụ của vật liệu ............................................................... 34 3.2.1. Ảnh hưởng của bản chất vật liệu hấp phụ ........................................... 34 3.2.2. Ảnh hưởng của khối lượng ................................................................. 34 3.2.3. Ảnh hưởng của thời gian .................................................................... 35 3.2.4. Ảnh hưởng của nồng độ ban đầu ........................................................ 36 3.3. Nghiên cứu mô hình đẳng nhiệt hấp phụ ............................................... 37 3.3.1. Mô hình đẳng nhiệt Langmuir ............................................................ 37 3.3.2. Mô hình đẳng nhiệt Freundlich ........................................................... 39 KẾT LUẬN .................................................................................................. 39 TÀI LIỆU THAM KHẢO ............................................................................ 40 DANH MỤC HÌNH Hình 1.1. Sơ đồ tổng hợp PANi bằng phương pháp hóa học .................... 13 Hình 1.2. Đường đẳng nhiệt hấp phụ Langmuir............................................ 17 Hình 1.3. Đồ thị sự phụ thuộc của C/q và C ................................................. 17 Hình 1.4. Đường đẳng nhiệt hấp phụ Freundlich .......................................... 18 Hình 1.5 Đồ thị để tìm các hằng số trong phương trình Freundlich .............. 18 Hình 2.1. Sơ đồ tổng hợp vật liệu PANi/BM ................................................ 25 Hình 3.1: Phổ hồng ngoại của bã mía hoạt hóa ............................................. 29 Hình 3.2. Phổ hồng ngoại của PANi ............................................................. 30 Hình 3.3. Phổ hồng ngoại của PANi/BM ...................................................... 31 Hình 3.4. Ảnh SEM của bã mía .................................................................... 33 Hình 3.5. Ảnh SEM của PANi...................................................................... 33 Hình 3.6. Ảnh SEM của PANi/BM .............................................................. 33 Hình 3.7. Biểu đồ hiệu suất hấp .................................................................... 34 phụ Fe2+ theo vật liệu ................................................................................... 34 Hình 3.8. Biểu đồ hiệu dung lượng ............................................................... 34 hấp phụ Fe2+ theo vật liệu ............................................................................. 34 Hình 3.9. Biểu đồ thể hiện sự phụ thuộc của hiệu suất hấp phụ và dung lượng hấp phụ Fe2+ vào khối lượng của vật liệu PANi/BM11 ................................. 35 Hình 3.10. Biểu đồ hiệu suất hấp phụ Fe2+ theo thời gian của từng vật liệu ....... 35 Hình 3.11. Biểu đồ dung lượng hấp phụ Fe2+ theo thời gian của từng vật liệu .... 35 Hình 3.12. Biểu đồ thể hiện sự phụ thuộc của hiệu suất hấp phụ và dung lượng hấp phụ Fe2+ vào nồng độ ban đầu của vật liệu hấp phụ PANi/BM11 36 Hình 3.13. Đường đẳng nhiệt hấp phụ sự phụ thuộc q vào C của vật liệu hấp phụ Fe2+........................................................................................................ 37 Hình 3.14. Đồ thị hấp phụ Langmuir sự phụ thuộc C/q vào C của vật liệu hấp phụ Fe2+........................................................................................................ 37 Hình 3.15. Mối quan hệ giữa RL và nồng độ Fe2+ ban đầu ............................ 38 Hình 3.16. Đường đẳng nhiệt hấp phụ Freundlich ....................................... 39 Hình 3.17. Phương trình đẳng nhiệt Freundlich ............................................ 39 DANH MỤC CÁC BẢNG Bảng 1.1. Hàm lượng phần trăm các thành phần hóa học của bã mía ............. 8 Bảng 1.2. Mối tương quan R L và dạng mô hình ............................................ 17 Bảng 3.1. Quy kết các nhóm chức của BM hoạt hóa .................................... 29 Bảng 3.2. Quy kết các nhóm chức của PANi ................................................ 30 Bảng 3.4. So sánh các nhóm chức của vật liệu hấp phụ ................................ 32 Bảng 3.5. Giá trị thông số phương trình đẳng nhiệt Langmuir ...................... 37 của PANi/BM11 ........................................................................................... 37 Bảng 3.6. Các thông số của mô hình hấp phụ đẳng nhiệt Langmuir của vật liệu hấp phụ gốc PANi/BM11. ..................................................................... 38 Bảng 3.7. Bảng giá trị thông số cho mô hình đẳng nhiệt ............................... 39 Freundlich PANi/BM11 ............................................................................... 39 MỞ ĐẦU 1. Lý do chọn đề tài Công cuộc công nghiệp hóa, hiện đại hóa luôn luôn gắn liền với vấn đề ô nhiễm môi trường, trong đó có ô nhiễm môi trường nước do kim loại nặng (KLN). Hoạt động sản xuất công nghiệp đã thải ra môi trường nước các KLN như Fe2+ với hàm lượng vượt quá giới hạn cho phép gây ảnh hưởng nghiêm trọng tới sức khỏe con người và sinh vật. Vấn đề nghiên cứu và bảo vệ môi trường nói chung và môi trường nước nói riêng trở thành mối quan tâm hàng đầu của nhiều quốc gia và tổ chức trên Thế Giới. Có nhiều phương pháp khác nhau đã được nghiên cứu và áp dụng để xử lí KLN trong nước, một trong số đó là sử dụng phụ phẩm nông nghiệp để tổng hợp ra vật liệu hữu cơ có khả năng hấp phụ các KLN. Hướng nghiên cứu có nhiều ưu điểm như nguyên liệu rẻ tiền, không đưa thêm các tác nhân có hại vào môi trường. Mặt khác nước ta là nước nông nghiệp, với lượng lớn phụ phẩm nông nghiệp trong đó có bã mía. Bã mía có thành phần là các polymer và có cấu trúc xốp phù hợp để nghiên cứu chế tạo vật liệu hấp phụ ion KLN. Từ những lí do khách quan đó tôi chọn đề tài “Nghiên cứu tổng hợp vật liệu gốc PANi/ bã mía định hướng hấp phụ ion Fe2+trong môi trường nước”. 2. Mục đích nghiên cứu - Tổng hợp PANi/BM bằng phương pháp hóa học. - Hấp phụ kim loại Fe2+ bằng PANi/BM và nghiên cứu các điều kiện ảnh hưởng của quá trình hấp phụ. 3. Đối tượng nghiên cứu - Nghiên cứu phương pháp tổng hợp PANi/BM bằng phương pháp hóa học. - Nghiên cứu các điều kiện (thời gian, khối lượng vật liệu, nồng độ Fe2+) ảnh hưởng tới khả năng hấp phụ Fe2+ của PANi/BM và các mô hình hấp phụ đẳng nhiệt của quá trình hấp phụ. 1 - Phân tích, đánh giá kết quả mẫu nước có chứa kim loại sắt Fe2+ đã được hấp phụ. 4. Phương pháp nghiên cứu - Đọc và tìm hiểu tài liệu có liên quan tới PANi, bã mía và kim loại nặng, đặc biệt là sắt (iron), phương pháp hấp phụ chất gây ô nhiễm môi trường. - Sử dụng các phương pháp nghiên cứu hiện đại để đánh giá PANi/ bã mía (IR, SEM,...). - Sử dụng phương pháp phân tích hàm lượng kim loại Fe2+ bằng phương pháp AAS. - Đánh giá, phân tích và xử lý số liệu thu được bằng các phần mềm thông dụng. 5. Ý nghĩa khoa học và thực tiễn Kết quả nghiên cứu của đề tài góp phần mở ra một phương pháp xử lí ô nhiễm KLN Fe2+ trong môi trường nước. 2 CHƯƠNG 1 TỔNG QUAN 1.1. Vấn đề ô nhiễm kim loại nặng trong nước hiện nay 1.1.1. Sơ lược về kim loại nặng (KLN) “KLN là thuật ngữ dùng để chỉ những kim loại có khối lượng lớn hơn 5g/cm3. Chúng có thể tồn tại trong khí quyển (ở dạng hơi), thủy quyển (ở dạng muối hòa tan), địa quyển (ở dạng rắn không tan, khoáng, quặng) và sinh quyển (trong cơ thể người, động vật, thực vật).” Cũng như nhiều nguyên tố khác, các KLN có thể cần thiết cho sinh vật như cây trồng hoặc động vật. Một số KLN trong thành phần men, các vitamin... chúng được xem là nguyên tố dinh dưỡng vi lượng như đồng, kẽm... Một số kim loại không cần thiết cho sự sống, không có chức năng sinh hóa, được gọi là các nguyên tố vết không chính yếu như asen, chì, thủy ngân... những kim loại này khi vào cơ thể sinh vật ngay cả dạng vết cũng có thể gây tác động độc hại. Khi KLN xâm nhập vào môi trường sẽ làm biến đổi điều kiện sống, tồn tại của sinh vật sống trong môi trường đó. KLN gây độc hại với môi trường và cơ thể sinh vật khi hàm lượng của chúng vượt quá tiêu chuẩn cho phép. Một số KLN (PB, Mn, Cd, Hg, As...) đi vào nước từ nguồn nước sinh hoạt hoặc nước thải công nghiệp. Các KLN trong môi trường pH khác nhau, chúng sẽ tồn tại những dạng khác nhau gây ô nhiễm nước.[1] Nguồn KLN đi vào đất và nước do tác động của con người bằng con đường chủ yếu như phân bón, bã bùn cống và thuốc bảo vệ thực vật và các con đường phụ như khai khoáng và kỹ nghệ hay lắng đọng từ không khí. + Nguồn tự nhiên: KLN phát hiện ở mọi nơi, trong đá, đất và xâm nhập vào thủy vực qua các quá trình tự nhiên, phong hóa, xói mòn, rửa trôi. + Nguồn nhân tạo: sự gia tăng tích lũy kim loại trong môi trường không chỉ từ các nguồn tự nhiên, mà còn từ hoạt động công nghiệp của còn người. Việc đốt cháy các nhiên liệu hóa thạch làm giải phóng khoảng 20 kim loại độc hại quan trọng vào môi trường gồm asen, beri, cadimi, chì và niken. Sản 3 phẩm công nghiệp và việc sử dụng các vật liệu công nghiệp có thể chứa hàm lượng cao các nguyên tố kim loại độc hại. 1.1.2. Tình hình ô nhiễm kim loại nặng (KLN) trong nước. Hiện nay, do sự phát triển không bền vững mà vấn đề ô nhiễm nguồn nước đang trở thành vấn nạn của nhiều quốc gia trên thế giới, đặc biệt là ô nhiễm nguồn nước do KLN. Các sự cố nhiễm độc KLN đã được ghi nhận ở nhiều nơi trên thế giới. “Thành phố Tianying thuộc tỉnh An Huy, Trung Quốc cũng là nơi có hàm lượng Pb trong nguồn nước rất cao, ngay cả trong lúa mì ở Tianying cũng chứa Pb với nồng độ gấp 24 lần mức cho phép. KLN này đã đi vào trong cơ thể trẻ em ở đây gây ra một số bệnh và làm cho chỉ số thông minh của trẻ em bị giảm đi rất nhiều. Theo đánh giá của tổ chức Bình Minh Xanh (2004), nồng độ Hg đã tăng gấp 280 lần TCCP và lượng Crom trong nước uống tại Hồng Kông đã ở mức ung thư. Có tới 12 triệu tấn trong tổng số 484 triệu tấn ngũ cốc của Trung Quốc bị nhiễm độc KLN do tình trạng ô nhiễm đất trồng trọt [2]. Ở khu vực Nam Mỹ, ô nhiễm Hg chủ yếu từ hoạt động khai thác vàng. Hg được dùng để tách vàng ra từ quặng sa khoáng. Theo các báo cáo nghiên cứu của Elmer Diaz (Mỹ), mức độ nhiễm Hg có trong các loài cá sống ở đây rất cao, từ 10,2 - 35,9 ppm. Hàm lượng Hg có trong mẫu tóc và máu xét nghiệm của người dân sống xung quanh lưu vực các con sông như Tapajos, Madeira và Negro những nơi mà hoạt động khai thác vàng diễn ra mạnh mẽ được xác định lần lượt là 0,74 - 71,3 µg/g trong tóc và 90 - 149 µg/l trong máu. Tại Glasgow (1979 - 1980) có khoảng 42% các mẫu nước sinh hoạt có hàm lượng Pb vượt quá 100 mg/l. Ngoài ra theo thống kê của các nhà nghiên cứu khi phân tích 42 mẫu bùn từ các thành phố công nghiệp ở Anh và Wales thì hàm lượng Pb dao động trong khoảng 120 - 3.000 mg/l (trung bình 820 mg/l khối lượng khô) [3]. Tại Thái Lan, theo báo cáo của Viện Quốc tế quản lý nước (IWMI) năm 2004 thì hầu hết các ruộng lúa tại tỉnh Tak đã bị nhiễm Cd cao gấp 94 lần TCCP, có đến 5,756 người dân chịu ảnh hưởng và có nguy cơ nhiễm độc Cd 4 dễ mắc chứng bệnh Itai Itai (làm mềm hóa và méo mó xương, gây tổn hại thận). Loại bệnh này đã từng xảy ra ở tỉnh Toyama (Nhật Bản) vào những năm 1940. Do hoạt động khai khoáng, làm ô nhiễm Cd trên sông JinZu đã làm cho hàng trăm người dân sống ở đây bị tổn thương thận, loãng xương và nhiều người bị tử vong. [4] Có tới 60% nước sinh hoạt ở Sukinda (Ấn Độ) chứa Cr hóa trị VI với nồng độ lớn hơn hai lần so với các tiêu chuẩn quốc tế. Theo ước tính của một nhóm y tế Ấn Độ, 84,75% số người chết ở khu mỏ này đều liên quan đến các bệnh do Cr gây ra.[5]” Việt Nam là một nước đang phát triển, quá trình công nghiệp hóa, hiện đại hóa đã góp phần phát triển nền kinh tế chung của cả nước nhưng song song với đó là các vấn đề về ô nhiễm môi trường ngày càng tăng, trong đó có tình trạng ô nhiễm KLN. Ô nhiễm KLN diễn ra chủ yếu ở khu công nghiệp, khu đô thị, khu khai thác khoáng sản ... “Theo báo cáo của môi trường quốc gia 2011 thì có đến 90% số doanh nghiệp không đạt yêu cầu về tiêu chuẩn chất lượng dòng xả nước thải xả ra môi trường, 73% số doanh nghiệp xả nước thải không đạt tiêu chuẩn ra môi trường. Tại khu vực cửa sông Cu Đê, cửa sông Phú Lộc hàm lượng Hg trong nước vượt tiêu chuẩn cho phép từ 0,08 – 0,56 lần, hàm lượng Pb vượt 0,06 – 0,27 lần tiêu chuẩn cho phép. Ở khu vực cửa Mũi Vịnh hàm lượng As, Fe, Zn vượt tiêu chuẩn từ 2,17 – 11,4 lần. Theo nghiên cứu của Phạm Thị Nga và cộng sự (Trung tâm Địa chất và Khoáng sản Biển, 125 Trung Kính, Cầu Giấy, Hà Nội) về hiện trạng KLN trong trầm tích Vịnh Đà Nẵng cho thấy: hàm lượng As trung bình là 5ppm cao hơn nhiều so với nơi khác. Sở Tài nguyên và Môi trường Thành phố Đà Nẵng công bố kết quả kiểm tra nguồn nước tại vịnh Mân Quang và Âu thuyền Thọ Quang bị ô nhiễm với hàm lượng KLN vượt từ 1 đến 33 lần.[6]” 1.1.3. Tác dụng sinh hóa của KLN đối với con người và môi trường Khi được thải ra môi trường, một số hợp chất KLN bị tích tụ và đọng trong đất, song có một số hợp chất có thể hòa tan dưới tác động của nhiều yếu tố khác nhau. Điều này tạo điều kiện để các KLN có thể phát tán rộng vào 5 nguồn nước ngầm, nước mặt và gây ô nhiễm. Các KLN có mặt trong nước, đất qua nhiều giai đoạm khác nhau trước sau cũng đi vào chuỗi thức ăn của con người. Khi nhiễm vào cơ thể, KN tích tụ trong các mô, tác động đến các quá trình sinh hóa (các KLN thường có ái lực lớn với nhóm –SH-SH3 của enzim trong cơ thể, vì thế các enzim bị mất hoạt tính, cản trở quá trình tổng hợp protein của cơ thể). Ở người, KLN có thể tích tụ vào nội tạng như gan, thận, xương khớp gây nhiều căn bệnh nguy hiểm như ung thư, thiếu máu, ngộ độc,... 1.1.4. Ô nhiễm sắt trong nước a. Tình hình ô nhiễm sắt trong nước Trong những năm gần đây, chất lượng nguồn nước ngày càng trở nên kém đi, phạm vi nguồn nước bị ô nhiễm ngày càng lan rộng đặc biệt là các nguồn nước giếng khoan. “Theo số liệu khảo sát từ phòng chuyên gia nước của công ty Enterbuy Việt Nam thì hiện nay đa số các mẫu nước giếng khoan nhiễm sắt gấp nhiều lần cho phép. Đặc biệt ở các khu vực Thanh Trì, Hà Đông, Hoài Đức hàm lượng sắt gấp từ 2- 13 lần so với quy chuẩn cho phép dành cho nước ăn uống và sinh hoạt Ở khu vực Ba La- Hà Đông kết quả xét nghiệm một số mẫu nước giếng khoan cho thấy hàm lượng sắt vượt quá 10 lần so với quy chuẩn cho phép. Ở Hoài Đức, hàm lượng sắt trong mẫu nước giếng gấp 7 lần so với quy chuẩn cho phép. Nước giếng ở Thanh Trì là có chất lượng kém nhất, với hàm lượng sắt gấp 13 lần.[7]” b. Dấu hiệu của nước nhiễm sắt - Màu sắc: Nước nhiễm sắt ban đầu thường trong, sau một thời gian sẽ chuyển hóa thành màu đỏ nâu. - Mùi vị: Nước có mùi tanh do có thành phần Fe 2+ cao. 6 c. Tác hại của nước nhiễm sắt đến sức khỏe và đời sống con người Sắt tan trong nước là Fe2+ gây mùi tanh cho nước. Khi tiếp xúc với không khí thì Fe2+ chuyển thành Fe3+ kết tủa tạo màu đỏ nâu cho nước gây mất thẩm mỹ, làm cho đồ vật, dụng cụ bị ố màu nâu đỏ. Hơn nữa, khi nước chảy qua đường ống, sắt sẽ lắng cặn gây gỉ sét, tắc nghẽn trong đường ống. Nước bị nhiễm sắt sẽ làm cho thực phẩm biến chất, thay đổi màu sắc, mùi vị; làm giảm việc tiêu hóa và hấp thu các loại thực phẩm, gây khó tiêu, nước nhiễm sắt dùng để pha trà sẽ làm mất hương vị của trà, nước nhiễm sắt dùng để nấu cơm làm cho cơm có màu xám. Ngoài ra, khi hàm lượng iron trong nước lớn sẽ gây ngộ độc. “Khi nước có mặt của iron gây ảnh hưởng đến chất lượng sản phẩm trong sản xuất công nghiệp . Trong công nghiệp sản xuất giấy khi có mặt iron sẽ làm giảm chất lượng giấy. Trong công nghiệp dệt, iron làm ảnh hưởng đến khâu nhuộm và ăn màu còn trong công nghiệp thực phẩm iron làm ảnh hưởng đến chất lượng sản phẩm, hương vị sản phẩm do gây ra màu, mùi lạ. Hơn nữa, khi trong nước uống có hàm lượng iron lớn sẽ gây ngộ độc.” 1.1.5. Một số phương pháp xử lí KLN trong nước - Phương pháp kết tủa: Thêm một tác nhân tạo kết tủa vào dung dịch nước, điều chỉnh pH của môi trường để chuyển ion cần tách về dạng hợp chất ít tan, tách ra khỏi dung dịch dưới dạng kết tủa. - Phương pháp trao đổi ion: Sử dụng các chất có khả năng trao đổi ion (ionit hay còn gọi là nhựa trao đổi ion) với các cation kim loại nặng để giữ, tách các ion kim loại ra khỏi nước - Phương pháp hấp phụ: Sử dụng các vật liệu hấp phụ (VLHP) có diện tích bề mặt riêng lớn, trên đó có các trung tâm hoạt động, có khả năng lưu giữ các ion kim loại nặng trên bề mặt VLHP.[8] 1.2. Bã mía 1.2.1. Giới thiệu về vật liệu hấp phụ - bã mía Mía là cây công nghiệp lấy đường quan trọng của ngành công nghiệp đường trên thế giới và là nguồn nguyên liệu lấy đường duy nhất nước ta. Niên 7 vụ sản xuất mía đường 2012-2013, diện tích mía cả nước là 298 200 ha, sản lượng mía thu hoạch đạt khoảng 19,04 triệu tấn. Theo quy hoạch phát triển ngành mía đường đến năm 2020 diện tích trồng mía cả nước là 300 000 ha và sản lượng đường sản xuất trong cả nước đạt 2,0 triệu tấn, cơ bản đáp ứng nhu cầu trong nước và bắt đầu có xuất khẩu.[9] “Theo tính toán của các nhà khoa học, việc chế biến 10 tấn mía để làm đường sinh ra một lượng phế thải khổng lồ là 2,5 triệu tấn bã mía. Trước đây 80% lượng bã mía này được sử dụng để đốt lò hơi trong các nhà máy đường. Bã mía cũng có thể được dùng làm bột giấy, ép thành ván dùng trong kiến trúc, cao hơn là làm Furfural - nguyên liệu cho ngành sợi tổng hợp.[8]” 1.2.2. Thành phần hóa học của bã mía “Bã mía chiếm khoảng 25 ÷ 30% trọng lượng mía đem ép. Trong bã mía trung bình chứa 49% là nước; 48% là xơ (trong đó 45 ÷ 55% cenllulose); 2,5% chất hòa tan (đường). Tùy theo loại mía và đặc điểm nơi trồng mía mà các thành phần hóa học trong bã mía có thể biến đổi.[8]” Bảng 1.1. Hàm lượng phần trăm các thành phần hóa học của bã mía [8] Thành phần % khối lượng Cellulose 40 ÷ 50 Hemicellulose 20 ÷ 25 Lignin 18 ÷ 23 Chất hòa tan khác (tro, sáp, protein, ...) 5÷3 “Cellulose: là polysaccharide cao phân tử do có các mắt xích β-glucose [C6H7O2(OH)3]n nối với nhau bằng liên kết 1,4-glycozit. Phân tử khối của cellulose rất lớn khoảng từ 250000 ÷ 1000000 đvC. Trong mỗi phân tử cellulose có khoảng 1000 ÷ 15000 mắt xích glucose . Trong các cellulose có sẵn các nhóm chức hidroxyl (-OH), hemicellulose và cấu trúc lignin được coi như những nhóm chức tiềm năng cho việc sử dụng bã mía làm vật liệu hấp phụ.” 8 Hemicenllulose: là polysaccharide phức hợp còn gọi là copolymers, vì trong mạch đại phân tử tồn tại nhiều loại mắt xích saccarit khác nhau. Khi bị thủy phân đến cùng, hemicellulose tạo ra các monosaccarit như hexazo (D– glucose, D – mannose, D - galactose), pentose (D– xylose, L-arabinose), cũng như dẫn xuất của saccharide như metoxyuronic. Ngoài ra còn thu được acetic acid [10]. “Lignin: là loại polymer được tạo bởi các mắt xích phenylpropane C6C3. Lignin giữ vai trò kết nối giữa cellulose và hemicellulose. Lignin phần lớn có cấu tạo không gian, do đó, không hòa tan trước khi bị phân hủy.”[10]. 1.2.3. Ứng dụng của bã mía - Trong công nghiệp: làm nguyên liệu đốt thay thế củi, cồn; sản xuất bột giấy, ván ép, tầm trần... - Trong nông nghiệp: làm nệm lót chuồng trại; làm thức ăn cho gia súc thay thế rơm, cỏ; làm phân bón, giá để trồng nấm... - Hơn nữa, bã mía có thành phần chính là cellulose và hemicellulose nên có thể biến tính để trở thành VLHP tốt. Sở dĩ bã mía có khả năng tách các kim loại nặng hòa tan trong nước nhờ vào cấu trúc nhiều lỗ xốp và các polymer như cellulose và hemicellulose có thể hấp phu nhiều loại chất tan đặc biệt là các ion kim loại hóa tri hai. Các hợp chất polyphenol như tannin, lignin trong gỗ được cho là những thành phần hoạt động có thể hấp phụ các kim loại nặng.[8] Bã mía không chỉ được đánh giá là vật liệu có khả năng hấp phụ tốt với các ion KLN mà còn có khả năng hấp phụ tốt các hợp chất hữu cơ độc hại. 1.3. Polyaniline (PANi) 1.3.1. Cấu trúc của PANi PANi là sản phẩm cộng hợp của nhiều phân tử aniline trong điều kiện xúc tác là tác nhân oxi hóa. PANi có cấu trúc dạng tổng quát như sau: [10] 9
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng