Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu thuật toán điều khiển bám điểm công suất cực đại cho pin mặt trời...

Tài liệu Nghiên cứu thuật toán điều khiển bám điểm công suất cực đại cho pin mặt trời

.PDF
87
535
115

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI KHOA ĐIỆN BỘ MÔN TỰ ĐỘNG HOÁ XNCN ====o0o==== ĐỒ ÁN TỐT NGHIỆP ĐỀ TÀI: NGHIÊN CỨU THUẬT TOÁN ĐIỀU KHIỂN BÁM ĐIỂM CÔNG SUẤT CỰC ĐẠI CHO PIN MẶT TRỜI Trưởng bộ môn : TS. Trần Trọng Minh Giáo viên hướng dẫn : ThS. Nguyễn Duy Đỉnh Sinh viên thực hiện : Trương Văn Trọng Lớp : ĐK&TĐH – K54 MSSV : 20092846 Hà Nội, 6-2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HN ------------------------------- CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc --------------------- NHIỆM VỤ ĐỒ ÁN TỐT NGHIỆP Họ và tên sinh viên: Trương văn Trọng Khóa: 54 Khoa/Viện: Điện Số hiệu sinh viên: 20092846 Ngành: Tự động hóa 1. Đầu đề thiết kế: Nghiên cứu các thuật toán bám công suất cực đại cho pin mặt trời. 2. Các số liệu ban đầu: - Pin mặt trời có thông số kỹ thuật cơ bản ở điều kiện tiêu chuẩn: Công suất lớn nhất tại bức xạ 1000 w/m2 là 80W Điện áp tại điểm lớn nhất 18V. 3. Nội dung các phần thuyết minh và tính toán: - - Cấu tạo, nguyên lý hoạt động và ứng dụng của pin mặt trời Đặc tính I – V và P – V của pin mặt trời Ngyên lý dung hợp tải cho bộ biến đổi tăng áp Boost và các thuật toán INC và P&O theo hai phương pháp điều khiển trực tiếp chu kỳ nhiệm vụ D, điều khiển gián tiếp qua dòng điện tham chiếu. Tính toán giá trị của phần tử cho bộ biến đổi Boost và thiết kế bộ điều khiển dòng điện cho Boost. Mô phỏng hệ thống bám công suất cực đại cho hệ thống pin mặt trời. 4. Các bản vẽ, đồ thị ( ghi rõ các loại và kích thước bản vẽ ): Từ 4 tới 6 bản vẽ trên A0 5. Họ tên cán bộ hướng dẫn: ThS. Nguyễn Duy Đỉnh 6. Ngày giao nhiệm vụ đồ án:……………………………………………………………… 7. Ngày hoàn thành đồ án: 10/06/2014 Ngày ....... tháng ....... năm ..…. Trưởng bộ môn Cán bộ hướng dẫn ( Ký, ghi rõ họ, tên) ( Ký, ghi rõ họ, tên) Sinh viên đã hoàn thành và nộp đồ án tốt nghiệp ngày 12 tháng 06 năm 2014 Người duyệt Sinh viên ( Ký, ghi rõ họ, tên) ( Ký, ghi rõ họ, tên) LỜI CAM ĐOAN Em xin cam đoan bản đồ án tốt nghiệp: “ Nghiên cứu các thuật toán bám công suất cực đại cho pin mặt trời” do em tự thiết kế dưới sự hướng dẫn của thầy giáo là ThS. Nguyễn Duy Đỉnh. Các số liệu và kết quả là hoàn toàn đúng với thực tế. Để hoàn thành đồ án này em chỉ sử dụng những tài liệu được ghi trong danh mục tài liệu tham khảo và không sao chép hay sử dụng bất kỳ tài liệu nào khác. Nếu phát hiện có sự sao chép em xin chịu hoàn toàn trách nhiệm. Hà Nội, ngày 12 tháng 06 năm 2014 Sinh viên thực hiện Trương Văn Trọng MỤC LỤC DANH MỤC HÌNH VẼ...................................................................................................... i DANH MỤC BẢNG SỐ LIỆU ......................................................................................... ii DANH MỤC TỪ VIẾT TẮT ........................................................................................... iii LỜI NÓI ĐẦU .................................................................................................................... 1 Chương 1. TỔNG QUAN VỀ HỆ THỐNG PIN MẶT TRỜI ....................................... 2 1.1. Đối tượng và phạm vi nghiên cứu ............................................................................ 2 1.2. Giới thiệu về pin mặt trời ......................................................................................... 3 1.2.1. Định nghĩa ......................................................................................................... 3 1.2.2. Cấu tạo và nguyên lý hoạt động ........................................................................ 3 1.3. Đặc tính làm việc của pin mặt trời ........................................................................... 4 1.3.1. Sơ đồ tương đương của pin mặt trời.................................................................. 4 1.3.2. Đặc tính của pin mặt trời ................................................................................... 6 1.4. Những yếu tố bên ngoài ảnh hưởng tới pin mặt trời ................................................ 9 1.4.1. Ảnh hưởng của cường độ ánh sáng ................................................................... 9 1.4.2. Ảnh hưởng của nhiệt độ .................................................................................. 10 1.5. Ứng dụng của pin mặt trời ..................................................................................... 11 1.5.1. Tích hợp vào thiết bị........................................................................................ 11 1.5.2. Nguồn điện di động ......................................................................................... 11 1.5.3. Nguồn điện cho tòa nhà ................................................................................... 12 1.5.4. Nhà máy điện mặt trời ..................................................................................... 12 1.6. Đặc điểm chính của hệ thống Pin mặt trời ............................................................. 13 1.7. Kết luận .................................................................................................................. 13 Chương 2. THUẬT TOÁN BÁM ĐIỂM CÔNG SUẤT CỰC ĐẠI ............................ 14 2.1. Giới thiệu chung ..................................................................................................... 14 2.2. Nguyên lý dung hợp tải .......................................................................................... 15 2.3. Thuật toán xác định điểm có công suất cực đại ..................................................... 19 2.3.1. Phương pháp nhiễu loạn và quan sát P&O ...................................................... 19 2.3.2. Phương pháp điện dẫn gia tăng INC ............................................................... 23 2.4. Kết luận .................................................................................................................. 27 Chương 3. BỘ BIẾN ĐỔI DC – DC ............................................................................ 29 3.1. Yêu cầu thiết kế ...................................................................................................... 29 3.2. Bộ biến đổi Boost ................................................................................................... 29 3.3. Tính toán lựa chọn tham số cơ bản ........................................................................ 33 3.3.1. Tính toán cuộn cảm ......................................................................................... 34 3.3.2. Tính toán tụ lọc đầu ra ..................................................................................... 36 3.4. Mô hình và thiết kế bộ điều khiển .......................................................................... 37 3.4.1. Mô hình hóa bộ biến đổi Boost bằng phương pháp trung bình hóa mạng đóng cắt............................................................................................................................... 37 3.4.2. Cấu trúc bộ điều khiển..................................................................................... 43 3.4.3. Thiết kế bộ điều khiển dòng điện .................................................................... 43 3.5. Kết luận .................................................................................................................. 49 Chương 4. MÔ PHỎNG HỆ THỐNG BÁM CÔNG SUẤT CỰC ĐẠI .................... 50 4.1. Mô phỏng bộ biến đổi Boost .................................................................................. 50 4.2. So sánh hai thuật toán bám công suất cực đại ........................................................ 51 4.3. Mô phỏng thuật toán bám công suất cực đại theo phương pháp điều khiển trực tiếp chu kỳ nhiệm vụ D ghép nối với tải thuẩn trở............................................................... 53 4.3.1. Mô phỏng thuật toán P&O điều khiển trực tiếp chu kỳ nhiệm vụ D .............. 54 4.3.2. Mô phỏng thuật toán INC điều khiển trực tiếp chu kỳ nhiệm vụ.................... 56 4.3.3. So sánh hai thuật toán điều khiển trực tiếp chu kỳ nhiệm vụ P&O và INC .... 57 4.4. Mô phỏng thuật toán bám điểm công suất cực đại gián tiếp thông qua bộ điều khiển và ghép nối với tải thuần trở................................................................................ 58 4.4.1. Thuật toán P&O điều khiển gián tiếp .............................................................. 59 4.4.2. Thuật toán INC điều khiển gián tiếp ............................................................... 60 4.4.3. So sánh hai thuật toán điều khiển gián tiếp thông qua dòng tham chiếu INC và P&O ........................................................................................................................... 61 KẾT LUẬN ..................................................................................................................... 64 TÀI LIỆU THAM KHẢO.............................................................................................. 66 PHỤ LỤC ........................................................................................................................ 68 Danh mục hình vẽ DANH MỤC HÌNH VẼ Hình 1.1. Cấu trúc hệ thống bám công suất cực đại MPPT. ............................................... 2 Hình 1.2. Cấu tạo và nguyên lý hoạt động của pin mặt trời. ............................................... 3 Hình 1.3. Mạch tương đương của một tế bào pin mặt trời. ................................................. 4 Hình 1.4. Sơ đồ khối chi tiết bên trong của pin mặt trời. .................................................... 6 Hình 1.5. Mô hình lý tưởng của tế bao pin mặt trời. ........................................................... 6 Hình 1.6. Đặc tính I – V và P – V của pin mặt trời. ............................................................ 7 Hình 1.7. Mạch của pin mặt trời xét tới ảnh hưởng của Rsh . ............................................. 7 Hình 1.8. Đặc tính I – V khi có Rsh . .................................................................................. 8 Hình 1.9. Mạch của pin mặt trời xét tới ảnh hưởng của Rs . ............................................... 8 Hình 1.10. Đặc tính I – V khi có Rsh . ................................................................................ 8 Hình 1.11. Đặc tính I – V và P – V khi cường độ chiếu sáng thay đổi. ............................. 9 Hình 1.12. Đặc tính I – V và P – V của pin mặt trời khi nhiệt độ thay đổi từ 250C÷750C. ........................................................................................................................................... 10 Hình 1.13. Trạm vũ trụ ISS và Robot tự hành trên sao hỏa. ............................................. 11 Hình 1.14. Nguồn sạc di động và hệ thống điện trên tàu[15]............................................ 11 Hình 1.15. Nguồn điện năng lượng mặt trời cung cấp tòa nhà [15]. ................................. 12 Hình 1.16. Nhà máy điện sử dụng pin mặt trời [15]. ........................................................ 12 Hình 2.1. Bộ điều khiển MPPT trong hệ thống pin mặt trời. ............................................ 14 Hình 2.2. Pin mặt trời mắc trực tiếp với tải thuần trở có thể thay đổi giá trị. ................... 14 Hình 2.3. Đặc tính làm việc của pin mặt trời và của tải có thể thay đổi giá trị. ................ 15 Hình 2.4. Pin mặt trời kết nối với tải qua bộ biến đổi DC – DC. ...................................... 16 Hình 2.5. PMT với điện trở Rei. ......................................................................................... 17 Hình 2.6. Đặc tính của pin mặt trời và của tải thuần trở [4].............................................. 17 Hình 2.7. Khoảng làm việc của bộ biến đổi tăng áp Boost [4]. ........................................ 18 i Danh mục hình vẽ Hình 2.8. Đặc tính I – V khi bức xạ thay đổi và vị trí các điểm MPP. ............................. 19 Hình 2.9. Sơ đồ hệ thống MPPT điều khiển theo dòng điện tham chiếu Iref . ................... 20 Hình 2.10. Đường đặc tính quan hệ giữa công suất và dòng điện P – I của pin mặt trời. 20 Hình 2.11. Lưu đồ thuật toán P&O điều khiển thông qua dòng tham chiếu Iref ............... 21 Hình 2.12. Sơ đồ khối của phương pháp MPPT điều khiển trực tiếp chu kỳ nhiệm vụ D. ........................................................................................................................................... 22 Hình 2.13. Mối quan hệ giữa tổng trở vào của mạch boost với chu kỳ nhiệm vụ D. ....... 22 Hình 2.14. Lưu đồ thuật toán P&O điều khiển trực tiếp chu kỳ nhiệm vụ D. .................. 23 Hình 2.15. Đường đặc tính P – I và thuật toán INC. ....................................................... 24 Hình 2.16. Lưu đồ thuật toán INC điều khiển gián tiếp qua Iref. ....................................... 25 Hình 2.17. Lưu đồ thuật toán INC điều khiển trực tiếp hệ số D. ...................................... 26 Hình 3.1. Mô hình BBĐ boost........................................................................................... 29 Hình 3.2. Mạch tương đương khi Q1 mở và D khóa. ........................................................ 30 Hình 3.3. Mạch tương đương khi Q1 khóa và D mở. ........................................................ 30 Hình 3.4. Dạng sóng trên cuộn cảm L và dạng sóng trên tụ C.......................................... 31 Hình 3.5. Dạng sóng dòng điện trên cuộn cảm L. ............................................................. 32 Hình 3.6. Dạng sóng điện áp đầu ra. ................................................................................. 33 Hình 3.7. Hình dạng chung của lõi EE[2] ........................................................................... 35 Hình 3.8. Đặc tính thể hiện quan hệ ESR/ESR0 theo tần số [18]. ..................................... 37 Hình 3.9. Mạch đóng cắt trong sơ đồ BBĐ Boost............................................................. 38 Hình 3.10. Mô hình mạng đóng cắt. .................................................................................. 38 Hình 3.11. Dạng điện áp v1(t) trên MOSFET và dạng dòng i2(t) qua diode . ................... 38 Hình 3.12. Mô hình trung bình. ......................................................................................... 39 Hình 3.13. Mô hình trung bình mạng đóng cắt cho mạch boost. ...................................... 40 Hình 3.14. Mô hình trung bình cho mạch Boost. .............................................................. 40 Hình 3.15. Mô hình trung bình tín hiệu nhỏ cho mạch Boost. .......................................... 41 ii Danh mục hình vẽ Hình 3.16. Mô hình trung bình tín hiệu nhỏ cho mạch Boost khi loại vˆg  0 . ............... 41 Hình 3.17. a) Mô hình quy đổi về thứ cấp. b) laplace hóa mạch quy dổi. ....................... 41 Hình 3.18. Cấu trúc điều khiển dòng cho bộ biến đổi Boost. ........................................... 43 Hình 3.19. Cấu trúc bộ bù loại 2. ...................................................................................... 43 Hình 3.20. Sơ đồ điều khiển mạch vòng dòng điện. ......................................................... 46 Hình 3.21. Sơ đồ khối và dạng sóng của khối PWM. ....................................................... 46 Hình 3.22. Đồ thị bode của đối tượng dòng điện .............................................................. 47 Hình 3.23. Đồ thị bode của mạch vòng dòng điện sau khi được bù. ................................ 48 Hình 4.1. Sơ đồ mô phỏng BBĐ Boost. ............................................................................ 50 Hình 4.2. Diện áp trên cuộn cảm. ...................................................................................... 50 Hình 4.3. Dòng điện trên cuộn cảm. .................................................................................. 51 Hình 4.4. Điện áp ra trên tụ điện C.................................................................................... 51 Hình 4.5. dữ liệu bức xạ mặt trời dùng cho mô phỏng...................................................... 52 Hình 4.6. Dấu vết theo dõi điểm MPP trong ngày nhiều nắng (250C). ............................. 52 Hình 4.7. dữ liệu bức xạ mặt trời trong ngày nhiều mây. ................................................. 53 Hình 4.8. Dấu vết theo dõi điểm MPP trong ngày nhiều mây (250C). .............................. 53 Hình 4.9. Sơ đồ mô phỏng MPPT với thuật toán P&O điều khiển trực tiếp chu kỳ D. .... 54 Hình 4.10. Bức xạ mặt trời thay đổi. ................................................................................. 54 Hình 4.11. Thuật toán P&O với ∆D thay đổi và Ts cố định ............................................. 55 Hình 4.12. Thuật toán P&O với ∆D cố định và Ts thay đổi. ............................................ 55 Hình 4.13. Sơ đồ mô phỏng MPPT với thuật toán INC điều khiển trực tiếp chu kỳ D. ... 56 Hình 4.14.Thuật toán INC với ∆D thay đổi và Ts cố định. .............................................. 56 Hình 4.15. Mô phỏng INC với ∆D cố định và Ts thay đổi. .............................................. 57 Hình 4.16. So sánh thuật toán P&O và INC điều khiển gián tiếp với Ts không đổi......... 57 Hình 4.17. So sánh thuật toán P&O và INC điều khiển gián tiếp với ∆D không đổi. ...... 58 Hình 4.18. Mô phỏng thuật toán INC điều khiển trực tiếp. .............................................. 59 iii Danh mục hình vẽ Hình 4.19. Thuật toán P&O điều khiển gián tiếp với giá trị Ts không đổi. ...................... 59 Hình 4.20. Thuật toán P&O gián tiếp với Ts thay đổi và ∆I cố định. ............................... 60 Hình 4.21. Sơ đồ điều khiển bám công suất cực đại sử dụng INC gián tiếp..................... 60 Hình 4.22. Thuật toán INC điều khiển gián tiếp với Ts cố địn và ∆I thay đổi. ................ 61 Hình 4.23. Thuật toán INC với chu kỳ trính mẫu Ts thay dổi và ∆I cố định. ................... 61 Hình 4.24. So sánh hai thuật toán INC và P&O điều khiển gián tiếp với ∆I thay đổi. ..... 62 Hình 4.25. So sánh hai thuật toán INC và P&O điều khiển gián tiếp với Ts thay đổi. ..... 62 iv Danh mục bảng số liệu DANH MỤC BẢNG SỐ LIỆU Bảng 1.1. Thông số kỹ thuật của pin mặt trời [17]............................................................. 2 Bảng 4.1. Dữ liệu các điểm công suất cực đại ứng với các bức xạ khác nhau. ............... 54 ii Danh mục từ viết tắt DANH MỤC TỪ VIẾT TẮT PMT Pin mặt trời NLMT Năng lượng mặt trời KVL Kirchhoff's Voltage Law Định luật kirchhoff điện áp KCL Kirchhoff's Current Law Định luật kirchhoff dòng điện BBĐ Bộ biến đổi PWM Pulse Width Modulation Điều chế độ rộng xung MPP Maximum Power Point Điểm công suất lớn nhất MPPT Maximum Power Point Tracking Bám công suất cực đại P&O Purturb and Observer Nhiễu loạn và quan sát INC Incremental Conductance Điện dẫn gia tăng OPT Optimal Tối ưu iii Lời nói đầu LỜI NÓI ĐẦU Nhu cầu về năng lượng trong thời đại khoa học kỹ thuật không ngừng gia tăng. Tuy nghiên các nguồn năng lượng truyền thống đang được khai thác như : than đá, dầu mỏ, khí đốt, khí thiên nhiên và ngay cả thủy điện…đang ngày càng cạn kiệt. Không những thế chúng còn có tác hại xấu đối với môi trường như: gây ra ô nhiễm môi trường, ô nhiễm tiếng ồn, mưa axit, trái đất ấm dần lên, thủng tầng ozon... Do đó, việc tìm ra và khai thác các nguồn năng lượng mới như năng lượng hạt nhân, năng lượng địa nhiệt, năng lượng gió và năng lượng mặt trời… là rất cần thiết. Việc nghiên cứu năng lượng mặt trời ngày càng thu hút sự quan tâm của các nhà nghiên cứu, nhất là trong tình trạng thiếu hụt nghiêm trọng năng lượng hiện nay. Năng lượng mặt trời là nguồn năng lượng sạch, dồi dào, hoàn toàn miễn phí, không gây ô nhiễm môi trường và không gây ô nhiễm tiếng ồn … Hiện nay, năng lượng mặt trời đã dần dần đi vào cuộc sống của con người, chúng được áp dụng khá rộng rãi trong dân dụng và trong công nghiệp dưới nhiều hình thức khác nhau. Pin mặt trời có rất nhiều các ưu điểm ưu việt nhưng giá thành của tấm pin mặt trời còn đắt nên việc tăng hiệu suất và kéo dài tuổi thọ của pin trở thành một vấn đề rất quan trọng. Để tăng hiệu suất và kéo dài tuổi thọ của pin thì cần phải để hệ thống pin năng lượng mặt trời hoạt động ổn định tại điểm có công suất cực đại. Bởi vì, điều kiện tự nhiên bao gồm bức xạ mặt trời và nhiệt độ lại luôn thay đổi nên điểm làm cho hệ thống có công suất cực đại cũng thay đổi theo. Vì vậy, cần có một phương pháp nào đó để theo dõi được sự di chuyển của điểm có công suất cực đại và áp đặt cho hệ thống làm việc tại đó. Do đó nên em đã chọn đề tài: “ Nghiên cứu các thuật toán điều khiển bám công suất cực đại cho pin mặt trời ”. Đề tài này được trình bày trong 4 chương: Chương 1. Tổng quan về hệ thống pin mặt trời Chương 2. Thuật toán bám điểm công suất cực đại Chương 3. Bộ biến đổi DC – DC Chương 4. Mô phỏng hệ thống Trong quá trình thực hiện đồ án tốt nghiệp, em đã cố gắng tìm tòi, học hỏi và nghiên cứu kiến thức để hoàn thành bản đồ án. Do kinh nghiệm và kiến thức của bản thân còn nhiều hạn chế nên báo cáo đồ án tốt nghiệp này của em khó tránh khỏi những thiếu https://www.facebook.com/Mr.Trongbk 1 Lời nói đầu sót. Vậy em rất mong nhận được sự góp ý từ phía thầy cô để em hoàn thiện thêm kiến thức cho bản thân. Qua đây em xin gửi lời cảm ơn chân thành tới thầy giáo ThS. Nguyễn Duy Đỉnh cùng cán bộ nghiên cứu tại trung tâm CTI đã hướng dẫn và giúp đỡ em trong suốt quá trình làm đồ án tốt nghiệp. Hà Nội, ngày 12 tháng 06 năm 2014 Sinh viên thực hiện Trương Văn Trọng https://www.facebook.com/Mr.Trongbk 2 Chương 1. Tổng quan về hệ thống pin mặt trời Chương 1 TỔNG QUAN VỀ HỆ THỐNG PIN MẶT TRỜI 1.1. Đối tượng và phạm vi nghiên cứu IPV DC DC Tải + VPV – Tín hiệu PWM Bộ điều khiển MPPT Hình 1.1. Cấu trúc hệ thống bám công suất cực đại MPPT. Hệ thống bám công suất cực đại của pin mặt trời có cấu trúc cơ bản như được trình bày trên hình 1.1. Các thành phần cơ bản trong cấu trúc của hệ thống bám công suất cực đại gồm:  Tấm pin năng lượng mặt trời: có các thông số kỹ thuật cơ bản trong điều kiện tiêu chuẩn (bức xạ mặt trời 1000W/m2 và nhiệt độ 250C) như được liệt kê trong bảng 1.1. Bảng 1.1. Thông số kỹ thuật của pin mặt trời [17]. Thông số Ký hiệu Giá trị Công suất lớn nhất Pmax 80W Điện áp tại điểm cực đại MPP VMPP 18V Dòng điện tại điểm cực đại MPP IMPP 4,444A Điện áp hở mạch VOC 22V Dòng điện ngắn mạch ISC 5A  Bộ điều khiển MPPT: là linh hồn của hệ thống. Nó làm cho hệ thống pin mặt trời bám được công suất cực đại, giúp tăng hiệu suất làm việc của hệ thống PMT.  Bộ biến đổi DC – DC: có nhiệm vụ đóng cắt van bán dẫn để thay đổi trở kháng vào của PMT. https://www.facebook.com/Mr.Trongbk 2 Chương 1. Tổng quan về hệ thống pin mặt trời Phạm vi nghiên cứu của đồ án này là: nghiên cứu lý thuyết về các thuật toán bám công suất cực đại và tính toán mạch lực cho bộ biến đổi DC – DC, thiết kế bộ điều khiển cho hệ thống bám công suất cực đại. Mô phỏng hệ thống để kiểm chứng lại lý thuyết đã nghiên cứu. 1.2. Giới thiệu về pin mặt trời 1.2.1. Định nghĩa Pin mặt trời hay còn gọi là pin quang điện là thiết bị ứng dụng hiệu ứng quang điện trong lớp bán dẫn (thường gọi là hiện tượng quang điện trong – quang dẫn) để tạo ra dòng điện một chiều khi được chiếu sáng. 1.2.2. Cấu tạo và nguyên lý hoạt động Hình 1.2. Cấu tạo và nguyên lý hoạt động của pin mặt trời. a. Cấu tạo pin mặt trời Gồm ba thàn phần chính như đã mô tả trên hình 1.2: - Mặt ghép bán dẫn p – n: sử dụng tinh thể Silic, đây là thành phần chính của pin và lớp n thường mỏng để ánh sáng có thể chiếu tới lớp tiếp xúc p – n. - Điện cực: là thành phần dẫn điện ra phụ tải, vật liệu làm điện cực vừa phải có độ dẫn tốt vừa phải bám dính tốt vào chất bán dẫn. - Lớp chống phản quang: nếu sự phản xạ ánh sáng càng nhiều sẽ làm cho hiệu suất của pin giảm. Vì vậy phải phủ một lớp chống phản quang. b. Nguyên lý hoạt động Nguyên lý hoạt động của pin mặt trời dựa trên hiện tượng quang điện trong như được mô tả trong hình 1.2. Khi lớp p – n hấp thụ ánh sáng có bước sóng hv≥Eg = Ec – Ev https://www.facebook.com/Mr.Trongbk 3 Chương 1. Tổng quan về hệ thống pin mặt trời tạo ra cặp điện tử – lỗ trống và trở thành các hạt tải điện tự do. Điện tử di chuyển về phía cực của bán dẫn loại n và lỗ trống di chuyển về phía cực của bán dẫn loại p. Nếu bên ngoài nối giữa bán dẫn loại n và bán dẫn loại p thì xuất hiện dòng điện. c. Phân loại loại pin mặt trời Cho tới nay vật liệu chế tạo pin mặt trời chủ yếu là Silic và được chi thành ba loại chính: - Đơn tinh thể: có hiệu suất tới 16% và loại này thường đắt tiền do được cắt từ các thỏi hình ống. - Đa tinh thể: làm từ thỏi đúc từ Silic nung chảy, sau đó làm nguội và làm rắn. Loại này rẻ hơn pin đơn tinh thể nhưng hiệu suất lại thấp hơn. - Dải Silic tạo từ các miếng phim mỏng từ Silic nóng chảy và có cấu trúc đa tinh thể. Loại này có hiệu suất thấp nhất nhưng giá rẻ nhất. 1.3. Đặc tính làm việc của pin mặt trời 1.3.1. Sơ đồ tương đương của pin mặt trời a. Mô hình toán học của pin mặt trời PV lý tưởng Iph Rs ID D IPV + Rsh VPV _ Hình 1.3. Mạch tương đương của một tế bào pin mặt trời. Khi được chiếu sáng thì pin mặt trời phát ra một dòng quang điện Iph vì vậy pin mặt trời có thể xem như một nguồn dòng. Lớp tiếp xúc p – n có tính chất chỉnh lưu tương đương như một diode D. Tuy nhiên khi phân cực ngược, do điện trở tiếp xúc có giới hạn nên vẫn có một dòng điện rò qua nó. Đặc trưng cho dòng điện rò qua lớp tiếp xúc p – n là điện trở shunt Rsh. Dòng quang điện chạy trong mạch phải đi qua các lớp bán dẫn p và n, các điện https://www.facebook.com/Mr.Trongbk 4 Chương 1. Tổng quan về hệ thống pin mặt trời cực, các tiếp xúc… Đặc trưng cho tổng các điện trở của các lớp đó là một điện trở RS mắc nối tiếp trong mạch. Từ đó, xây dựng được sơ đồ tương đương tổng quát của PMT như hình 1.3 [16] : d  qV  Dòng điện qua diode ID  Is  e nkT  1   Phương trình KCL: Iph  ID  VD  IPV  0 R sh (1.1) (1.2) Phương trình KVL: VPV  VD  R s IPV (1.3) trong đó: - ID: dòng qua diode, [A] - IS: dòng bão hòa của diode, [A] - q: điện tích electron, q = 1,602.10-19 C - k: hằng số Boltzman, k = 1,381.10-23 J/K - T: nhiệt độ lớp tiếp xúc, [K] - n: hệ số lý tưởng của diode - Vd: điện áp nhiệt, [V] - IPV: dòng điện ra của pin mặt trời, [A] - VPV: điện áp ra của pin mặt trời, [V] Từ (1.1), (1.2), (1.3) suy ra phương trình đặc tính I – V của một tế bào PMT : I pv  q VD  Ipv . RS   V  I .R pv S  I ph  I D  Ish  I ph  Is  e nkT  1  pv   R sh   (1.4) Để có công suất cũng như điện áp, dòng điện theo yêu cầu thì phải ghép các tế bào PMT lại thành một module PMT. Giả sử ghép nối tiếp Ns các tế bào PMT và ghép song song Np các tế bào PMT lại, thì phương trình đặc tính I – V tổng quát như sau [16]:  q Vpv  Ipv .R S   V  I .R N . nkT I pv  N p .I ph  N p .I D  Ish  N p .I ph  N p .Is  e S    1   pv pv S   R sh   https://www.facebook.com/Mr.Trongbk 5 (1.5) Chương 1. Tổng quan về hệ thống pin mặt trời b. Mô hình hóa pin mặt trời bằng simulink Xuất phát từ phương trình (1.1), (1.2), (1.3), (1.5) có thể xây dựng được mô hình mô phỏng của tấm pin như hình 1.4. Hình 1.4. Sơ đồ khối chi tiết bên trong của pin mặt trời. 1.3.2. Đặc tính của pin mặt trời a. Đặc tính I – V lý tưởng của pin năng lượng mặt trời Mô hình pin lý tưởng được mô tả trên hình 1.5 là mô hình không xét tới những ảnh hưởng của Rs và Rsh, có nghĩa là Rs = 0 và Rsh = ∞. PV lý tưởng Iph IPV ID D + VPV _ Hình 1.5. Mô hình lý tưởng của tế bao pin mặt trời. Phương trình đặc tính I – V thu được của pin dựa vào phương trình (1.5) :  qVD  I pv  N p Iph  N p ID  N p Iph  N p Is  e nkT  1   (1.6) NpIph là nguồn dòng có giá trị không đổi ứng với điều kiện thời tiết nhất định, NpID đặc tính I – V của diode là đường cong đồng biến trong khoảng điện áp VD dương. Từ đó, https://www.facebook.com/Mr.Trongbk 6 Chương 1. Tổng quan về hệ thống pin mặt trời Cong suat P[W] Dong dien I [A] theo phương trình (1.6) suy ra dạng đặc tính I – V và P – V của pin mặt trời ứng với bức xạ 1000W/m2 và ở 250C như hình 1.6. 6 Isc MPP 3 0 0 5 20 Voc 10 15 Dien ap V [V] 100 MPP 25 X: 18.04 Y: 80 50 0 0 5 10 15 Dien ap V [V] 20 Voc 25 Hình 1.6. Đặc tính I – V và P – V của pin mặt trời. Theo hình 1.6 cho thấy quan hệ giữa dòng điện và điện áp I(A) và quan hệ giữa công suất với điện áp P(V) = I.V là những mối quan hệ phi tuyến và các quan hệ phi tuyến này thay đổi giá trị khi mà thời tiết thay đổi. Ứng với mỗi điều kiện khí hậu cụ thể thì đặc tính P – V sẽ tồn tại một điểm có công suất lớn nhất gọi là MPP (maximum power point), tại điểm đó hiệu suất của pin sẽ là lớn nhất. Để hiểu rõ ràng hơn về vị trí và quá trình di chuyển của điểm MPP thì phần tiếp theo sẽ phân tích ảnh hưởng của các yếu tố bên trong và yếu tố bên ngoài ảnh hưởng tới đặc tính của pin mặt trời như thế nào? b. Ảnh hưởng của Rs và Rsh lên đặc tính I–V của pin năng lượng mặt trời  Ảnh hướng của điện trở Rsh tới đặc tính I – V của pin PV lý tưởng Iph ID D IPV + Rsh VPV _ Hình 1.7. Mạch của pin mặt trời xét tới ảnh hưởng của Rsh . https://www.facebook.com/Mr.Trongbk 7
- Xem thêm -

Tài liệu liên quan