Đăng ký Đăng nhập
Trang chủ Nghiên cứu tính chất quang của vật liệu chế tạo và mô phỏng một vài thông số tro...

Tài liệu Nghiên cứu tính chất quang của vật liệu chế tạo và mô phỏng một vài thông số trong pin mặt trời hữu cơ (tt)

.PDF
54
184
58

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ Nguyễn Văn Giang NGHIÊN CỨU TÍNH CHẤT QUANG CỦA VẬT LIỆU CHẾ TẠO VÀ MÔ PHỎNG MỘT VÀI THÔNG SỐ TRONG PIN MẶT TRỜI HỮU CƠ KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY Ngành: Vật Lý Kỹ Thuật HÀ NỘI - 2011 1 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ Nguyễn Văn Giang NGHIÊN CỨU TÍNH CHẤT QUANG CỦA VẬT LIỆU CHẾ TẠO VÀ MÔ PHỎNG MỘT VÀI THÔNG SỐ TRONG PIN MẶT TRỜI HỮU CƠ KHOÁ LUẬN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY Ngành: Vật Lý Kỹ Thuật Cán bộ hƣớng dẫn: Cán bộ đồng hƣớng dẫn: TS. Đinh Văn Châu Th.S. Đỗ Ngọc Chung HÀ NỘI – 2011 2 (chữ hoa, 12pt, đậm, căn giữa) LỜI CẢM ƠN Tôi xin gửi lời cảm ơn chân thành nhất tới tất cả những thầy cô và mọi người đã giúp đỡ tôi hoàn thành khóa luận này! Lời đầu tiên tôi xin gửi lời cảm ơn đến TS. Đinh Văn Châu – Khoa Vật lý kỹ thuật & Công nghệ nano là thầy hướng dẫn của tôi. Thầy đã định hướng cho tôi biết hướng đi của đề tài và chỉ cho tôi các bước thực hiện công việc. Thầy luôn ưu ái dành nhiều thời gian để giảng giải cho tôi về các hiện tượng xảy ra trong quá trình thực nghiệm và giúp tôi tìm giải pháp để mang lại các kết quả tốt hơn. Ngoài ra thầy cũng giúp đỡ tôi rất nhiều để tôi có thể hoàn thiện luận văn này. Tôi xin gửi lời cảm ơn đến ThS. Đỗ Ngọc Chung – Khoa Vật lý kỹ thuật & Công nghệ nano là cán bộ đồng hướng dẫn của tôi. Anh là người trực tiếp hướng dẫn tôi trong quá trình làm thực nghiệm. Anh luôn chỉ bảo tôi tận tình từ các công việc nhỏ nhất và ngoài ra còn cho tôi nhiều kinh nghiệm trong cuộc sống. Tôi cũng xin cảm ơn các thầy cô, cán bộ tại Khoa Vật lý kỹ thật & Công nghệ nano đã tạo mọi điều kiện giúp đỡ tôi thực hiện công việc của mình. Cuối cùng tôi xin cảm ơn tất cả người thân, bạn bè đã luôn ủng hộ và động viên tôi khi tôi thực hiện khóa luận này. Xin chúc tất cả mọi người luôn mạnh khỏe và đạt được nhiều thành công! 3 TÓM TẮT NỘI DUNG Khóa luận cung cấp cái nhìn tổng quan về pin mặt trời, tính chất quang của một vài vật liệu phổ biến sử dụng để chế tạo pin mặt trời hữu cơ, cũng như mô phỏng sự phân bố của từ trường ánh sáng, sự suy hao năng lượng ánh sáng khi pin hoạt động. Một số pin có cấu trúc đơn lớp (ITO/MEH-PPV/Al) đã được chế tạo. Lớp bán dẫn hữu cơ MEH-PPV trong pin là nơi diễn ra sự hình thành các exiton, tiền đề để chuyển hóa quang năng thành điện năng. Phép đo IV trong điều kiện không chiếu sáng được thực hiện đối với 2 mẫu pin có độ dày lớp hoạt quang khác nhau. 4 LỜI CAM ĐOAN Tôi xin cam đoan tất cả các tài liệu tham khảo được tôi sử dụng trong khóa luận này đều đã được tôi chú thích bằng ký hiệu và có danh sách đi kèm đầy đủ. Tôi xin chịu mọi trách nhiệm nếu trích dẫn kết quả của tác giả khác mà không chú thích rõ ràng! 5 MỤC LỤC MỞ ĐẦU .............................................................................................................................................. 1 CHƢƠNG 1: TỔNG QUAN VỀ PIN MẶT TRỜI ....................................................................... 3 1.1. Giới thiệu ....................................................................................................................................... 3 1.2. Cấu trúc của pin mặt trời hữu cơ.................................................................................................. 6 1.3. Nguyên lý hoạt động của pin mặt trời hữu cơ ............................................................................. 8 1.4. Phân loại pin mặt trời hữu cơ ....................................................................................................... 9 1.5. Vật liệu polymer dẫn trong pin mặt trời hữu cơ ....................................................................... 11 1.6. Exciton ......................................................................................................................................... 13 1.7. Các đặc tính của pin mặt trời hữu cơ ......................................................................................... 15 1.8. Mô phỏng sự suy giảm quang năng bên trong pin mặt trời hữu cơ ......................................... 18 CHƢƠNG 2: PHƢƠNG PHÁP CHẾ TẠO VÀ NGHIÊN CỨU .............................................. 24 2.1. Vật liệu và thiết bị ....................................................................................................................... 24 2.2. Quy trình chế tạo pin mặt trời đơn lớp ...................................................................................... 25 2.3. Phương pháp nghiên cứu ............................................................................................................ 27 CHƢƠNG 3: KẾT QUẢ VÀ ĐÁNH GIÁ .................................................................................... 31 3.1. Tính chất quang của vật liệu ...................................................................................................... 31 1. Điện cực truyền qua ITO ............................................................................................................ 31 2. Màng hoạt quang MEH-PPV ..................................................................................................... 33 3. Điện cực Nhôm ........................................................................................................................... 37 3.2. Mô phỏng suy hao năng lượng phân bố mật độ exiton ............................................................ 37 1. Hệ số hấp thụ và phản xạ của pin .............................................................................................. 38 2. Sự phân bố cường độ điện trường và suy hao năng lượng trong lớp MEH-PPV ................... 41 3.3. Đường đặc tính I-V của pin ........................................................................................................ 43 KẾT LUẬN ....................................................................................................................................... 45 TÀI LIỆU THAM KHẢO ............................................................................................................... 46 6 DANH MỤC CÁC TỪ VIẾT TẮT -A - CB Electron acceptor (chất nhận điện tử) Conduction band (vùng dẫn) -D - EA Electron donor (chất cho điện tử) Electron affinity (ái lực điện tử) - ECD Equivalent circuit diagram (sơ đồ mạch điện tương đương) - FF Fillfactor (hệ số điền đầy) - HOMO Highest occupied molecular orbital (quỹ đạo phân tử lấp đầy cao nhất) - IP - ITO Ionisation potential (thế ion hóa) Indium tin oxide - LED - LUMO Light emitting device Lowest unoccupied molecular orbital (quỹ đạo phân tử chưa lấp đầy thấp nhất) - MEH-PPV - PPV Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] Poly(para-phenylene vinylene) - PVK - VB Poly(vinyl carbazole) Valence band (vùng hóa trị) 7 MỞ ĐẦU Hiện nay, trên thế giới cũng như ở nước ta, nhu cầu sử dụng năng lượng ngày càng tăng. Trong khi đó, các nguồn năng lượng truyền thống như hóa thạch đã được khai thác phần lớn và cũng là nguyên nhân chính gây ra sự tăng nồng độ cacbon dioxit (CO2) trong môi trường. Ngày nay có khoảng 20.1012kg carbon dioxide được đưa vào bầu khí quyển mỗi năm, chủ yếu là do đốt cháy các nhiên liệu hóa thạch [20,8,25]. Các cây xanh ngày nay không có khả năng hấp thụ lượng lớn CO2 tăng thêm này. Kết quả là nồng độ CO2 trong khí quyển làm gia tăng đáng kể hiệu ứng nhà kính điều mà sẽ làm tăng nhiệt độ bề mặt trái đất - tới 0.6-7.00C năm 2100 [8]. Nhiệt độ bề mặt trái đất đã tăng 0.3-0.6oC từ cuối thế kỷ 19 và mực nước biển đã tăng 10-25cm, hầu hết do các hoạt động của con người [8]. Hậu quả của sự thay đổi nhiệt độ này đã gia tăng tần suất và mức độ nghiêm trọng của thiên tai [25] và có thể có tác động tàn phá nhiều hơn đối với con người và các dạng sống khác trên trái đất trong thập kỷ tới. Chính vì thế một yêu cầu cấp thiết đang đặt ra với chúng ta là tìm ra các nguồn năng lượng mới và “sạch”. Trong cuộc chạy đua tìm kiếm năng lượng tái tạo, việc chế tạo pin dựa trên sự biến đổi năng lượng bức xạ mặt trời thành điện năng, đang là một hướng đi mới trên thế giới. Pin mặt trời hiện có trên thị trường được chế tạo từ các vật liệu vô cơ như Silic. Với vật liệu này, người ta có thể chế tạo được pin có hiệu suất cao (khoảng 15%). Tuy nhiên, pin mặt trời từ tinh thể silic có giá thành cao, yêu cầu kỹ thuật lại tinh vi. Hiện nay, pin mặt trời hữu cơ đang thu hút sự quan tâm của giới khoa học. Mặc dù hiệu suất của loại pin này vẫn thấp hơn nhiều so với pin mặt trời từ silicon tinh thể (hiệu suất khoảng 5%), nhưng chúng có nhiều ưu điểm như có thể được sản xuất dễ dàng, giá rẻ và ít tác động đến môi trường. Với các lý do trên chúng tôi lựa chọn thực hiện khóa luận: “Khảo sát tính chất quang của vật liệu chế tạo và mô phỏng một vài thông số trong pin mặt trời hữu cơ ” a. Nội dung nghiên cứu: - Tính chất quang, điện của vật liệu chế tạo pin mặt trời hữu cơ: điện cực truyền qua ITO, lớp hoạt quang MEH-PPV, điện cực anode nhôm. - Mô phỏng sự phân bố điện trường ánh sáng, sự suy giảm năng lượng ánh sáng bên trong pin. - Chế tạo tế bào pin mặt trời cấu trúc đơn lớp ITO/MEH-PPV/Al và khảo sát tính chất điện của linh kiện. 8 b. Phƣơng pháp nghiên cứu: - Lý thuyết: Mô phỏng sự suy biến năng lượng ánh sáng, sự phân bố điện trường ánh sáng trong pin, tương quan giữ hấp thụ và phản xạ trên bề mặt điện cực truyền qua của pin dựa theo sự thay đổi chiết suất phức của từng lớp vật liệu khi bước sóng ánh sáng tới thay đổi. - Thực nghiệm: Màng polymer được được chế tạo bằng phương pháp quay phủ li tâm (spin-coating). Màng kim loại nhôm (làm điện cực catot trong tế bào pin) được chế tạo bằng phương pháp bốc bay nhiệt trong chân không. Cấu trúc hình thái học bề mặt của màng polymer được khảo sát thông qua các phép đo như chụp ảnh kính hiển vi điện tử quét trường (FESEM), kính hiển vi lực nguyên tử (AFM). Tính chất quang của màng MEH-PPV được nghiên cứu qua phép đo phổ hấp thụ. Tính chất điện của pin mặt trời sau khi chế tạo được đánh giá qua phép đo đặc tính IV c. Ý nghĩa của đề tài: Pin mặt trời hữu cơ là một giải pháp có nhiều triển vọng vì sử dụng công nghệ đơn giản và giá thành thấp hơn nhiều so với các pin mặt trời vô cơ. Vì vậy việc nghiên cứu chế tạo các pin mặt trời hữu cơ là một hướng đi đúng đắn. Tuy mới chỉ chế tạo các pin với cấu trúc đơn giản nhưng các nội dung của đề tài là rất đáng quan tâm vì đây là một hướng đi mới và chưa phổ biến tại Việt Nam. 9 CHƢƠNG 1 TỔNG QUAN VỀ PIN MẶT TRỜI 1.1 Giới thiệu Việc chuyển đổi từ ánh sáng mặt trời thành dòng điện đòi hỏi sự hình thành của cả điện tích âm và điện tích dương cũng như một lực điều khiển có thể đẩy các điện tích đó qua mạch điện ngoài. Khi được kết nối với mạch điện bên ngoài, bất kỳ thiết bị điện nào, chẳng hạn một màn hình máy tính hay một động cơ của máy bơm nước, có thể sử dụng năng lượng mặt trời đã được chuyển đổi. Trên thực tế, một tế bào năng lượng mặt trời (hình 1.1) có thể được hình dung như một cái bơm mà ánh sáng mặt trời điều khiển electron: Chiều cao tối đa mà các electron có thể được “bơm” tương đương với điện áp cao nhất mà tế bào năng lượng mặt trời có thể đạt được. Dòng điện lớn nhất được quyết định bởi “tốc độ bơm”. Hình 1.1: Cấu tạo của một tế bào năng lượng mặt trời điển hình. Lớp màng hữu cơ (Organic Film) có thể là một hoặc nhiều lớp bán dẫn cũng có thể là một hỗn hợp hay một tổ hợp của chúng. Giả sử “bơm” có thể đẩy 100 electron/s từ vùng hóa trị (VB) lên vùng dẫn (CB), dòng liên tục cao nhất có thể của các điện tử chạy qua mạch ngoài sau đó cũng là 100 electron/s. Nếu dòng điện chạy qua mạch ngoài bị giảm đi bởi điện trở tải – ví dụ còn 80 electron/s thì 20 electron/s còn lại sẽ rơi trở lại vùng hóa trị trước khi chúng có thể tách khỏi tế bào và được gọi là dòng rò [5]. Trong các vật liệu bán dẫn, thực tế, dòng rò như trên được hiểu đơn giản là do sự tái tổ hợp của các hạt tải bị kích thích. Dòng rò thường chủ yếu gây ra bởi các khiếm khuyết hoặc bởi sai hỏng so với cấu trúc của vật liệu bán dẫn lý tưởng. Điều này làm tăng sự xuất hiện của các mức năng lượng được cho phép trong vùng cấm. Chỉ khi nào không có những sai hỏng, bức xạ tái tổ hợp mới xuất hiện trên phạm vi 10 rộng hơn, và duy trì như một kênh suy giảm vì nó không yêu cầu bất kì mức năng lượng trung gian nào [5]. Các giả thiết về sự vắng mặt của hiện tượng tái hợp không bức xạ cho phép dự đoán về giới hạn trên của hiệu suất chuyển đổi năng lượng của chất bán dẫn với độ rộng vùng cấm cho trước cũng như điện áp hở mạch. Hình 1.2 mô tả các bước chuyển đổi của photon thành các hạt tải tách biệt được diễn ra trong tế bào năng lượng mặt trời hữu cơ. Nó cũng cho thấy cơ chế mất mát liên quan và sự liên hệ với số lượng điện được sử dụng trong sơ đồ mạch điện tương đương (Equivalance Circuit Diagram - ECD). Photon tới Bƣớc chuyển đổi Cơ chế mất mát - Phản xạ (IL) - Truyền qua (IL) Hấp thụ ánh sáng Tạo thành Exciton - Tái hợp của các exciton (I0) Khuếch tán exciton Phân tách hạt tải - Truyền exciton với sự tái hợp của exciton sau đó (I0) - Không có phân tách hạt tải và sau đó là tái hợp của exciton (I0) Vận chuyển hạt tải - Tái hợp của các hạt tải (Rsh) - Độ linh động giới hạn của hạt tải (Rs) - Tái hợp gần các điện cực (Rsh2) - Rào thế tại các điện cực (Rs, I0) Thu thập hạt tải Các hạt tải đã phân tách tại các điện cực Hình 1.2: Các bước chuyển đổi chi tiết và cơ chế mất mát trong tế bào năng lượng mặt trời. Các ký hiệu trong dấu ( ) thể hiện số lượng cho phép cho cơ chế mất mát cụ thể trong ECD Trong chất bán dẫn hữu cơ, việc hấp thụ photon dẫn tới việc tạo ra các cặp điện tử và lỗ trống liên kết (exciton) có xác suất cao hơn là hình thành các hạt tải tự do. Các exciton đó mang năng lượng nhưng không thể hình thành nên điện tích tổng có thể khuếch tán vào khu vực phân tách nơi mà những hạt mang điện được hình thành. Các hạt tải đó cần di chuyển tới các điện cực tương ứng: lỗ trống di chuyển tới cực âm và 11 điện tử tới cực dương để tạo ra điện áp và sẵn sàng cung cấp cho mạch ngoài. Quá trình chuyển hóa quang năng thành điện năng diễn ra như sau: 1. Sự hấp thụ photon Trong hầu hết các thiết bị hữu cơ chỉ một phần nhỏ ánh sáng tới được hấp thụ vì những lí do sau đây: - Độ rộng vùng cấm của vật liệu bán dẫn hữu cơ quá lớn. Độ rộng vùng cấm chỉ khoảng 1.1eV (1100nm) là phù hợp để hấp thụ 77% bức xạ mặt trời trên trái đất [26] trong khi độ rộng vùng cấm của các polymer dẫn thường lớn hơn 2eV. - Lớp hữu cơ quá mỏng. Do ít hạt tải và độ linh động của exciton thấp, nên yêu cầu độ dày của lớp bán dẫn phải dưới 100nm. May mắn là hệ số hấp thụ của vật liệu hữu cơ thường lớn hơn các bán dẫn vô cơ như Silic do đó chỉ khoảng 100nm là cần thiết để hấp thụ khoảng 60 – 90% nếu hiệu ứng phản xạ ngược được sử dụng. - Sự phản xạ. Sự mất mát do phản xạ hầu như khá đáng kể nhưng ít được khảo sát trong những vật liệu hữu cơ. Khảo sát các tính chất của vật liệu quang điện có thể sẽ cung cấp những hiểu biết về tác động của chúng tới sự suy hao do hấp thụ. Phủ lớp chống phản xạ như đã được sử dụng trong các thiết bị vô cơ đã chứng minh vai trò của việc sử dụng biện pháp ngăn chặn hiệu ứng phản xạ. 2. Sự khuếch tán exciton Điều kiện lý tưởng là tất cả exciton được kích thích phải tới được địa điểm phân tách. Vì những vị trí phân tách có thể nằm tại điểm cuối của vật liệu bán dẫn, chiều dài khuếch tán của chúng ít nhất nên bằng chiều dài được yêu cầu (cho sự hấp thụ đầy đủ) – nếu không thì chúng tái hợp với nhau và như vậy photon tới sẽ bị lãng phí [5]. Khoảng khuếch tán exciton trong vật liệu polymer thường vào khoảng 10nm [11,10, 26, 2]. Tuy nhiên một số chất màu như perylenes được cho là có chiều dài khuếch tán exciton vào khoảng 100nm [15]. 3. Sự phân tách hạt tải Phân tách hạt tải xảy ra ở bề mặt tiếp xúc giữa chất bán dẫn với kim loại, tạp chất (ví dụ Oxy) hay giữa các kim loại với đủ sự khác biệt về ái lực điện tử (EA) và điện thế ion hóa (IA). Nếu sự khác biệt của lớp IA và EA là không đủ, các exciton có thể 12 chỉ nhảy lên vật liệu có độ rộng vùng cấm nhỏ hơn mà không phân tách thành các điện tích. Cuối cùng nó sẽ tái hợp lại mà không có sự đóng góp hạt tải vào dòng photon. 4. Vận chuyển hạt tải Việc vận chuyển các hạt tải bị ảnh hưởng bởi sự tái tổ hợp trong khi đi đến các điện cực. Ngoài ra, việc tương tác với các nguyên tử hay các hạt tải khác cũng làm chậm tốc độ di chuyển do đó làm hạn chế dòng. 5. Sự thu thập hạt tải Để xâm nhập vào vật liệu điện cực với công thoát tương đối thấp (ví dụ Al, Ca) các hạt tải thường phải vượt qua hàng rào thế của lớp tiếp xúc. Ngoài ra, kim loại có thể đã hình thành một sự ngăn chặn liên kết với chất bán dẫn vì thế các hạt tải không thể ngay lập tức truyền tới lớp kim loại. Chúng ta lưu ý là cả exciton và các điện tích vận chuyển trong vật liệu hữu cơ thường đòi hỏi “nhảy” từ phân tử này sang phân tử khác. Do đó, sự ken xít của phân tử là một giả định để giảm độ rộng của hiệu ứng rào cản phân tử .Cấu trúc phẳng của phân tử sẽ dẫn đến những đặc tính vận chuyển tốt hơn những cấu trúc cồng kềnh 3 chiều. Cũng cần lưu ý là việc ken xít cũng làm tăng hệ số hấp thụ [5].. Để đáp ứng những đòi hỏi riêng của hiệu quả chuyển đổi photon thành các điện tích, các thiết bị với cấu trúc khác nhau đã được phát triển. 1.2 Cấu trúc của pin mặt trời hữu cơ Hình 1.3 - Cấu trúc chung của 1 tế bào năng lượng mặt trời Nói chung, pin mặt trời có cấu trúc gồm 3 phần chính: Anode, katode (điện cực), tấm đế và lớp hoạt quang (Photoactive layer - chất vô cơ cho pin mặt trời vô cơ và chất hữu cơ với pin mặt trời hữu cơ) như được mô tả trong Hình 1.3. Các lớp đệm có thể bổ sung để tăng chất lượng của pin. 13 1. Tấm đế (substrate) Được làm từ nhựa hoặc thủy tinh để có thể nâng đỡ được pin và trong suốt (vì cần để cho ánh sáng có thể truyền qua được dễ dàng). 2. Lớp anode (phải trong suốt) - Lớp anode yêu cầu phải được chế tạo bằng vật liệu trong suốt, có rào thế ΔEa giữa anode với lớp màng polymer tiếp xúc là nhỏ. Thông thường, để làm giảm rào thế ΔEa, công thoát cho anode phải được nâng lên bằng cách sử dụng các vật liệu phù hợp. - Vật liệu dùng để chế tạo anode phải có độ ổn định cao theo thời gian. Vật liệu thường được dùng là ITO (là hỗn hợp của In2O3 và SnO2 theo tỷ lệ In2O3/ SnO2 = 9 / 1). 3. Lớp truyền lỗ trống - Có tác dụng là tăng cường quá trình truyền hạt tải lỗ trống ra các cực, góp phần kéo dài thời gian sống cho linh kiện. - Yêu cầu với vật liệu truyền lỗ trống này là có nhiệt độ chuyển pha cao (Tg>200oC) để tăng thời gian sống cho linh kiện, có khả năng truyền hạt tải cao ( = 10-3 cm2/v.s ), và có khả năng hòa tan trong các dung môi hữu cơ. - Vật liệu thường được dùng là: PVK hoặc PEDOT. 4. Lớp truyền điện tử Hình 1.4 - Phân mức năng lượng giữa lớp truyền điện tử và cathode - Có tác dụng tăng cường quá trình truyền dẫn điện tử. - Đảm bảo sự cân bằng hạt tải. - Lớp này phải ổn định với nhiệt độ và các tác nhân hóa học. - Vật liệu thường được dùng là : LiF. 5. Lớp quang hoạt - Đây là nơi hạt tải có độ linh động cao nên chúng phải có độ dày thích hợp để đảm bảo exciton không bị dập tắt. 14 - Vật liệu yêu cầu có sự ổn định với nhiệt độ và các tác nhân hóa học, có khả năng truyền điện tử tốt, và phát ra phổ dòng điện chạy trong vật liệu. - Vật liệu thường được dùng cho lớp quang hoạt là: PPV, MEHPPV hoặc Alq3. 6. Lớp cathode - Cathode có thể phản xạ ánh sáng và cần thỏa mãn rào thế ΔEc giữa cathode và lớp màng polymer tiếp xúc là nhỏ nhất. - Vật liệu thường sử dụng để chế tạo cathode là : Nhôm (Al), hoặc hợp kim Nhôm - Mage (Mg/ Al) = 10/ 1. Hỗn hợp này thường được dùng do khả năng chống oxy hoá, và ít bị ảnh hưởng của độ ẩm môi trường. - Yêu cầu vật liệu làm cathode phải có công thoát thấp, dễ bốc bay trong chân không. 1.3 Nguyên lý hoạt động của pin mặt trời hữu cơ Cơ chế biến đổi năng lượng mặt trời thành dòng điện trong pin nói chung xảy ra theo các bước sau: - Điện tử bị quang tử kích thích nhảy lên trạng thái kích thích hình thành nên exiton. Vì điện tử có điện tích âm (-) và lỗ trống mang điện dương (+) tạo nên cặp âm dương (-)(+), hay là lỗ trống - điện tử (exciton), chúng liên kết với nhau do lực hút tĩnh điện. - Cặp (+)(-) phải được tách rời để điện tử hoàn toàn tự do đi lại tạo ra dòng điện. Các exciton sẽ bị phân tách thành điện tử, lỗ trống tự do tại các địa điểm cụ thể nào đó trong vật liệu hay bề mặt biên giữa vật liệu và các tạp chất (oxy, hydro, v.v) hoặc bề mặt biên giữa vật liệu và các lớp vật liệu khác. Vùng exciton bị phân tách thành điện tử, lỗ trống riêng rẽ gọi là vùng phân tách (dissociation). Sau khi phân tách, điện tử sẽ di động trong vật liệu tiến đến cực dương và lỗ trống di động trong vật liệu tiến đến cực âm. Dòng điện xuất hiện. 15 Hình 1.5- Quang tử trong ánh sáng mặt trời "đánh bật" và nâng điện tử lên dải dẫn điện để lại lỗ trống (+) ở dải hóa trị. Cặp (+)(-) (lỗ trống - điện tử) còn gọi là exciton. Hình 1.6 - Sơ đồ dịch chuyển điện tử trong polymer:a- Polyme hấp thụ ánh bức xạ mặt trời tạo cặp exiton khuyếch tán tới bề mặt chung donor – acceptor; b-Tại bề mặt tiếp xúc, điện tử chuyển tới acceptor, tạo cặp điện tử - lỗ trống; c- Sự phân tách cặp điện tử - lỗ trống tạo các hạt mang điện tự do; d- Các hạt mang điện tự do dịch chuyển theo các pha tới các điện cực. 1.4 Phân loại pin mặt trời hữu cơ Theo cấu trúc, pin mặt trời hữu cơ được phân theo 4 loại sau: 16 1. Cấu trúc đơn lớp Hình 1.7 - Cấu trúc đơn lớp của pin mặt trời Cấu trúc này chỉ bao gồm một vật liệu bán dẫn và thường được gọi tắt là thiết bị kiểu Schottky hay điốt Schottky khi mà sự phân tách hạt tải xảy ra ở lớp tiếp xúc với một điện cực trong khi lớp tiếp xúc với bề mặt kia có tính chất ohmics (tính dẫn điện) [5]. Cấu trúc kiểu này khá đơn giản, miền hoạt quang (photoactive) thường rất mỏng và hiệu xuất bị suy giảm do các hạt tải điện khi di chuyển qua vật liệu bị mất mát do hiện tượng tái tổ hợp. 2. Cấu trúc 2 lớp Hình 1.8 - Cấu trúc hai lớp của pin mặt trời Ưu điểm của cấu trúc này là giảm hiện tượng tái hợp của các hạt tải điện do việc giảm quãng đường di chuyển của chúng. Hạn chế của cấu trúc này là bề mặt tiếp xúc nhỏ, giảm hiệu xuất phân tách exciton và do vậy làm giảm hiệu xuất chuyển hóa quang năng thành điện năng của pin. 3. Cấu trúc hỗn hợp Hình 1.9 - Cấu trúc hỗn hợp của pin mặt trời 17 Cấu trúc này khắc phục nhược điểm của cấu trúc 2 lớp. Nhờ vậy, hiệu xuất chuyển hóa của pin được cải thiện do xác suất exciton di chuyển đến vùng phân tách cũng như phân tách thành các hạt mang điện rất cao. 4. Cấu trúc nhiều lớp Hình 1.10 - Pin mặt trời cấu trúc nhiều lớp. Đây là cấu trúc mới được phát triển nhằm tận dụng ưu thế của các cấu trúc đã trình bày ở trên. Đối với cấu trúc này, việc bổ sung lớp truyền tải giữa điện cực và lớp quang hoạt làm hiệu xuất truyền hạt tải đến các điện cực, do vậy, hiệu suất của pin được cải thiện. Hạn chế của cấu trúc này là một vài tính chất cơ học của vật liệu bán dẫn hữu cơ cần được đáp ứng (nhiệt độ chuyển pha thấp) để tạo thành lớp trộn lẫn. 1.5 Vật liệu polymer dẫn trong pin mặt trời hữu cơ 1. Định nghĩa Polymer dẫn điện là hợp chất hữu cơ có phân tử được cấu tạo từ các vòng benzene, trong đó các liên kết đơn C-C và đôi C=C của các nguyên tử cacbon luân phiên kế tiếp nhau. Có thể nói rằng polymer dẫn điện là những đồng đẳng của benzene. Liên kết giữa các phân tử được thực hiện bằng lực Van der Waals. Do cấu trúc của vòng benzene nên trong phân tử polymer dẫn điện có rất nhiều liên kết đôi (hay còn gọi là liên kết π) kém bền vững dẫn đến trạng thái bất định xứ của điện tử dọc chuỗi polymer. Các điện tử π có nhiều hoạt tính hóa học, rất dễ phản ứng nếu có điều kiện thích hợp, chỉ cần một năng lượng nhỏ cũng đủ kích hoạt điện tử π sang trạng thái khác. Do đó, các tính chất cơ bản trong đó có khả năng dẫn điện của polymer dẫn đều có nguồn gốc từ những điện tử π linh động. 18 Hình 1.11 - Cấu trúc hóa học của một số loại polymer dẫn. 2. Cấu trúc vùng năng lượng Sự chồng chập quỹ đạo của điện tử trong liên kết π dẫn đến việc năng lượng của điện tử trong liên kết π tách thành hai mức năng lượng: mức năng lượng liên kết π và mức năng lượng phản liên kết π*. Mức năng lượng π được gọi là mức HOMO, mức năng lượng π* được gọi là mức LUMO. Sự tách thành hai mức năng lượng này dẫn đến sự hình thành hai vùng năng lượng tương ứng LUMO và HOMO, chúng có tính chất giống như vùng dẫn và vùng hoá trị của bán dẫn vô cơ (Hình 1.12) Hình 1.12 - Sơ đồ mức năng lượng LUMO, HOMO và độ rộng vùng cấm của polymer dẫn Khe năng lượng được tạo thành giữa hai mức HOMO và LUMO được gọi là vùng cấm của polymer dẫn điện. Các polymer dẫn điện khác nhau có độ rộng vùng cấm khác nhau. Khi nhận được những kích thích phù hợp từ photon, điện trường v.v, các điện tử có thể nhảy từ mức HOMO lên mức LUMO tạo ra cặp điện tử - lỗ trống (exciton). 19 3. MEH-PPV Hình 1.13 - Cấu trúc hóa học của MEH-PPV. MEH-PPV có độ rộng vùng cấm cỡ 2.1eV [24] và có khả năng hấp thụ tốt nhất bước sóng khoảng 500nm. Ngoài ra, MEH-PPV dễ bị hòa tan trong dung môi hữu cơ, dễ trải màng và không yêu cầu nhiệt độ cao. Chính vì các đặc điểm như trên, MEHPPV được lựa chọn làm vật liệu hoạt quang trong pin mặt trời cũng như vật liệu phát quang trong OLED. 1.6 Exciton Như đã biết, trong các tinh thể bán dẫn, exciton là cặp điện tử - lỗ trống được liên kết với nhau bằng tương tác Culông. Chúng được tạo ra khi vật liệu hoạt quang được chiếu sáng (photon). Năng lượng cần thiết để tạo ra chúng phải lớn hơn hoặc bằng độ rộng vùng cấm của vật liệu. Exciton là phần tử trung hoà điện có thể di chuyển tự do khắp tinh thể và truyền năng lượng kích thích, nhưng không truyền điện tích. Khái niệm exciton cũng được mở rộng cho các chất bán dẫn phân tử. Khi phân tử polymer dẫn nhận được năng lượng kích thích (ánh sáng điện trường, v.v) đủ lớn thì điện tử nằm trong vùng HOMO sẽ nhảy lên vùng LUMO, tạo ra điện tử trong vùng LUMO và để lại lỗ trống trong vùng HOMO. Do tương tác tĩnh điện, điện tử và lỗ trống liên kết với nhau tạo thành cặp gọi là exciton. Các exciton đó cần được phân tách ra trước khi hạt tải có thể được vận chuyển qua lớp màng và được thu lại tại các điện cực. Ví dụ sự phân tách exciton có thể xảy ra ở một bề mặt chỉnh lưu (liên kết Schottky) trong thiết bị đơn lớp hoặc là xảy ra ở bề mặt biên giữa vật liệu bán dẫn cho và nhận điện tử. Bề mặt đó càng lớn thì càng có nhiều exciton có thể chạm tới đó và bị phân tách. Ngoài ra, khoảng khuếch tán nhỏ của exciton (thường vào khoảng 10nm) so với chiều dày 20
- Xem thêm -

Tài liệu liên quan