Đăng ký Đăng nhập
Trang chủ Nghiên cứu tổng hợp và biến tính chất xúc tác trên cơ sở ceo2 để xử lý hợp chất ...

Tài liệu Nghiên cứu tổng hợp và biến tính chất xúc tác trên cơ sở ceo2 để xử lý hợp chất hữu cơ dễ bay hơi

.PDF
79
32
58

Mô tả:

ĐẠI HỌC ĐÀ NẴNG NGUYỄN THỊ HỒNG TRÂM TRƯỜNG ĐẠI HỌC BÁCH KHOA --------------------------------------- NGUYỄN THỊ HỒNG TRÂM C C R L T. NGHIÊN CỨU TỔNG HỢP VÀ BIẾN TÍNH KỸ THUẬT HÓA HỌC CHẤT XÚC TÁC TRÊN CƠ SỞ CERI OXIT ĐỂ XỬ DU LÝ HỢP CHẤT HỮU CƠ DỄ BAY HƠI LUẬN VĂN THẠC SĨ KỸ THUẬT HÓA HỌC KHOÁ 37 Đà Nẵng – Năm 2020 ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA --------------------------------------- NGUYỄN THỊ HỒNG TRÂM NGHIÊN CỨU TỔNG HỢP VÀ BIẾN TÍNH C C CHẤT XÚC TÁC TRÊN CƠ SỞ CERI OXIT ĐỂ XỬ LÝ R L T. HỢP CHẤT HỮU CƠ DỄ BAY HƠI DU Chuyên ngành : KỸ THUẬT HÓA HỌC Mã số 8520301 : LUẬN VĂN THẠC SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. TS. NGUYỄN ĐÌNH MINH TUẤN Đà Nẵng – Năm 2020 LỜI CẢM ƠN Trong quá trình học tập và thực hiện luận văn, tôi đã nhận được sự động viên, khuyến khích, hướng dẫn, giúp đỡ và góp ý nhiệt tình của các cấp lãnh đạo, các thầy cô và bạn bè. Tôi xin chân thành cảm ơn Ban giám hiệu, các thầy giáo, cô giáo ở trường Đại học Bách Khoa – Đại học Đà Nẵng đã tạo điều kiện để tôi được hoàn thành chương trình học tập tại trường, trang bị cho bản thân những kiến thức cần thiết và có định hướng đúng đắn trong quá trình học tập. Xin bày tỏ lòng biết ơn sâu sắc đến Thầy Nguyễn Đình Minh Tuấn, người đã tận tình và dành rất nhiều thời gian cũng như tâm huyết hướng dẫn tôi trong suốt quá trình thực hiện đề tài. Cuối cùng, tôi xin chân thành cảm ơn gia đình, bạn bè đã giúp đỡ tôi trong suốt quá trình học tập và thực hiện luận văn. Với sự nổ lực hết sức của bản thân, tôi đã cố gắng hoàn thành luận văn với nội dung đầy đủ, trọn vẹn. Tuy nhiên, do hạn chế về nhận thức và thời gian nghiên cứu, luận văn chắc chắn sử không thể tránh khỏi những thiếu sót. Rất mong được sự đóng góp ý kiến của quý thầy cô giáo để luận văn được hoàn thiện hơn. Tôi xin chân thành cảm ơn! C C DU R L T. LỜI CAM ĐOAN Tôi xin cam đoan luận văn đề tài “Nghiên cứu tổng hợp và biến tính chất xúc tác trên cơ sở Ceri oxit để xử lý hợp chất hữu cơ dễ bay hơi” là công trình nghiên cứu độc lập dưới sự hướng dẫn của Giáo viên hướng dẫn TS. Nguyễn Đình Minh Tuấn. Ngoài ra không có bất cứ sự sao chép của người khác. Các số liệu, kết quả trình bày trong báo cáo là hoàn toàn trung thực, em xin chịu hoàn toàn trách nhiệm trước bộ môn, khoa và nhà trường về sự cam đoan này. Đà Nẵng, ngày tháng năm 2020 Tác giả luận văn Nguyễn Thị Hồng Trâm C C DU R L T. MỤC LỤC Chương I: TỔNG QUAN .......................................................................................3 1.1. Hợp chất hữu cơ dễ bay hơi (VOCs) ...........................................................3 1.1.1. Định nghĩa............................................................................................. 3 1.1.2. Nguồn gốc của VOCs ...........................................................................3 1.2. Ảnh hưởng của VOCs đến môi trường và sức khỏe con người ..................4 1.3. Các phương pháp xử lý VOCs .....................................................................5 1.3.1. Phương pháp phân hủy .........................................................................5 1.3.2. Phương pháp thu hồi .............................................................................6 1.4. Xúc tác dị thể trong xử lý VOCs .................................................................6 1.4.1. Xúc tác kim loại quý .............................................................................7 1.4.2. Xúc tác oxit kim loại.............................................................................8 1.5. Các phương pháp tổng hợp xúc tác oxit kim loại ........................................9 1.5.1. Phương pháp kết tủa ...........................................................................10 1.5.2. Phương pháp tẩm trên chất mang .......................................................11 1.5.3. Phương pháp trộn cơ học ....................................................................12 1.5.4. Xúc tác nóng chảy và xúc tác xương ..................................................12 Chương II. CÁC PHƯƠNG PHÁP NGHIÊN CỨU VÀ THỰC NGHIỆM ........13 2.1. Hóa chất và thiết bị ....................................................................................13 2.1.1. Hóa chất .............................................................................................. 13 2.1.2. Thiết bị, dụng cụ thí nghiệm ............................................................... 13 2.2. Phương pháp tổng hợp và biến tính xúc tác ..............................................13 2.1.1. Phương pháp tổng hợp xúc tác CeO2 ..................................................13 2.2.2. Phương pháp biến tính xúc tác ........................................................... 14 2.3. Phương pháp nghiên cứu tính chất hóa lý đặc trưng của xúc tác ..............16 2.3.1. Phương pháp nhiễu xạ tia X (XRD) ...................................................16 2.3.2. Phương pháp quang phổ hồng ngoại FTIR (Fourier Transform Infrared Spectroscopy) .......................................................................................... 18 2.3.3. Kính hiển vi điện tử quét (SEM) ........................................................19 2.3.4. Hấp phụ-giải hấp đẳng nhiệt N2.......................................................... 20 2.3.5. Quang phổ hấp thụ nguyên tử AAS (Atomic Absorption Spectroscopy) ........................................................................................................21 2.4. Khảo sát hoạt tính của xúc tác ...................................................................22 2.4.1. Hệ phản ứng BTRS-jr Parker (Mỹ) ....................................................22 2.4.2. Hệ thống sắc ký khí (GC) ...................................................................24 2.4.3. Phương pháp phân tích kết quả........................................................... 26 C C DU R L T. Chương III. KẾT QUẢ THỰC NGHIỆM ............................................................ 27 3.1. Xúc tác CeO2 ............................................................................................. 27 3.1.1. Tính chất cấu trúc của CeO2 ............................................................... 27 3.1.2. Hình thái mẫu .....................................................................................30 3.1.3. Tính chất kết cấu của mẫu CeO2.........................................................30 3.1.4. Hoạt tính xúc tác .................................................................................32 3.2. Nghiên cứu biến tính CeO2 bằng cách pha tạp mangan ............................ 33 3.2.1. Tính chất cấu trúc của mẫu Mn-CeO2 ................................................33 3.2.2. Hình thái mẫu Mn-CeO2 .....................................................................35 3.2.3. Tính chất kết cấu của mẫu Mn-CeO2 ..................................................37 3.2.4. Kết quả xác định tỉ lệ Ce:Mn .............................................................. 39 3.2.5. Hoạt tính xúc tác .................................................................................39 3.3. Nghiên cứu cải thiện tính chất kết cấu xốp của CeO2 ............................... 41 3.3.1. Tính chất cấu trúc của CeO2 ............................................................... 42 a) Giản đồ nhiễu xạ tia X (XRD) của mẫu biến tính trước nung..................42 b) Giản đồ phổ hồng ngoại FTIR của mẫu CeO2 biến tính sau nung ...........43 3.3.2. Hình thái mẫu .....................................................................................43 3.3.3. Tính chất kết cấu của mẫu CeO2.........................................................45 3.3.4. Hoạt tính xúc tác .................................................................................47 3.3.5. Khảo sát tính ổn định của xúc tác .......................................................48 Chương IV. KẾT LUẬN ......................................................................................50 TÀI LIỆU THAM KHẢO ....................................................................................52 PHỤ LỤC .............................................................................................................56 C C DU R L T. NGHIÊN CỨU TỔNG HỢP VÀ BIẾN TÍNH CHẤT XÚC TÁC TRÊN CƠ SỞ CeO2 ĐỂ XỬ LÝ HỢP CHẤT HỮU CƠ DỄ BAY HƠI Học viên: Nguyễn Thị Hồng Trâm Chuyên ngành: Kỹ thuật hóa học Mã số: 8520301 Khóa: 37 Trường Đại học Bách khoa - ĐHĐN Tóm tắt - Cerium oxit (CeO2) đã được nghiên cứu và ứng dụng làm chất xúc tác nhờ vào tính chất oxy hóa khử và cấu trúc đặc biệt chứa các tâm khuyết oxy, thể hiện hiệu quả trong các phản ứng oxy hóa hoàn toàn VOCs. Xúc tác CeO2 tổng hợp được có hiệu quả chưa thực sự cao trong phản ứng oxy hóa toàn toàn toluene. Nghiên cứu này đã tổng hợp xúc tác CeO2 bằng phương pháp thủy nhiệt từ muối cerium nitrate và urea đồng thời xác định tính chất đặc trưng bằng các phương pháp hóa lý hiện đại như nhiễu xạ tia X (XRD), kính hiển vi điện tử quét (SEM), hấp phụ đẳng nhiệt nitơ cũng như đánh giá hiệu quả trên hệ phản ứng liên tục để oxy hóa hoàn toàn toluene thành CO2 và nước trong dòng không khí. Nhằm tăng cường hiệu quả xúc tác, tác giả đã biến tính xúc tác CeO2 bằng hai phương pháp: lai tạp mangan vào trong cấu trúc CeO2 và thay đổi tính chất kết cấu của CeO2. Việc biến tính xúc tác bằng cả hai cách trên đều làm cải thiện hiệu quả xúc tác. Trong nghiên cứu này, mối tương quan giữa các tính chất hóa lý và hiệu quả xúc tác cũng được khảo sát và chứng minh. C C Từ khóa – xúc tác; cerium oxit; oxy hóa hoàn toàn; VOCs; toluene. R L T. RESEARCH ON THE SYNTHESIS AND MODIFICATION OF CeO2 BASED DU CATALYSTS FOR VOLATILE ORGANIC COMPOUNDS REMOVAL Abstract – Cerium oxide (CeO2) has been studied and applied as a catalyst owing to the redox properties and special structure containing oxygen vacancies, showing its effectiveness in VOCs total oxidation. The efficiency in toluene total oxidation of CeO2 is not really high. In this thesis, CeO2 catalysts are synthesized by hydrothermal method using cerium nitrate and urea. Characteristic properties are also determined by methods: X-ray diffraction, Scanning electron microscope (SEM), nitrogen isothermal adsorption. Evaluating the catalytic efficiency by the continuously reaction system for total toluene oxidation. The catalytic activity are improved by two methods: doping manganese into CeO2 structure and changing the textural properties of CeO2. CeO2 based catalysts were investigated for the structure, morphological and redox properties; then continued to be investigated catalyst activity over the complete oxidation of toluene. The correlation between characteristic properties and catalytic efficiency has also been investigated. Key words – catalyst; cerium oxide; total oxidation; VOCs; toluene DANH MỤC CÁC TỪ VIẾT TẮT AAS : Atomic Absorption Spectrometric BET : Phương pháp đo diện tích bề mặt riêng Brunauer-Emmet-Teller CO : Oxy hóa xúc tác phục hồi EU : Liên minh châu Âu FID : Flame Ionisation Detector – Đầu dò ion hóa ngọn lửa GC : Gas Chromatography – Hệ thống sắc ký khí MVK : Mars–van Krevelen PCO : Oxy hóa quang xúc tác RCO : Oxy hóa xúc tác tái sinh SEM : Scanning Electron Microscope – Kính hiển vi điện tử quét TCD US-EPA : : Thermal Conductivity Detector – Đầu dò dẫn nhiệt Cơ quan bảo vệ môi trường Hoa Kỳ VOCs : Volatile Organic Compounds – Các hợp chất hữu cơ dễ bay hơi WHO : Tổ Chức Y tế thế giới XRD : X-ray Diffaction – Nhiễu xạ tia X DU R L T. C C DANH MỤC HÌNH VẼ STT 1 Số thứ tự hình Hình 1. 1 2 3 4 5 Hình 1. 2 Hình 1. 3 Hình 2. 1 Hình 2. 2 6 7 8 9 Hình 2. 3 Hình 2. 4 Hình 2. 5 Hình 2. 6 10 11 Hình 2. 7 Hình 2. 8 12 Hình 2. 9 13 Hình 2. 10 14 15 16 17 Hình 2. 11 Hình 2. 12 Hình 2. 13 Hình 2. 14 18 19 20 21 22 23 Hình 3. 1 Hình 3. 2 Hình 3. 3 Hình 3. 4 Hình 3. 5 Hình 3. 6 24 Hình 3. 7 25 Hình 3. 8 Tên hình Trang : Sơ đồ năng lượng của phản ứng oxy hóa VOCs có và không có chất xúc tác Sơ đồ cơ chế Langmuir – Hinshelwood Sơ đồ cơ chế Mars-van Krevelen (MVK) Quy trình tổng hợp xúc tác CeO2 Quy trình tổng hợp các mẫu Mn-CeO2 bằng phương pháp thủy nhiệt thông thường Quy trình tổng hợp mẫu 1Ce1Mn-R Quy trình tổng hợp các mẫu CeO2 biến tính Ðo góc quay θ nhiễu xạ tia X Thiết bị đo nhiễu xạ tia X (XRD), Smart Lab– Rigaku (Nhật) Thiết bị Nicolet™ iS™ 10 FTIR Spectrometer Kính hiển vi điện tử quét (SEM), Jeol JSM – 6010 Plus/LV Thiết bị đo đẳng nhiệt hấp phụ-giải hấp N2, ASAP 2020 Micromeritics Thiết bị quang phổ hấp thụ nguyên tử AA7000Shimadzu (Nhật) Sơ đồ hệ phản ứng Hệ thiết bị phản ứng BTRS-jr Parker (Mỹ) Hệ thống phân tích sắc ký khí Hệ thống sắc ký khí Agilent trang bị đầu dò FID, TCD Ảnh chụp mẫu CeO2 trước và sau nung Giản đồ nhiễu xạ tia X của mẫu CeO2 trước nung Giản đồ nhiễu xạ tia X của mẫu CeO2 sau nung: Giản đồ phổ hồng ngoại FTIR của mẫu CeO2 Ảnh SEM của mẫu CeO2 trước và sau khi nung A) Đường đẳng nhiệt hấp phụ - giải hấp và B) Đường phân bố mao quản của mẫu CeO2 Hiệu suất thu CO2 và độ chuyển hóa toluene thành CO2 của các xúc tác CeO2 Giản đồ nhiễu xạ tia X của mẫu 1Ce1Mn sau thủy nhiệt C C DU R L T. 7 8 9 14 14 15 16 17 18 19 20 21 22 23 23 24 26 27 28 28 29 30 31 33 34 26 27 28 29 Hình 3. 9 Hình 3. 10 Hình 3. 11 Hình 3. 12 30 31 Hình 3. 13 Hình 3. 14 32 Hình 3. 15 33 34 Hình 3. 16 Hình 3. 17 35 Hình 3. 18 36 37 Hình 3. 19 Hình 3. 20 38 Hình 3. 21 39 Hình 3. 22 Giản đồ nhiễu xạ tia X (XRD) của mẫu Mn-CeO2 Ảnh SEM của mẫu Mn-CeO2 trước nung Ảnh SEM của mẫu Mn-CeO2 sau nung A) Đường đẳng nhiệt hấp phụ - giải hấp và B) đường phân bố mao quản của mẫu Mn-CeO2 Hoạt tính xúc tác của các mẫu Mn-CeO2 Độ chuyển hóa toluene của các mẫu Mn-CeO2 tại T = 390 oC Giản đồ nhiễu xạ tia X (XRD) của mẫu Ce-626 trước nung Giản đồ nhiễu xạ tia X (XRD) của mẫu CeO2-C Giản đồ phổ hồng ngoại FTIR của mẫu CeO2 biến tính sau nung a) Ce-606, b) Ce-626, c) Ce-646, d) Ce-666 Ảnh SEM của mẫu CeO2 biến tính trước nung (×5000) Ảnh SEM của mẫu CeO2 biến tính sau nung (×5000) A) đường đẳng nhiệt hấp phụ - giải hấp và B) đường phân bố mao quản của mẫu CeO2 biến tính Hoạt tính xúc tác của các mẫu CeO2 a) Ce-606, b) Ce-646, và c) Ce-666 Độ bền và tính ổn định của xúc tác Ce-646 D T U R L . C C 35 36 37 38 40 41 42 42 43 44 45 46 47 49 DANH MỤC BẢNG BIỂU STT 1 2 3 4 5 6 7 8 9 10 11 12 Số thứ tự Tên bảng bảng Bảng 1.1 : Hệ số phát thải toluene của một số ngành sản xuất Thành phần tổng hợp các mẫu Mn-CeO2 bằng Bảng 2. 1 phương pháp thủy nhiệt thông thường Bảng 2. 2 Thành phần tổng hợp các mẫu CeO2 biến tính Bảng 2. 3 Các thông số của hệ phản ứng oxy hóa hoàn toàn Bảng 3. 1 Các peak đặc trưng cho cấu trúc mẫu CeO2 Diện tích bề mặt riêng và thể tích xốp của các mẫu Bảng 3. 2 CeO2 Diện tích bề mặt riêng và thể tích xốp của các mẫu Bảng 3. 3 Mn-CeO2 Kết quả phân tích tỉ lệ Mn có trong các xúc tác pha Bảng 3. 4 tạp Mn Bảng 3. 5 Các giá trị T50 và T90 của các mẫu Mn-CeO2 Diện tích bề mặt riêng và thể tích xốp của các mẫu Bảng 3. 6 CeO2 biến tính Các giá trị T50 và T90 của các mẫu CeO2 Bảng 3. 7 Các nghiên cứu khác về CeO2 cho phản ứng oxy hóa Bảng 3. 8 hoàn toàn C C DU R L T. Trang 4 15 16 24 29 32 39 39 41 46 48 48 1 MỞ ĐẦU 1. Lý do chọn đề tài Hiện nay có nhiều phương pháp xử lý VOCs trong không khí như: hấp thụ, hấp phụ, ngưng tụ, đốt và phân hủy bằng nhiệt,… Với phương pháp đốt và phân hủy bằng nhiệt, ở nhiệt độ cao VOCs sẽ bị phân hủy thành than, khí và hơi nước. Nếu để phân hủy tự do, nhiệt độ phân hủy đòi hỏi cao và tốc độ phân hủy thường chậm. Vì vậy người ta thường tiến hành với sự có mặt của xúc tác. Đây là phương pháp được sử dụng phổ biến dùng để xử lý VOCs, vì như thế sẽ thay đổi cấu trúc phân tử hoặc dạng tồn tại của chúng thành các sản phẩm ít hoặc không có hại đối với người và động thực vật [1]. Tính đến nay đã có nhiều nghiên cứu trong và ngoài nước về việc sử dụng các oxit kim loại để làm xúc tác cho quá trình phân hủy VOCs, các xúc tác có hoạt tính cao trong quá trình oxy hóa VOCs đã được biết đến như Pt/Al2O3 [2], Pd/Al2O3 [3], Pd/Cr2O3ZrO2 [4], Pd/Au [5],… Tuy nhiên, việc sử dụng phổ biến các xúc tác này găp nhiều khó khăn vì chi phí quá đắt. Do vậy, việc nghiên cứu các xúc tác thay thế từ các oxit của các kim loại không quý ngày càng được quan tâm. Trong các nghiên cứu trong thời gian gần đây, ceri dioxit (CeO2, ceria) đang được quan tâm nghiên cứu bởi tính phổ biến các tính chất của nó. Ceri là nguyên tố phong phú nhất trong số các nguyên tố đất hiếm (chiếm 0,0046% khối lượng vỏ Trái Đất, trữ lượng thiên nhiên lớn nhất ở Trung Quốc), được sử dụng trong nhiều lĩnh vực ứng dụng như vật liệu từ tính, hợp kim, xúc tác,… So với hầu hết các nguyên tố đất hiếm khác, giá thành ceri ngày càng giảm, thậm chí giá của ceri oxit thấp hơn giá của lanthan oxit. Do đó, Ceri có thể xem là một tài nguyên có thể khai thác được, có tiềm năng ngắn hạn và trung hạn dự kiến là tương đối cao [6]. Ceri oxit CeO2 đã được nghiên cứu rộng rãi như là chất xúc tác và hỗ trợ xúc tác cho các phản ứng khác nhau vì các tính chất độc đáo của nó, bao gồm tính oxy hóa khử tuyệt vời và khả năng lưu trữ oxy cao [7]. Để tăng cường hoạt tính của xúc tác ceri oxit, người ta có thể tối ưu hóa hình thái cấu trúc của nó hoặc kết hợp với các thành phần thứ cấp khác như kim loại quý hoặc các oxit kim loại khác tạo thành vật liệu tổng hợp. Ngoài cách kết hợp ceria với các kim loại quý, có thể kết hợp với các oxit kim loại chuyển tiếp giá rẻ khác mà vẫn thể hiện được hoạt tính xúc tác đáng chú ý. Mục đích sau cùng là tổng hợp được xúc tác có bề mặt riêng cao, tạo điều kiện cho các phân tử phản ứng khuếch tán vào vị trí một cách dễ dàng, nâng cao hoạt tính xúc tác. [8] Hiện nay, việc nghiên cứu tổng hợp các oxit kim loại trên nền ceri oxit bằng các phương pháp mới vẫn đang được quan tâm phát triển. Các nghiên cứu về xúc tác trên nền CeO2 để xử lý VOCs bằng phương pháp thủy nhiệt còn hạn chế, còn cần những nghiên cứu bổ sung. Chính vì lý do trên, chúng tôi xin được chọn đề tài “Nghiên cứu tổng hợp và biến tính chất xúc tác trên cơ sở Ceri oxit để xử lý hợp chất hữu cơ dễ bay hơi” C C DU R L T. 2 2. Mục đích của đề tài Mục đích của đề tài là tổng hợp và biến tính xúc tác trên cơ sở oxit CeO2, xác định được các tính chất lý hóa đặc trưng của xúc tác như thành phần pha, hình thái và bề mặt riêng của các xúc tác, đánh giá được hoạt tính của các xúc tác cho phản ứng oxy hóa hoàn toàn toluene. Từ đó chọn được xúc tác tốt nhất cho phép nghiên cứu để xử lý VOCs ở điều kiện nhiệt độ thấp nhất. 3. Nội dung của đề tài  Nghiên cứu tổng hợp các xúc tác trên cơ sở oxit kim loại CeO2  Xác định các tính chất lý hóa đặc trưng của xúc tác như thành phần pha, bề mặt riêng, phân bố lỗ xốp, hình thái, tính oxy hóa khử  Đánh giá hoạt tính của xúc tác trên hệ thiết bị phản ứng BTRS-jr và phân tích sản phẩm bằng sắc ký khí.  Khảo sát ảnh hưởng của nhiệt độ phản ứng, tỉ lệ mol kim loại đến tính chất và hoạt tính xúc tác. 4. Ý nghĩa khoa học và thực tiễn của đề tài R L T. C C Ý nghĩa khoa học Kết quả nghiên cứu của đề tài là cơ sở khoa học để tiếp tục các nghiên cứu sâu hơn về các oxit kim loại chuyển tiếp nói chung và oxit CeO2 nói riêng nhằm tổng hợp được các xúc tác có tính ưu việt hơn cho quá trình phân hủy các dung môi hữu cơ dễ bay hơi VOCs. Ý nghĩa thực tiễn Việc tổng hợp được xúc tác có khả năng ứng dụng vào quá trình phân hủy dung môi hữu cơ dễ bay hơi VOCs có thể áp dụng vào các hệ thống xử lý khí thải trong các cơ sở sản xuất, không chỉ bảo đảm chất lượng không khí trong môi trường lao động tại các cơ sở sản xuất mà còn góp phần giảm thiểu ô nhiễm ra môi trường xung quanh. DU 3 Chương I: TỔNG QUAN 1.1. Hợp chất hữu cơ dễ bay hơi (VOCs) 1.1.1. Định nghĩa Trên thực tế có nhiều định nghĩa về hợp chất hữu cơ dễ bay hơi (Volatile Organic Compounds - VOCs) khác nhau được sử dụng. Theo định nghĩa của Cơ quan bảo vệ môi trường Hoa Kỳ (US-EPA), các hợp chất hữu cơ dễ bay hơi VOCs là các hợp chất hữu cơ mà thành phần của chúng làm cho chúng có khả năng bay hơi trong điều kiện khí quyển bình thường về nhiệt độ và áp suất [9]. Liên minh Châu Âu (EU) sử dụng điểm sôi trong việc định nghĩa VOCs: VOCs là hợp chất hữu cơ bất kỳ có nhiệt độ sôi ban đầu nhỏ hơn hoặc bằng 250 oC được đo ở áp suất khí quyển tiêu chuẩn là 101.3 kPa [10]. 1.1.2. Nguồn gốc của VOCs Nguồn gốc tự nhiên C C R L T. Một số VOCs có nguồn gốc từ tự nhiên. Trong điều kiện không căng thẳng, một số VOCs (oxVOC) được phát thải từ thực vật với thông lượng từ 0,2 – 4,8 g(C)g-1(khối lượng lá khô)h-1, tỉ lệ này tăng lên nhiều lần khi thực vật bị căng thẳng. Các VOCs này là acid formic, acid acetic, acetone, formaldehyt, acetaldehyde, methanol và ethanol [11]. DU Nguồn gốc nhân tạo Một nghiên cứu về nguồn gốc của các VOCs được tiến hành ở Trung Quốc cho thấy nguồn gốc phát thải chính của VOCs bao gồm: khí thải giao thông, hơi xăng, sơn, nhựa đường, than đốt công nghiệp và dân dụng, đốt sinh khối và công nghiệp hóa dầu. Trong đó, 2-metylpentan và 1,3-butadien được dùng để đặc trưng cho khí thải từ các phương tiện giao thông; các hợp chất đặc trưng cho lớp phủ bề mặt (sơn) là chất thơm như toluene và m, p –xylen; các hydrocacbon nhẹ như n-butan, trans-2-butene và n– pentan chiếm đa số trong thành phần của xăng; n-nonane, n -decane, và n–undecane là thành phần điển hình cho các quá trình sản xuất và ứng dụng của nhựa đường và hơi diesel [12]. Trong hoạt động sản xuất công nghiệp, các ngành sơn phủ bề mặt, chế biến mực in, bao bì chiếm phần lớn lượng phát thải VOCs. Các công đoạn phát thải lớn nhất là phối trộn nguyên liệu, nghiền, phối màu, chiết rót và đóng gói. Ở các nhà máy sử dụng sơn, mực in như sơn ô tô, đồ gia dụng, in nhãn bao bì,… thì nguồn phát thải là từ các công đoạn phun sơn, in, sấy khô sản phẩm. Trên thế giới hiện nay lượng sơn tiêu thụ vào khoảng 20 ÷ 30 triệu tấn, theo đánh giá nhanh của WHO, tương ứng có khoảng 10 ÷ 15 triệu tấn VOCs thải ra môi trường. Ở các loại sơn hữu cơ thông thường, hàm lượng 4 chất rắn chiếm khoảng 13%, còn lại là VOCs, tương đương 600 – 840g/L. Trong các quá trình gia công, chế tạo có sử dụng dung môi hữu cơ, toluene là hóa chất cơ bản để sản xuất các sản phẩm khác và có tỷ lệ sử dụng cao. Toluene được dùng như nguyên liệu chính để sản xuất benzene (50%) và nhiều hóa chất, hợp chất phổ biến khác, như toluene diiso-cyanate (9%), benzoic axit, dung môi cho các loại keo, sơn, chất phủ bề mặt, mực in, dược phẩm… toluene còn là thành phần chính để nâng cao chỉ số octan trong phối chế các loại xăng dầu (34%). Hệ số phát thải toluene trong một số ngành sản xuất được liệt kê trong bảng 1.1. Bảng 1.1 : Hệ số phát thải toluene của một số ngành sản xuất STT Ngành sản xuất Hệ số phát thải 1 Sản xuất benzene 0,05 kg toluene/1 tấn toluene nguyên liệu 2 Sản xuất axit benzoic 01 kg toluene /1 tấn toluene nguyên liệu 3 Sản xuất di-isocyanate 0,77 kg toluene/1 tấn touen nguyên liệu 4 Sản xuất sơn 13,61 kg toluene/1 tấn toluene nguyên liệu 5 Sản xuất mực in 23,5 kg toluene /1 tấn toluene nguyên liệu C C R L T. (Nguồn: Cơ quan bảo vệ môi trường Hoa Kỳ [9]) Theo tính toán của US-EPA, toluene chiếm đến 33% trong các quá trình gia công chế tạo, trong đó có đến 86% lượng toluene sử dụng thải vào khí quyển. Thời gian lưu của toluene trong khí quyển từ 04 ngày đến vài tháng tùy theo mùa [9]. DU 1.2. Ảnh hưởng của VOCs đến môi trường và sức khỏe con người Các VOCs được phát thải vào môi trường trở thành những tác nhân gây ô nhiễm môi trường đất, không khí và nước (nước ngầm hoặc nước mặt). VOCs là một trong những tác nhân chính liên quan đến sự hình thành ozone mặt đất. Một số VOCs phản ứng với NOx trong không khí khi có ánh sáng mặt trời tạo thành ozon [10]. Ở khí quyển tầng cao, ozon hấp thụ các tia UV do đó bảo vệ con người, động thực vật khỏi tiếp xúc với bức xạ mặt trời nguy hiểm. Nhưng ở tầng khí quyển thấp hơn chúng lại gây ra mối đe doạ tới sức khoẻ con người bằng việc gây ra các vấn đề về hô hấp. Thêm vào đó, nồng độ cao của ozon ở khí quyển tầng thấp có thể huỷ hoại mùa màng, cây trồng [15]. Các mối nguy hiểm đối với sức khoẻ nói chung liên quan đến VOCs bao gồm nhiễm độc hệ thần kinh, tổn hại khả năng sinh sản, tổn hại gan và thận, suy hô hấp, ung thư và viêm da. Nhiều dung môi có thể gây ra bất tỉnh đột ngột nếu hít phải một lượng lớn. Diethyl ether, chloroform và nhiều loại dung môi khác (ví dụ: có nguồn gốc từ xăng hoặc keo dán), thường dẫn đến những tác động nguy hiểm và lâu dài đến sức khỏe như nhiễm độc thần kinh hoặc ung thư. Methanol có thể gây mù vĩnh viễn và tử vong, methanol cũng rất nguy hiểm bởi khi cháy với ngọn lửa không nhìn thấy. Một số dung môi trong đó có chloroform và benzene (một thành phần của xăng) là chất gây ung thư. 5 Một số khác có thể gây tổn hại đến các cơ quan nội tạng như gan, thận hoặc não bộ. Việc thường xuyên tiếp xúc với các dung môi hữu cơ trong môi trường làm việc có thể gây ra một số các phản ứng thần kinh [16]. Trên thế giới, đã có nhiều nghiên cứu về ảnh hưởng của VOCs đến sức khỏe người lao động tại các cơ sở sản xuất sơn, mực in,… khi tiếp xúc trong thời gian dài. Các nghiên cứu này đều chỉ ra được rằng khi người lao động tiếp xúc với VOCs trong thời gian dài dù chỉ ở nồng độ thấp vẫn có khả năng mắc các triệu chứng như: thiếu máu [17], thay đổi các chỉ số huyết học trong máu [18], thay đổi vận tốc máu [19]. Ở Việt Nam, đã có nhiều nghiên cứu về ảnh hưởng của nhóm benzene, toluene, xylen (nhóm BTX) đến sức khỏe của người lao động ở các cơ sở sản xuất có sử dụng hoặc phát sinh VOCs, các nghiên cứu này cho thấy dung môi hữu cơ VOCs có khả năng gây ảnh hưởng đến sức nghe [20], chức năng hô hấp, gây thiếu máu ở người lao động [21], làm thay đổi một số chỉ số huyết học trong máu [22] khi tiếp xúc với VOCs trong thời gian dài. Các tác hại của VOCs đến môi trường và sức khỏe con người vẫn đang tiếp tục được nghiên cứu nhằm có các giải pháp ngăn chặn, phòng ngừa các hậu quả. C C R L T. 1.3. Các phương pháp xử lý VOCs DU Có rất nhiều phương pháp để xử lý dung môi hữu cơ, tuy nhiên các phương pháp xử lý này được chia làm hai loại chính là phân hủy (phương pháp oxy hóa, phân hủy sinh học) và thu hồi (sử dụng phương pháp hấp phụ, hấp thụ, ngưng tụ hoặc phân tách qua màng). 1.3.1. Phương pháp phân hủy Oxy hóa Trong điều kiện nhiệt độ cao các chất hữu cơ sẽ bị phân huỷ thành than: khí và hơi nước. Muốn phân hủy thành than, khí và hơi nước nhiệt độ phân hủy đòi hỏi phải cao và tốc độ phân hủy thường chậm. Vì vậy người ta thường tiến hành phân huỷ nhiệt với sự có mặt của các chất xúc tác. Phân hủy sinh học Dựa vào khả năng biến đổi chất ô nhiễm của vi sinh vật. Chất ô nhiễm (VOCs) đóng vai trò là nguồn cung cấp cacbon, là nguồn dinh dưỡng cho quá trình sinh trưởng của vi sinh vật. Thường được áp dụng xử lý ô nhiễm VOCs trong môi trường nước và đất [23]. Phân hủy bằng nhiệt kết hợp xúc tác Ở nhiệt độ cao, VOCs bị phân hủy thành CO2 và H2O, do vậy phương pháp phân hủy VOCs bằng nhiệt giúp chuyển đổi VOCs thành các hợp chất ít hoặc không có độc tính. Tuy nhiên, để mang lại hiệu quả tốt hơn về chi phí, trong quá trình phân hủy VOCs 6 kết hợp sử dụng xúc tác dị thể sẽ làm giảm nhiệt độ phân hủy, tăng tốc độ phản ứng. Chất xúc tác chỉ có vai trò thúc đẩy quá trình oxy hóa của một số VOCs nhất định, làm tăng tốc độ phản ứng chứ không làm dịch chuyển trạng thái cân bằng của phản ứng oxy hóa và cũng không tự gây ra phản ứng oxy hóa. 1.3.2. Phương pháp thu hồi Hấp thụ Nguyên lý của phương pháp là hấp thụ khí bằng chất lỏng, chuyển các cấu tử khí cần xử lý vào trong pha lỏng nhờ quá trình hòa tan khi chúng tiếp xúc với nhau. Có hai loại hấp thụ là hấp thụ vật lý và hấp thụ hóa học. Tuy nhiên phương pháp này ít sử dụng để xử lý VOCs vì tiêu tốn lượng dung môi hấp thụ lớn. Hấp phụ Hấp phụ là sự hút các phân tử khí bởi bề mặt chất rắn. Phương pháp này thường áp dụng đối với ô nhiễm VOCs và nồng độ VOCs trong khí thải từ 20 - 5000 ppm, lưu lượng khí xử lý từ 0,05 đến 30 m3/s. Vật liệu dùng để hấp phụ là các vật liệu xốp, chủ yếu là than hoạt tính hoặc zeolit [24]. Sau một thời gian hấp phụ, các chất hấp phụ sẽ bị bão hòa, do vậy cần phải tái sinh chất hấp phụ. Người ta có thể dùng hơi nước bão hoà, không khí nóng, hơi nitơ nóng để tái sinh. Do vậy các hợp chất ô nhiễm giải hấp từ các chất hấp phụ cần phải được xử lý tiếp bằng các phương pháp khác như phương pháp đốt hoặc phương pháp ngưng tụ. Ngưng tụ Phương pháp ngưng tụ các VOCs bằng cách làm lạnh hoặc nén. Phương pháp ngưng tụ có khả năng thu hồi VOCs cao nhưng yêu cầu về công nghệ xử lý và chỉ áp dụng khi nồng độ VOCs cao [25]. Phân tách qua màng Phân tách qua màng bán thấm, được sử dụng cho các dòng khí thải có áp lực dòng khí lớn [25]. C C R L T. DU 1.4. Xúc tác dị thể trong xử lý VOCs Với phương pháp đốt và phân hủy bằng nhiệt, ở nhiệt độ cao VOCs sẽ bị phân hủy thành than, khí và hơi nước. Nếu để phân hủy tự do, nhiệt độ phân hủy đòi hỏi cao và tốc độ phân hủy thường chậm. Vì vậy người ta thường tiến hành với sự có mặt của xúc tác. Đây là phương pháp được sử dụng phổ biến dùng để xử lý VOCs, vì như thế sẽ thay đổi cấu trúc phân tử hoặc dạng tồn tại của chúng thành các sản phẩm ít hoặc không có hại đối với người và động thực vật. Cơ chế của quá trình oxy hóa hoàn toàn VOCs có xúc tác phụ thuộc vào loại xúc tác được sử dụng. Về cơ bản có hai loại xúc tác được sử dụng cho phản ứng oxy hóa VOCs: xúc tác oxit kim loại quý và xúc tác oxit kim loại (thường là kim loại chuyển 7 tiếp). Đối với cả hai loại xúc tác, điều kiện phản ứng được là oxy luôn dư, tỷ lệ mol của O2/VOCs khoảng 102 – 103, nồng độ oxy về mặt xúc tác luôn ở mức tương đối cao. Điều này có nghĩa là nồng độ oxy trong pha khí cơ bản là không đổi và là một hàm của nồng độ VOC. Hai loại xúc tác này có các ưu điểm là tiết kiệm năng lượng, an toàn, tiết kiệm không gian và có thể thu thồi được xúc tác như: quá trình oxy hóa xúc tác phục hồi (CO), oxy hóa xúc tác tái sinh (RCO) và oxy hóa quang xúc tác (PCO). Khác với các xúc tác một phần trong công nghệ hóa dầu, tổng hợp NH3 và đốt nhiên liệu trong ô tô, các xúc tác oxy hóa hoàn toàn sẽ phân hủy VOCs thành CO2 và H2O thay vì các sản phẩm không mong muốn khác và có khả năng tiến hành hoạt động ở nhiệt độ thấp. C C R L T. DU Hình 1. 1 : Sơ đồ năng lượng của phản ứng oxy hóa VOCs có và không có chất xúc tác 1.4.1. Xúc tác kim loại quý Do hiệu suất xúc tác vượt trội, các kim loại quý của Pt, Pd, Ru, Rh, Ag và Au được sử dụng nhiều nhất làm xúc tác cho quá trình khử VOCs. Nhìn chung, chất xúc tác kim loại quý thể hiện hoạt tính ở nhiệt độ thấp hơn các oxit kim loại trong quá trình oxy hóa VOCs sử dụng chất xúc tác. Nhiệt độ kết thúc có thể giảm xuống ít nhất 200K khi sử dụng xúc tác kim loại quý, nghĩa là các xúc tác kim loại quý có thể giảm EA hơn so với xúc tác kim loại (Hình 1. 1). Tuy nhiên, sau vài chu kỳ sử dụng, xúc tác bị ngộ độc do các hạt kim loại quý dễ kết tụ lại trên chất mang. Các phương pháp tổng hợp khác nhau cũng có thể ảnh hưởng đến kích thước hạt nano kim loại và độ phân tán của kim loại quý. Ngâm tẩm và kết tủa là hai cách dễ dàng và thông dụng nhất để tạo xúc tác trên chất mang nhưng khả năng kiểm soát kích thước hạt kim loại kém. 8 Cơ chế hoạt động của xúc tác theo Langmuir – Hinshelwood (hình 1.2) trải qua ba bước: Bước 1: O2 phân ly thành *O trên vị trí các kim loại quý Bước 2: VOCs (RH) được hấp phụ trên vị trí các kim loại quý mà không phân ly Bước 3: Các *O tấn công RH đã hấp phụ để tạo thành CO2 và H2O và VOCs mới (R’H). Tương tự, R’H được tạo thành sẽ đi vào chu kỳ phản ứng tiếp theo [26]. C C Hình 1. 2: Sơ đồ cơ chế Langmuir – Hinshelwood R L T. Chất xúc tác kim loại quý thường thể hiện hoạt tính tốt hơn oxyt kim loại đối với quá trình oxy hóa VOCs. Tuy nhiên, các chất xúc tác kim loại quý rất dễ bị vô hiệu hóa (ngộ độc) bởi sự hình thành than cốc, oxyt clo hóa hoặc nước trên bề mặt xúc tác [27] [28] [29]. Chất mang cho xúc tác kim loại quý không chỉ có tác dụng giảm chi phí của xúc tác mà còn ảnh hưởng đến đặc tính điện hóa (ví dụ: tính linh động của mạng tinh thể O2) của mặt phân cách của kim loại quý và chất nền. Sự hỗ trợ của chất mang còn giúp phân tán kim loại quý đồng đều trên chất mang do có diện tích bề mặt riêng lớn hơn. Trên thực tế, trong hầu hết các xúc tác công nghiệp để xử lý VOCs, trọng lượng kim loại quý chỉ chiếm dưới 0.5% tổng khối lượng xúc tác. DU 1.4.2. Xúc tác oxit kim loại Các kim loại quý có nguồn tài nguyên hạn chế, chi phí đắt đỏ. Do vậy, để có thể sử dụng trong công nghiệp với nhu cầu xử lý lượng VOCs lớn thì giá thành xúc tác sẽ rất cao. Vì lý do đó, nhiều nghiên cứu đã được tiến hành để tìm kiếm các xúc tác có hiệu quả kinh tế hơn có thể áp dụng với quy mô lớn. Oxit kim loại đã được tập trung nghiên cứu trong nhiều năm nhằm thay thế các kim loại quý để làm chất xúc tác cho phản ứng oxy hóa hoàn toàn VOCs. Là chất xúc tác dạng oxit của các kim loại thuộc nhóm III-B đến nhóm II-B (3-12) trong bảng tuần hoàn (ví dụ: Ti, Cu, Mn, Al, Ce, Co, Fe,…), các oxit này được đặc trưng bởi độ linh động của electron cao và trạng thái oxy hóa dương. Các xúc tác này thường ít linh động hơn các xúc tác kim loại quý nhưng có khả năng chống nhiễm độc cao hơn. 9 Dựa trên các tính chất hóa lý điện tử khác nhau, oxit kim loại có thể phân thành hai loại: loại n và loại p. Các oxit kim loại đa hóa trị loại p như Mn, Cr, Fe, Cu,… được cho là có hoạt tính cao cho việc hấp thụ hóa học các oxy di động. Ngoại trừ V2O5, kim loại loại n không phải là chất xúc tác có hoạt tính cao do có thừa electron trong mạng tinh thể. Một số oxit hỗn hợp thể hiện hoạt tính cao hơn các oxit đơn lẻ trong hầu hết các phản ứng oxy hóa, nguyên nhân được cho là do độ linh động của oxy hoặc các trung tâm hoạt hóa trên bề mặt cao hơn cũng như sự vận chuyển điện tử thông qua mạng tinh thể cho nhiều mức năng lượng của kim loại và nhiều anion oxy liên kết [27]. Đối với các xúc tác dị thể, diện tích bề mặt riêng có ảnh hưởng tích cực đến hoạt tính và độ bền của xúc tác [30]. Các oxit kim loại hỗn hợp thường có diện tích bề mặt riêng lớn hơn các oxit riêng lẻ, từ đó có nhiều trung tâm hoạt động cho phản ứng oxy hóa diễn ra. Các phản ứng oxy hóa khử với sự vận chuyển điện tử giữa các oxit kim loại, chất phản ứng và chất trung gian được hình thành. Hầu hết các quá trình này diễn ra được giải thích theo cơ chế Mars–van Krevelen (MVK) (hình 1.3). C C R L T. DU Hình 1. 3: Sơ đồ cơ chế Mars-van Krevelen (MVK) Theo cơ chế Mars – van Krevelen, phản ứng oxy hóa sử dụng xúc tác oxit kim loại diễn ra theo hai bước: Bước 1: Các VOCs (RH) bị oxy hóa bởi oxy trên bề mặt và sau đó rời khỏi các lỗ trống oxy (oxygen vacancy), tức là các tâm kim loại bị khử. Bước 2: Các lỗ trống oxy bị loại bỏ khi các tâm kim loại lại bị oxy hóa. Nhiều nghiên cứu đã chỉ ra rằng, sử dụng oxit kim loại có hiệu quả oxy hóa VOCs kém hơn kim loại quý ở nhiệt độ thấp nhưng lại có khả năng chống lại ngộ độc xúc tác. Đặc biệt là với các VOCs có chứa lưu huỳnh và clo [26]. 1.5. Các phương pháp tổng hợp xúc tác oxit kim loại Quá trình hình thành chất xúc tác bao gồm những giai đoạn sau:  Điều chế các tiền chất rắn, trong đó bên cạnh các hợp phần của xúc tác còn có một số chất phải loại ra khỏi chất xúc tác trong các giai đoạn sau.  Chuyển hóa các hợp chất là thành phần đặc biệt của xúc tác. Từ các chất ban đầu,
- Xem thêm -

Tài liệu liên quan