Đăng ký Đăng nhập
Trang chủ NGHIÊN CỨU TỔNG HỢP VÀ ỨNG DỤNG VÀI CHẤT ỨC CHẾ ĂN MÒN AZOMETIN TRONG KHAI THÁC,...

Tài liệu NGHIÊN CỨU TỔNG HỢP VÀ ỨNG DỤNG VÀI CHẤT ỨC CHẾ ĂN MÒN AZOMETIN TRONG KHAI THÁC, CHẾ BIẾN DẦU KHÍ

.PDF
55
406
146

Mô tả:

Khoa Dầu Khí MỤC LỤC LỜI MỞ ĐẦU CHƯƠNG 1: TỔNG QUAN 1.1 Tổng quan về ăn mòn kim loại và chất ức chế ăn mòn kim loại 1.1.1 Ăn mòn kim loại và bảo vệ kim loại 1.1.1.1 Vấn đề ăn mòn 1.1.1.2 Các biện pháp bảo vệ kim loại 1.1.2 Chất ức chế ăn mòn và phạm vi sử dụng 1.1.2.1 Phân loại chất ức chế 1.1.2.2 Các chất ức chế ăn mòn azometin 1.1.2.3 Yêu cầu của chất ức chế 1.1.2.4 Phạm vi sử dụng chất ức chế ăn mòn 1.1.3 Cơ chế ức chế ăn mòn 1.1.4 Phuong pháp nghiên cứu chất ức chế ăn mòn kim loại 1.1.4.1 Đơn vị đo hiệu quả tác dụng chất ức chế 1.1.4.2 Các phương pháp nghiên cứu 1.2 Phương pháp tổng hợp chất ức chế ăn mòn azometin 1.2.1 Tổng hợp bằng phản ứng khử hóa các amit thế 1.2.2 Tổng hợp bằng các hợp chất thơm có nhóm metyl hoạt động thế vào liên kết N=N trong các hợp chất azo 1.2.3 Từ hợp chất thơm có nhóm metylen hoạt động và hợp chất nitrozo 1.2.4 Tổng hợp bằng phản ứng giữa andehit thơm và hợp chất nitro thơm 1.2.5 Tổng hợp bằng ngưng tụ các hợp chất nitro béo, thơm béo có nhóm metylen hoạt động với nitrozoaren với xúc tác là NaOH hoặc NaCN 1.2.6 Tổng hợp từ nitrozoaren và α-hetarylxetonitrin khi có mặt kiềm Nguyễn Văn Hanh 1 Lọc Hóa Dầu − K47 Khoa Dầu Khí 1.2.7 Bằng các dị vòng nitơ có nhóm metyl hoạt động và các nitrozoaren 1.2.8 Tổng hợp bằng phản ứng giữa andehit và amin bậc một 1.3 Cấu trúc và phổ của azometin 1.3.1 Cấu trúc điện tử, đồng phân hình học và tính bazơ của azometin 1.3.2 Phổ của azometin 1.3.2.1 Phổ hồng ngoại 1.3.2.2 Phổ cộng hưởng từ hạt nhân 1.3.2.3 Phổ khối lượng CHƯƠNG 2: THỰC NGHIỆM 2.1 Tổng hợp các chất ức chế ăn mòn azometin 2.1.1 Tổng hợp Benzylidenanilin 2.1.2 Tổng hợp Benzyliden-ρ-nitroanilin 2.1.3 Tổng hợp Benzylidenantranilic 2.1.4 Tổng hợp p-dimetylaminobenzylindenanilin 2.1.5 Tổng hợp p-dimetylaminobenzylinden-p-nitroanilin 2.1.6 Tổng hợp Furfuryliden-p-nitroanilin 2.1.7 Tổng hợp Furfurylidenantranilic 2.1.8 Tổng hợp Vanililidenanilin 2.1.9 Tổng hợp Vanililiden-p-nitroanilin 2.1.10 Tổng hợp Salixilidenanilin 2.2 Khảo sát tính ức chế ăn mòn kim lọa của các azometin tổng hợp được 2.2.1 Khảo sát khả năng ức chế ăn mòn thép CT-3 của các azometin trong môi trường axit HCl 2M 2.2.2 Khảo sát khả năng ức chế ăn mòn thép CT-3 trong môi trường hỗn hợp HCl 2M + NaCl 3% 2.2.3 Khảo sát ảnh hưởng của nồng độ chất ức chế đến hiệu quả ức chế Nguyễn Văn Hanh 2 Lọc Hóa Dầu − K47 Khoa Dầu Khí 2.2.4 Khảo sát khả năng ức chế ăn mòn nhôm của các azometin trong môi trường axit HCl 2M 2.2.5 Khảo sát khả năng ức chế ăn mòn nhôm của các azometin trong môi trường HCl 2M + NaCl 3% 2.2.6 Khảo sát khả năng ức chế ăn mòn đồng trong môi trường HCl + NaCl CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 3.1 Về tổng hợp một số chất ức chế azometin 3.2 Về tính ức chế ăn mòn kim loại của các azometin tổng hợp được 3.2.1 Khả năng ức chế ăn mòn thép CT-3 trong môi trường HCl 2M 3.2.2 Khả năng ức chế ăn mòn thép CT-3 trong môi trường HCl + NaCl 3.2.3 Về ảnh hưởng của nồng độ chất ức chế đến hiệu quả ức chế 3.2.4 Khả năng ức chế ăn mòn nhôm trong môi trường HCl 3.2.5 Khả năng ức chế ăn mòn nhôm trong môi trường HCl + NaCl 3.2.6 Khả năng ức chế ăn mòn đồng trong môi trường HCl + NaCl KẾT LUẬN TÀI LIỆU THAM KHẢO PHỤ LỤC Nguyễn Văn Hanh 3 Lọc Hóa Dầu − K47 Khoa Dầu Khí LỜI MỞ ĐẦU Ăn mòn kim loại là hiện tượng phá hủy kim loại dưới tác dụng của những tác nhân ăn mòn như: không khí, hóa chất và điện hóa. Sự ăn mòn không những gây tổn thất kim loại, làm giảm độ chính xác và hỏng máy móc mà còn gây tổn thất lớn về mặt kinh tế trong mọi ngành sản xuất của nền kinh tế quốc dân. Trong ngành khai thác và chế biến dầu khí, vấn đề ăn mòn và bảo vệ kim loại là một vấn đề có tầm quan trọng rất lớn, nó được coi là một trong những nhiệm vụ hàng đầu trong quá trình sản xuất. Đã có nhiều biện pháp phòng chống ăn mòn kim loại được áp dụng, một trong những biện pháp thuận tiện và hiệu quả là sử dụng chất ức chế ăn mòn kim loại. Nhiều chất ức chế ăn mòn kim loại đã được sử dụng để bảo vệ các đường ống dẫn dầu, các thiết bị khai thác, chế biến và tồn chứa dầu khi. Hiện nay các chất ức chế ăn mòn mới cũng đã được đưa vào sử dụng để nâng cao tác dụng bảo vệ và giảm giá thành chi phí. Việc nghiên cứu tổng hợp và đưa vào sử dụng những chất ức chế mới có khả năng ức chế ăn mòn cao, giá thành thấp nhằm nâng cao tác dụng bảo vệ và hiệu quả kinh tế trong quá trình khai thác, chế biến dầu khí ở nước ta cũng rất được quan tâm. Chình vì vậy mục đích của bản luận văn này là “nghiên cứu tổng hợp và ứng dụng một số chất ức chế ăn mòn azometin trong khai thác, chế biến dầu khí”. Nguyễn Văn Hanh 4 Lọc Hóa Dầu − K47 Khoa Dầu Khí CHUƠNG 1 TỔNG QUAN 1.1 Tổng quan về ăn mòn kim loại và chất ức chế ăn mòn kim loại. 1.1.1 Ăn mòn kim loại và bảo vệ kim loại 1.1.1.1 Vấn đề ăn mòn Kim loại và hợp kim là những vật liệu quan trọng có những tính chất cơ lý đặc biệt, được sử dụng làm vật liệu chính trong chế tạo máy móc, thiết bị, nhà xưởng, cầu cống… mà không có vật liệu nào khác thay thế hoàn toàn được. Tuy nhiên hạn chế của kim loại và hợp kim là khi làm việc trong các môi trường như: không khí, khí hậu, môi trường có tính axit, bazơ, môi trường nước biển… kim loại có thể bị ăn mòn. Việc giảm thiểu và tiến tới ngăn chặn sự ăn mòn kim loại hiện nay có ý nghĩa rất quan trọng vì sự tổn hại kinh tế do ăn mòn gây ra là rất lớn, giá trị tổn thất do ăn mòn hàng năm trên thế giới có thể lên tới hàng tỷ đô la. Ở một số nước đang phát triển do còn nhiều hạn chế trong bảo vệ ăn mòn kim loại, nên có tới 30 ÷ 40% sản lượng thép sản xuất ra là để bổ sung cho sự mất mát kim loại do bị ăn mòn. Sự ăn mòn không những gây ra tổn thất về kim loại mà còn làm giảm tuổi thọ, độ bền, độ chính xác của máy móc, thiết bị. Đặc biệt nó còn có thể gây nguy hiểm cho người vận hành. Chính vì vậy việc sử dụng các biện pháp bảo vệ kim loại để chống lại sự ăn mòn là điều bắt buộc. 1.1.1.2 Các biện pháp bảo vệ kim loại Tùy theo bản chất của các quá trình ăn mòn mà ta có thể có những phương pháp bảo vệ ăn mòn khác nhau như: phương pháp điện hóa, phương pháp hóa học, phương pháp cách ly kim loại khỏi môi trường ăn mòn, phương pháp chế tạo các kim loại và hợp kim chống chịu ăn mòn. Nguyễn Văn Hanh 5 Lọc Hóa Dầu − K47 Khoa Dầu Khí a. Phương pháp điện hóa Trong phương pháp điện hóa có ba phương pháp bảo vệ kim loại: Phương pháp protector: biến kim loại cần được bảo vệ thành điện cực dương của một nguồn điện, muốn thể chỉ cần gắn vào nó một tấm kim loại âm điện hơn. Ví dụ muốn bảo vệ đường ống, vỏ tàu bằng thép có thể gắn một tấm kẽm hoặc một tấm nhôm đóng vai trò cục âm của một cực pin, khi có điện thế các điện tử chuyển động đến cực dương và kim loại âm điện hơn bị ăn mòn. Phương pháp bảo vệ anot: ta chỉ cần dùng nguồn điện một chiều, nối cực âm với kim loại cần bảo vệ và nối cực duong với một điện cực phụ, rồi điều chỉnh dòng điện về giá trị phù hợp thường là một vài trăm mA/cm2 [3]. Phương pháp bảo vệ catot là phương pháp ngược lại với phương pháp anot nhưng điện áp điều chỉnh thường khá cao cỡ 0,4 ÷ 1,2V trong môi trường trung tính [3]. b. Phương pháp cách ly Để cách ly kim loại với môi trường ăn mòn có thể sơn phủ bằng các loại sơn, các hợp chất polyme hoặc mạ một lớp kim loại không bị ăn mòn, kim loại thụ động hóa bề mặt. c. Phương pháp chế tạo hợp kim chống ăn mòn Dựa vào khả năng chống chịu được ăn mòn của một số kim loại mà người ta sản xuất ra những hợp kim và kim loại có khả năng chống ăn mòn khác nhau. Trong công nghiệp chế biến dầu mỏ thì các lò gia nhiệt dầu thô và tháp chưng cất được chế tạo từ thép molypden, lò ankyl hóa được chế tạo bằng thép chứa ít cácbon nhiều titan để chịu được môi trường axit H2SO4 đặc. Khi thép dùng trong môi trường H2S thì thành phần có chứa 8% crôm có khả năng chống ăn mòn tốt hơn [3]. Trong tất cả các phương pháp trên người ta thường sử dụng đồng thời các chất ức chế để tăng cường khả năng chống ăn mòn kim loại. Nguyễn Văn Hanh 6 Lọc Hóa Dầu − K47 Khoa Dầu Khí d. Phương pháp hóa học Phương pháp hóa học là sử dụng các chất có khả năng ức chế ăn mòn đưa vào môi trường gây ăn mòn nhằm làm giảm sự ăn mòn, lượng chất ức chế sử dụng thường không nhiều chỉ cỡ phần triệu. Phương pháp sử dụng chất ức chế ăn mòn có thể được dùng kết hợp hoặc độc lập, đây là phương pháp tương đối đơn giản, hiệu quả và vạn năng, trong một số trường hợp nó còn là phương pháp duy nhất. 1.1.2 Ăn mòn kim loại và bảo vệ kim loại 1.1.2.1 Phân loại chất ức chế Chất ức chế ăn mòn là những chất được thêm vào môi trường ăn mòn với một lượng nhỏ (10-6 ÷ 10-2 mol/l) có thể làm giảm mạnh tốc độ ăn mòn kim loại, hợp kim. Có nhiều cách để phân loại chất ức chế ăn mòn kim loại: Theo bản chất các chất ức chế có thể chia thành các hợp chất vô cơ và hữu cơ. • Các hợp chất vô cơ bao gồm các muối phốt phát, muối nitrit, muối crômát… • Các hợp chất hữu cơ: axít béo, andehit, amin, este, hợp chất nitrô và các azometin. Phân loại theo cơ chế tác dụng của chất ức chế người ta có thể chia thành các loại: chất ức chế anốt, chất ức chế catốt và chất ức chế hỗn hợp. I.N.Putinova, S.A.Balezin và V.P.Barannik đã chia tất cả các chất ức chế thành hai nhóm [8]: • Nhóm các chất ức chế tạo ra trên bề mặt kim loại một lớp màng bảo vệ: các chất ức chế nhóm A. • Nhóm các chất ức chế làm giảm sự xâm thực của môi trường đối với kim loại (khử hoạt tình của môi trường ăn mòn): các chất ức chế nhóm B. Ngoài ra còn có các chất ức chế hỗn hợp loại AB hoặc BA. Nguyễn Văn Hanh 7 Lọc Hóa Dầu − K47 Khoa Dầu Khí Trong thực tế các chất ức chế loại A được dùng phổ biến nhất, nó bao gồm các chất ức chế ăn mòn cho thép trong môi trường axit sunphuric, axit hydrocloric, trong dung dịch muối, trong nước… Các chất ức chế nhóm A có thể được phân chia sâu hơn thành ba loại: Loại IA: các chất ức chế kìm hãm quá trình ăn mòn. Loại IIA: các chất ức chế kéo dài thời gian cảm ứng. Loại IIIA: các chất ức chế thụ động hóa bề mặt kim loại do tạo ra một lớp màng bảo vệ trên bề mặt kim loại. Ảnh hưởng của các chất ức chế nhóm A đến quá trình ăn mòn được biểu diễn bằng hình sau: ρ ρ ρ 1 1 2 2 1 2 τ a b τ τc τ c Hình 1.1: Ảnh hưởng của chất ức chế nhóm A đến quá trình ăn mòn ρ: tốc độ ăn mòn τ: thời gian a: loại IA b: loại IIA c: loại IIIA 1 – quá trình không có chất ức chế 2 – quá trình có chất ức chế 1.1.2.2 Các chất ức chế ăn mòn azometin Azometin còn gọi là bazơ Schiff là những hợp chất mà trong phân tử có chứa nhóm liên kết –CH=N– kiểu R–CH=N–R’, trong đó R, R’ là các gốc ankyl, aryl hoặc hetaryl. Loại hợp chất này đã được biết từ lâu song chỉ vài chục năm gần đây chúng mới được quan tâm nghiên cứu nhiều. Chúng có tính Nguyễn Văn Hanh 8 Lọc Hóa Dầu − K47 Khoa Dầu Khí ức chế ăn mòn rất cao đối với nhiều kim loại và hợp kim trong các môi trường ăn mòn khác nhau [7, 12, 13, 15, 16, 17]. Ngoài ra các azometin còn có nhiều tính chất quý như: tính kháng khuẩn, diệt nấm, tính chất lưu hóa cao su [7] và có thể phản ứng tạo phức với kim loại chuyển tiếp để tạo ra các hợp chất có tính chất quý giá khác. Nhiều công trình nghiên cứu đã cho thấy các azometin có khả năng ức chế ăn mòn kim loại rất cao và đa dạng với nhiều kim loại: • Năm 1986 azometin N–(2–mecapto–phenyl)salixilidenimin(BSS) cùng với amin tương ứng lần đầu tiên được thử nghiệm làm chất ức chế ăn mòn cho đồng trong dung dịch NaCl 0,1M trong hỗn hợp nước – etanol 25%V [13]. Các phép đo sự thay đổi khối lượng và đường cong phân cực đã cho phép khảo sát khả năng ức chế ăn mòn đồng của azometin này. Kết quả đo cho thấy tốc độ ăn mòn đã giảm mạnh và khả năng ức chế ăn mòn của azometin là tốt hơn so với amin. • Một công trình của Desai M.N và các cộng sự năm 1986 [12] đã thử nghiệm 7 azometin của dãy anilin làm chất ức chế ăn mòn thép mềm trong dung dịch axit HCl 1 ÷ 6 M. Kết quả đo phân cực dòng điện tĩnh chỉ ra rằng tất cả các chất này đều là các chất ưu tiên ức chế catot, các chất ức chế đều làm giảm dòng catot nhiều nhất và là chất có hiệu quả ức chế ăn mòn tốt nhất. • Năm 1991 Aben-El-Wafa và H.M. Moustafa [14] đã nghiên cứu khả năng ức chế ăn mòn đồng thau 70/30 của 2–(o-OH, p-OH, p-OCH3, pN(CH3)2benzyliden)hidrazonobenzothiazol. Azometin có nhóm thế oOH trên phần andehit có khả năng ức chế ăn mòn lớn nhất trong khoản nồng độ (1÷7)x10-5 mol/l, p-OH có khả năng ức chế ăn mòn cao trong khoảng nồng độ (0,7÷7)x10-4 mol/l. Các yếu tố ảnh hưởng đến khả năng ức chế ăn mòn như nồng độ, cấu trúc phân tử, nhóm thế, độ bền phức chất tạo thành của các azometin đã được nghiên cứu. Nguyễn Văn Hanh 9 Lọc Hóa Dầu − K47 Khoa Dầu Khí • Năm 1996, M.A.Elmossi và M.Gaber [9] đã tổng hợp các phức chất của azometin sunfamethazin và salixilandehit với các ion Co(II), Ni(II), Cu(II) và đã nghiên cứu khả năng ức chế ăn mòn đồng trong dung dịch axit HNO3 0,3M của các phức này và các azometin tương ứng. Khả năng ức chế ăn mòn có quan hệ chặt chẽ với mức độ hấp phụ khác nhau của các phối tử, phức chất giữa Cu(II) và chất ức chế tốt hơn so với azometin tương ứng ngay cả ở nồng độ thấp hơn. Cũng năm 1996 Quraishi và những người khác [15] đã tổng hợp hai azometin từ p-anisidin với xinamandehit (I), từ anilin với salixilandehit (II). Họ đã nghiên cứu tính chất ức chế ăn mòn thép mềm trong dung dịch HCl và H2SO4 1N. Kết quả cho thấy azometin(I) có hiệu quả ức chế ăn mòn lớn hơn 93,8%, cả hai azometin đều thuộc loại ức chế hỗn hợp (ức chế cả hai quá trình hòa tan anot và catot). Đồng thời họ nhận thấy sự hấp phụ của chúng lên bề mặt kim loại tuân theo hấp phụ đẳng nhiệt Temkin. • Năm 1998 S.L Li và cộng sự [12] đã nghiên cứu khả năng ức chế ăn mòn mòn đồng trong môi trường clorua vả azometin N,N’-o-phenylenbis(3-metoxisalixil-andenimin) và kết luận rằng: khả năng ức chế ăn mòn đồng trong môi trường NaCl 1M cao hơn nhiều so với trong dung dịch HCl 1M, khả năng ức chế tăng cùng với việc tăng nồng độ chất ức chế và nhiệt độ. Chất ức chế tạo thành phức bền với ion Cu(II) trong dung dịch NaCl 1M và HCl 1M, phức này kết tủa trên bề mặt đồng tạo thành một lớp màng phim mỏng có tác dụng bảo vệ tốt hơn. Các tác giả cũng đưa ra cơ chế ức chế ăn mòn kim loại bằng việc tạo phức bền không tan, có bốn phối tử giữa đồng(II) với nitơ của nhóm azometin và ôxi của nhóm o-hidroxi. − Trong những năm gần đây một số nghiên cứu về tính chất ức chế ăn mòn nhôm và hợp kim nhôm của các azometin [5, 11] đã cho thấy khả năng ức chế ăn mòn nhôm và hợp kim nhôm cũng rất cao. Nguyễn Văn Hanh 10 Lọc Hóa Dầu − K47 Khoa Dầu Khí 1.1.2.3 Yêu cầu của chất ức chế Các chất ức chế ăn mòn kim loại phải đáp ứng được những yêu cầu sau: • Chất ức chế ăn mòn không làm thay đổi tính chất của môi trường ăn mòn và tính chất của kim loại được bảo vệ. • Chỉ sử dụng với một lượng nhỏ nhưng hiệu quả ức chế cao. • Khi sử dụng chất ức chế ăn mòn ít hoặc không gây ô nhiễm môi trường. • Phù hợp với điều kiện làm việc yêu cầu. • Ít gây độc hại. 1.1.2.4 Phạm vi sử dụng chất ức chế ăn mòn Lĩnh vực sử dụng chất ức chế ăn mòn khá rộng lớn, chúng được sử dụng để bảo vệ kim loại khỏi bị ăn mòn bởi khí quyển, ăn mòn trong môi trường axit, môi trường nước biển, môi trường oxi hóa, môi trường dầu mỏ… Trong thực tế chất ức chế đã được sử dụng ở nhiều lĩnh vực trong nền kinh tế quốc dân. Trong công nghiệp luyện kim, chế biến kim loại, chất ức chế được thêm vào dung dich bôi trơn, làm mát trong quá trình gia công, nhằm hạn chế sự ăn mòn cho các thiết bị, máy móc như: trục cán, kéo, khuôn đúc, ép để đảm bảo độ bền, độ chính xác của các chi tiết máy. Trong công nghiệp cơ khí chế tạo máy móc, thiết bị, chất ức chế được bao phủ lên bề mặt chi tiết kim loại cùng với màng sơn, lớp mạ, lớp tráng men hoặc lớp dầu mỡ bảo quản sẽ cho phép bảo quản được máy móc, thiết bị trong thời gian dài dưới tác động của môi trường làm việc. Với các thiết bị năng lượng, động cơ đốt trong, chất ức chế được đưa vào dung dịch làm mát, dung dịch rửa trong dầu bôi trơn để chống cặn kết tủa, chống ăn mòn ôxi hóa, làm tăng hiệu quả của quá trình trao đổi nhiệt, giảm tiêu hao nhiên liệu và kéo dài tuổi thọ động cơ. Đối với ngành sản xuất hóa chất, điện hóa, chất ức chế được hấp phụ lên bề mặt điện cực hoặc hòa tan trong môi trường ăn mòn như axit, chất ôxi hóa để bảo vệ điện cực và các thiêt bị làm việc trong môi trường ăn mòn đó. Nguyễn Văn Hanh 11 Lọc Hóa Dầu − K47 Khoa Dầu Khí Hiện nay trong công nghiệp khai thác và chế biến dầu mỏ, chất ức chế được sử dụng rất phổ biến và ở nhiều công đoạn của quá trình khai thác và chế biến: • Trong khai thác dầu khí: Trước khi khai thác người ta phải xử lý vùng cận đáy giếng bằng các axit để hòa tan đất đá vùng cận đáy giếng (thường dùng axit HCl và HF), khi đó để lớp ống bảo vệ và các thiết bị khác không bị ăn mòn họ phải hòa tan lẫn các chất ức chế vào dung dịch axit trước khi tiến hành xử lý. Khi khai thác các chất ức chế được hòa tan vào dung dịch khoan hoặc nước kỹ thuật rồi được đưa xuống khoảng không giữa lớp ống bảo vệ và ống nâng. Để ống nâng không bị ăn mòn trong quá trình khai thác các chất ức chế được bơm liên tục xuống đáy giếng dầu. Chất ức chế hoạt động theo cơ chế hấp phụ tạo màng bảo vệ, khi có mặt chất ức chế bề mặt hydrophile (ưa nước) của các thành ống giếng khoan được thay thế bằng bề mặt hydrophobe (ưa dầu) do đó tạo được màng chắn bằng dầu giữa vật liệu làm giếng và môi trường ăn mòn. • Trong thu hồi tăng cường: Sau khi xử lý nước bơm ép, chất ức chế được hòa tan vào trong nước và đưa xuống các giếng bơm ép vào trong mỏ chứa dầu để đẩy dầu tới giếng khai khác. Chất ức chế có tác dụng bảo vệ đường ống khỏi ăn mòn trong môi trường nước muối, các khí hidro sunfua và vi khuẩn có trong nước, dầu. • Trong xử lý dầu – khí sau khi khai thác: Chất ức chế ăn mòn có thể được bơm vào các trạm xử lý để bảo vệ thiết bị tách, bể chứa và đường ống dẫn dầu vào bờ. Hoặc chất ức chế có thể được bơm vào ngay tại miệng giếng khai thác nhằm lợi dụng sự hỗn loạn của dòng chảy. • Trong hệ thống chế biến, vận chuyển và dự trữ dầu khí: trong dầu khí luôn có các khí H2S, CO2, H2… và khi chế biến các khí đó cũng được sinh ra gây ăn mòn, cùng với việc sử dụng thép chống ăn mòn người ta vẫn thường dùng các loại chất ức chế. Với quá trình chưng cất và chế Nguyễn Văn Hanh 12 Lọc Hóa Dầu − K47 Khoa Dầu Khí biến khí chất ức chế được bơm một cách tự động và liên tục vào phần đỉnh tháp. Để bảo vệ các bể chứa thì các chất ức chế được đưa bào đường ống dẫn sản phẩm trước khi tới bể chưa, khi xuất sản phẩm các chất ức chế còn lại sẽ có tác dụng bảo vệ đường ỗng xuât. 9 Ngoài ra các chất ức chế ăn mòn còn được sử dụng nhiều trong việc tẩy rỉ, bảo dưỡng, bảo quản các thiết bị, chi tiết kim loại cần được lưu trữ lâu dài. 1.1.3 Cơ chế ức chế ăn mòn Cho đến nay vẫn chưa có một cơ chế chính xác nào để giải thích đầy đủ cơ chế ức chế ăn mòn của các chất ức chế ăn mòn kim loại, bởi vì tác dụng bảo vệ của chất ức chế phụ thuộc vào nhiều yếu tố như nồng độ, cấu tạo chất ức chế, cấu trúc bề mặt kim loại, năng lượng hoạt hóa, của các ion nút mạng, mức độ khuyết tật của mạng tinh thể… Tuy nhiên nhiều công trình nghiên cứu [7] đã đưa ra quan điểm về liên hệ giữa tác dụng ức chế và khả năng hấp phụ của nó, họ xác định được tính chất bảo vệ của các chất ức chế là do sự hấp phụ của chúng lên bề mặt kim loại. có thể là hấp phụ hóa học hoặc hấp phụ vật lý. Các chất ức chế amin, azometin có sự hấp phụ hóa học giữa phân tử chất ức chế với bề mặt kim loại được bảo vệ theo phương pháp hấp phụ có sự liên kết giữa nguyên tử nitơ và kim loại. Sự hấp phụ của các chất ức chế trên bề mặt kim loại chủ yếu tuân theo đường đẳng nhiệt Langmuir (1) và Temkin (2): = 1− (1) 1 1 + = ln 1 + . (2) . Trong đó: B: hằng số cân bằng hấp phụ; Bmax, Bmin: hằng số cân bằng hấp phụ tương ứng với giá trị cực đại và cực tiểu của năng lượng hấp phụ. C: nồng độ chất ức chế. θ: mức độ lấp đầy bề mặt bởi các phân tử chất ức chế. f: yếu tố độ bóng. Nguyễn Văn Hanh 13 Lọc Hóa Dầu − K47 Khoa Dầu Khí Sự hấp phụ tuân theo đẳng nhiệt Temkim thường có bản chất hấp phụ hóa học, còn hấp phụ tuân theo đẳng nhiệt Langmuir có bản chất vật lý [7], được quyết đinh bởi lực tĩnh điện Vandevan. 1.1.4 Phương pháp nghiên cứu chất ức chế ăn mòn kim loại 1.1.4.1 Đơn vị đo hiệu quả tác dụng của chất ức chế Có thể đánh giá hiệu quả tác dụng của chất ức chế thông qua các chỉ số định lượng khác nhau. Chỉ số phổ biến nhất là độ giảm khối lượng kim loại trong một đơn vị thời gian trên một đơn vị diện tích bề mặt đó chính là tốc độ ăn mòn và được xác định theo công thức: = − × = × Trong đó: Δm: độ giảm khối lượng mẫu S : diện tích bề mặt t : thời gian ăn mòn hay thời gian ngâm mẫu. Khi đó hiệu quả bảo vệ được đánh giá bàng hiệu quả ức chế γ hay mức độ bảo vệ Z [19]. Hiệu quả ức chế cho biết chất ức chế làm chậm tốc độ ăn mòn đi bao nhiêu lần và được tính theo công thức: = = − ℎ × 100% ℎ = = − × 100% Trong đó: ρ, ρ0 là tốc độ ăn mòn khi có và không có chất ức chế. Δmc, Δmk là độ giảm khối lượng của mẫu kim loại trong trường hợp có và không có chất ức chế. Hiệu quả tác dụng của chất ức chế có thể đánh giá thông qua sự thay đổi cường độ ăn mòn trong phương pháp đường cong điện cực. Trong trường hợp này hiệu quả ức chế được tính theo công thức: Nguyễn Văn Hanh 14 Lọc Hóa Dầu − K47 Khoa Dầu Khí = và = − × 100% Trong đó i và i0 là cường độ dòng ăn mòn đo được trong môi trường ăn mòn khi có và không có chất ức chế. 1.1.4.2 Các phương pháp nghiên cứu chất ức chế ăn mòn kim loại Để đánh giá khả năng ức chế ăn mòn kim loại của chất ức chế, ta có thể thực hiện thep nhiều phương pháp khác nhau tùy theo từng điều kiện cụ thể. Việc nghiên cứu khả năng ức chế ăn mòn có thể thực hiện được trong các môi trường ăn mòn khác nhau (axit, bazơ, trung tính) với các nồng độ, nhiệt độ khác nhau. Hoặc có thể đưa vào một vật liệu nào đó như dầu, mỡ, màng sơn bảo vệ rồi đánh giá chất lượng bảo vệ kim loại của vật liệu này so với trường hợp không có chất ức chế. Khả năng ức chế ăn mòn của chất ức chế được xác định qua các chỉ số như hiệu quả ức chế, mức độ bảo vệ và tốc độ ăn mòn. Có bốn nhóm phương pháp chính nghiên cứu ức chế ăn mòn: • Nhóm phương pháp ngâm nhúng (phương pháp tổn hao khối lượng) • Nhóm phương pháp điện hóa • Nhóm phương pháp thử gia tốc • Nhóm phương pháp thủ nghiêm tự nhiên Trong số các phương pháp trên thì phương pháp ngâm nhúng và phương pháp phân cực thế động trong nhóm phương pháp điện hóa được sử dụng phổ biến nhất và thực hiện tương đối đơn giản. a. Phương pháp ngâm nhúng Nguyên tắc của phương pháp này dựa trên sự thay đổi khối lượng mẫu sau một thời gian ngâm nhúng trong môi trường ăn mòn khi có và không có chất ức chế ăn mòn. Đây là phương pháp thử nghiệm đơn giản nhưng để đảm bảo độ chính xác và độ lặp của kết quả thì các điều kiện thử nghiệm phải được thực hiện nghiêm ngặt như: các mẫu kim loại phải lớn, các mẫu phải được thực hiện trong cùng một khoảng thời gian, cùng điều kiện áp suất, nhiệt độ… Nguyễn Văn Hanh 15 Lọc Hóa Dầu − K47 Khoa Dầu Khí Khả năng ức chế ăn mòn của chất ức chế được đánh giá thông qua các chỉ số độ bóng bề mặt, độ sâu vết ăn mòn, tốc độ ăn mòn nhưng chủ yếu là dựa vào độ giảm khối lượng mẫu sau một đơn vị thời gian trên một đơn vị diện tích. Hiệu quả bảo vệ được xác định thông qua hiệu quả ức chế ăn mòn γ và mức độ bảo vệ Z. = − ; = × 100% Trong đó Δmc, Δmk: độ giảm khối lượng của mẫu kim loại khi có và không có chất ức chế. b. Phương pháp phân cực thế động Phương pháp này dựa trên phép đo phân cực thế động, được thực hiện bằng cách đặt thế quét lên mẫu theo chiều dương (gọi là phân cực anot) hoặc theo chiều âm (phân cực catot). Cường độ dòng điện biến đổi trong quá trình đo được ghi lại và vẽ ra theo sự phụ thuộc của thế quét sẽ cho đường cong phân cực thế động. Phép đo này được sử dụng để xác định các đặc trưng ăn mòn kim loại trong môi trường nước, dung dịch muối. Từ phép đo này có thể thu được những thông tin về tốc độ ăn mòn, màng hấp phụ, độ thụ động và khuynh hướng ăn mòn. 1.2 Phương pháp tổng hợp chất ức chế ăn mòn azometin Các chất ức chế azometin có thể được tổng hợp theo một số phương pháp sau [7]: 1.2.1 Tổng hợp bằng phản ứng khử hóa amit thế VD: C NH O Nguyễn Văn Hanh CH3 CH3 CH3 PCl5 C N SnCl2 CH N Cl 16 Lọc Hóa Dầu − K47 Khoa Dầu Khí 1.2.2 Tổng hợp bằng các hợp chất thơm có nhóm metyl hoạt động thế vào liên kết −N=N− trong các hợp chất azo VD: N N H3C NH2 CH N 1.2.3 Tổng hợp từ hợp chất thơm có nhóm metylen hoạt động và hợp chất nitrozo VD: O2N (H3C)2N NO H3C O2N (H3C)2N NO2 N CH H2O O2N O2N 1.2.4 Tổng hợp bằng phản ứng giữa andehit thơm và hợp chất nitro thơm VD: CHO CH O2N N H2O 1.2.5 Tổng hợp bằng cách ngưng tụ các hợp chất nitro béo hay thơm béo có nhóm metylen hoạt động với nitrozoaren khi có xúc tác là NaOH hoặc NaCN VD: CH2 NO2 NO N(CH3)2 NaCN C N N(CH3)2 HNO3 H Nguyễn Văn Hanh 17 Lọc Hóa Dầu − K47 Khoa Dầu Khí 1.2.6 Bằng phản ứng giữa nitroaren và các α-hetarylxetonnitrin khi có mặt kiềm VD: + CH2CN I N NO N(CH2CH2Cl)2 C2H5OH, KOH CH3 + I N CH HCNO N(CH3)2 HNO3 N CH3 1.2.7 Đi từ các dị vòng chứa nitơ có nhóm metyl hoạt động và các nitrozoaren VD: NO (HOCH2CH2)2N N I CH3 + N CH H2O IN N(CH2CH2OH)2 CH3 + CH3 1.2.8 Phương pháp tổng hợp các chất ức chế ăn mòn azometin bằng phản ứng giữa andehit và amin bậc một Tổng hợp các azometin bằng phản ứng giữa andehit và amin bậc một là một trong những phương pháp thuận tiện và phổ biến nhất, nó đi từ các nguyên liệu đầu dễ kiếm, rẻ tiền và cho hiệu suất cao. a. Phản ứng tổng quát R−CHO + H2N−R’ R−CH=N−R’ + H2O Trong đó R và R’ có thể là gốc ankyl, aryl hay dị vòng thơm. Thông thường các azometin béo được tổng hợp từ andehit béo và amin béo đều không bền, còn các azometin thơm thì bền vững hơn, đặc biệt là các azometin thơm hoàn toàn thì rất bền vững. Nguyễn Văn Hanh 18 Lọc Hóa Dầu − K47 Khoa Dầu Khí b. Cơ chế phản ứng Phản ứng giữa andehit và amin bậc một được biểu diễn theo sơ đồ sau: [1,2,7]: O HO R'NH2 C R H2O C R H H H R' C N R NHR' Xúc tác cho cả hai giai đoạn tấn công nucleophin của nhóm amin vào nhóm cacbonyl và giai đoạn tách nước (dehidrat hóa) đều là xúc tác axit hoặc bazơ, nhưng nhìn chung xúc tác axit là hữu hiệu hơn cả. Thực tế cho thấy tùy theo R và R’ của từng phản úng mà tốc độ phản ứng đạt giá trị cực đại ở một giá trị pH xác định. Ngoài ra tốc độ phản ứng còn phụ thuộc vào các yếu tố khác như: hiệu ứng không gian, bản chất các nhóm thế trong R và R’. Nếu dùng xúc tác axit [1] thì cơ chế phản ứng như sau: R CH O H+ RCH OH R'NH2 RCHNH2R' H+ R CH NH R' OH H+ R CH NH R' H2O RCH OH H+ NHR' R CH N R' OH2 Nếu dùng xúc tác bazơ [2] thì cơ chế phản ứng như sau: R'NH2 B R'NH BH .. R'NH R CH O R'NH CH R BH R'NH CH R O H+ R' N CH R R'N CH R OH H2O B OH Tùy theo môi trường phản ứng mà tốc độ chung của toàn bộ phản ứng phụ thuộc vào các nhóm thế nhiều hay ít, nó được thể hiện qua quy luật sau: Trong môi trường trung tính tốc độ tấn công nucleophin tăng khi có nhóm thế hút điện tử (NO2, Cl, Br…) và giảm khi có nhóm thế đẩy điện tử (CH3, OCH3, OH…) trong nhân thơm andehit. Còn tốc độ dehidrat hóa lại phụ thuộc vào các nhóm thế theo chiều ngược lại, do vậy tốc độ chung của phản ứng trong môi trường trung tính ít phụ thuộc vào bản chất các nhóm thế. Trong môi trường axit, tốc độ phản ứng lại tăng lên khi trong nhân thơm có nhóm thế hút điện tử vì khi đó giai đoạn tấn công vào nhóm cacbonyl Nguyễn Văn Hanh 19 Lọc Hóa Dầu − K47 Khoa Dầu Khí chậm hơn giai đoạn dehidrat [7]. Tuy nhiên nếu pH quá thấp thì tốc độ phản ứng lại giảm. Nếu tốc độ cộng nucleophin và dehidrat hóa bằng nhau thì khi gắn các nhóm thế đẩy điện tử vào trong nhân thơm andehit sẽ làm tăng tốc độ dehidrat hóa nhưng lại làm giảm tốc độ cộng hợp, khi đó giai đoạn tấn công nucleophin là giai đoạn chậm quyết định tốc độ phản ứng và bị ảnh hưởng bởi các nhóm thế. Nếu đưa nhóm thế hút điện tử vào nhân thơm andehit thì tốc độ cộng hợp tăng lên còn tốc độ dehidrat hóa lại giảm đi và trở thành giai đoạn quyết định tốc độ phản ứng. Khi đó ảnh hưởng của các nhóm thế đến tốc độ chung của phản ứng là không đáng kể [7]. 1.3 Cấu trúc và phổ của azometin 1.3.1 Cấu trúc điện tử, đồng phân hình học và tính bazơ của azometin a. Cấu trúc điện tử, đồng phân hình học của azometin Phân tử azometin có thể tồn tại ở hai dạng đồng phân hình học cis (syn) và trans (anti) [7]. R1 R1 H H C C N N R2 R2 trans cis * Do các điện tử π tạo liên hợp π, π và do sự liên hợp giữa cặp điện tử không chia của nguyên tử nitơ trong liên kết azometin và hệ điện tử π của nhân thơm amin (tạo liên hợp n, π) nên các azometin thơm có hai kiểu liên hợp [4,7] (liên hợp π, π* và liên hợp n, π). Hai kiểu liên hợp này làm cho nhân thơm amin quay ra khỏi mặt phẳng của liên kết azometin một góc α. Khi nghiên cứu cấu trúc của benzylidenanilin C.H. Waren đã tính được góc quay của phân tử này và thấy rằng ở dạng cis có giá trị là 253˚ và ở dạng trans có giá trị là 117˚. Momen lưỡng cực của phân tử này là 1,57D. V.I. Minkin và cộng sự [10] đã nghiên cứu về tính không đồng phẳng của azometin va đã xác định được góc quay không đồng phẳng từ 40 ÷ 90˚. Gần đây theo phương pháp AM1 và sử dụng phần mềm Hyperchem 7.0 người ta cũng xác định được góc nhị diện hình thành qua liên kết azometin một cách rất chính xác và nhanh chóng. Nguyễn Văn Hanh 20 Lọc Hóa Dầu − K47
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng