Tài liệu Nghiên cứu kỹ thuật truyền thông tin và năng lượng đồng thời trong hệ thống đa anten

  • Số trang: 76 |
  • Loại file: PDF |
  • Lượt xem: 33 |
  • Lượt tải: 0
tailieuonline

Tham gia: 31/07/2015

Mô tả:

ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA ---------- HUỲNH BÁ CƯỜNG NGHIÊN CỨU KỸ THUẬT TRUYỀN THÔNG TIN VÀ NĂNG LƯỢNG ĐỒNG THỜI TRONG HỆ THỐNG ĐA ANTEN LUẬN VĂN THẠC SĨ KỸ THUẬT ĐIỆN TỬ Đà Nẵng, Năm 2018 ĐẠI HỌC ĐÀ NẴNG TRƯỜNG ĐẠI HỌC BÁCH KHOA ---------- HUỲNH BÁ CƯỜNG NGHIÊN CỨU KỸ THUẬT TRUYỀN THÔNG TIN VÀ NĂNG LƯỢNG ĐỒNG THỜI TRONG HỆ THỐNG ĐA ANTEN Chuyên ngành : Kỹ Thuật Điện Tử Mã số : 60.52.02.03 LUẬN VĂN THẠC SĨ NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGÔ MINH TRÍ Đà Nẵng - Năm 2018 i LỜI CAM ĐOAN Kính gửi: Hội đồng bảo vệ luận văn tốt nghiệp Khoa Điện tử - Viễn thông, Trường Đại học Bách khoa – Đại học Đà Nẵng. Tôi tên là: Huỳnh Bá Cường Hiện là học viên lớp Cao học Kỹ thuật điện tử - Khoá 32 - Khoa Điện tử - Viễn thông, Trường Đại học Bách khoa – Đại học Đà Nẵng. Tôi cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận văn Huỳnh Bá Cường ii MỤC LỤC LỜI CAM ĐOAN........................................................................................................ i MỤC LỤC ..................................................................................................................ii DANH MỤC CÁC KÝ HIỆU.................................................................................... v DANH MỤC CÁC CHỮ VIẾT TẮT ....................................................................... vi DANH MỤC CÁC BẢNG BIỂU ............................................................................. vii DANH MỤC CÁC HÌNH .......................................................................................viii MỞ ĐẦU .................................................................................................................... 1 1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI ..................................................................... 1 2. MỤC TIÊU NGHIÊN CỨU .............................................................................. 1 3. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU ................................................... 1 4. PHƯƠNG PHÁP NGHIÊN CỨU...................................................................... 2 5. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN CỦA ĐỀ TÀI .................................. 2 6. CẤU TRÚC LUẬN VĂN ................................................................................. 2 CHƯƠNG 1. TỔNG QUAN HỆ THỐNG SWIPT VÀ KỸ THUẬT TRUYỀN NĂNG LƯỢNG KHÔNG DÂY ................................................................................ 4 1.1. Giới thiệu hệ thống ........................................................................................... 4 1.2. Hệ thống SWIPT .............................................................................................. 5 1.2.1. Chuyển mạch thời gian (TS) ...................................................................... 5 1.2.2. Chia công suất (PS) ................................................................................... 6 1.2.3. Chuyển mạch anten (AS) ........................................................................... 6 1.2.4. Chuyển mạch không gian (SS)................................................................... 6 1.3. Kỹ thuật truyền năng lượng không dây ............................................................. 6 1.3.1. Lịch sử hình thành công nghệ WPT ........................................................... 7 1.3.2. Cấu trúc mạng thu năng lượng RF ............................................................. 8 1.4. Cấu trúc cơ bản của một thiết bị thu năng lượng ............................................. 10 1.5. Nguyên lý truyền năng lượng RF .................................................................... 12 1.6. Đặc điểm và các chỉ số đánh giá thu hoạch năng lượng không dây ................. 14 1.6.1. Các đặc điểm của kỹ thuật thu năng lượng RF ......................................... 14 1.6.2. Phạm vi hoạt động ................................................................................... 14 1.6.3. Hiệu suất chuyển đổi năng lượng RF-DC (PCE) ...................................... 14 1.6.4. Yếu tố cộng hưởng .................................................................................. 15 1.6.5. Độ nhạy ................................................................................................... 15 1.7. Các nguồn RF trong không gian tự do ............................................................ 16 1.7.1. Nguồn RF chuyên dụng ........................................................................... 16 1.7.2. Nguồn RF xung quanh ............................................................................. 16 1.8. Một số ứng dụng của thu năng lượng không dây ............................................. 18 1.8.1. Thu năng lượng RF trong y tế và chăm sóc sức khỏe ............................... 18 1.8.2. Phân tập tần số......................................................................................... 19 1.8.3. Mạng cảm biến không dây (IoT/WSN) .................................................... 19 1.9. Kết luận chương ............................................................................................. 19 CHƯƠNG 2. HỆ THỐNG ĐA KÊNH TRUYỀN MIMO ...................................... 21 2.1. Giới thiệu chương ........................................................................................... 21 2.2. Tổng quan hệ thống đa kênh truyền MIMO .................................................... 22 2.2.1. Khái niệm về hệ thống MIMO ................................................................. 22 2.2.2. Ưu điểm của kỹ thuật MIMO ................................................................... 23 iii 2.2.3. Khuyết điểm của hệ thống MIMO ........................................................... 24 2.3. MIMO đơn người dùng và MIMO đa người dùng ........................................... 24 2.3.1. MIMO đơn người dùng (SU-MIMO) ....................................................... 24 2.3.2. MIMO đa người dùng (MU-MIMO) ........................................................ 24 2.4. Các kỹ thuật phân tập ..................................................................................... 25 2.4.1. Phân tập thời gian .................................................................................... 26 2.4.2. Phân tập không gian ................................................................................ 27 2.5. Dung lượng và độ lợi trong hệ thống MIMO .................................................. 28 2.5.1. Dung lượng kênh MIMO ......................................................................... 28 2.5.2. Độ lợi trong hệ thống MIMO ................................................................... 28 2.6. Một số khái niệm cơ bản trong MIMO ............................................................ 30 2.6.1. Nhiễu trắng .............................................................................................. 30 2.6.2. Nhiễu xuyên ký hiệu (ISI) ....................................................................... 30 2.6.3. Nhiễu đồng kênh (CCI) ........................................................................... 31 2.6.4. Fading ..................................................................................................... 31 2.6.5. Kỹ thuật định hướng búp sóng (Beamforming) ........................................ 32 2.7. Các kỹ thuật tiền mã hóa cho hệ thống MIMO đa người dùng ........................ 32 2.8. Một số ứng dụng tiêu biểu .............................................................................. 33 2.8.1. Chuẩn 802.11n ........................................................................................ 33 2.8.2. Wimax ..................................................................................................... 34 2.8.3. Công nghệ 4G.......................................................................................... 34 2.9. Kết luận chương ............................................................................................. 34 CHƯƠNG 3. MÔ HÌNH HỆ THỐNG VÀ TỐI ƯU THÔNG SỐ WMMSE ........ 36 3.1. Giới thiệu chương ........................................................................................... 36 3.2. Mô hình hệ thống tổng quát hệ thống SWIPT BC MIMO ............................... 37 3.3. Thiết kế bộ thu /phát WMMSE cho hệ thống SWIPT ..................................... 38 3.3.1. Mô hình hệ thống .................................................................................... 38 3.3.2. Phương pháp nhân tử Lagrangian ............................................................ 40 3.3.3. Phương pháp chia đôi Bisection............................................................... 41 3.3.4. Tính toán tối ưu hệ thống ......................................................................... 43 3.4. Kết luận chương ............................................................................................. 46 CHƯƠNG 4. MÔ PHỎNG VÀ ĐÁNH GIÁ KẾT QUẢ ........................................ 48 4.1. Thiết lập thông số mô phỏng ........................................................................... 48 4.2. Kết quả và đánh giá hiệu suất ......................................................................... 49 4.3. Kết luận chương ............................................................................................. 51 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN CỦA ĐỀ TÀI ....................................... 52 KẾT LUẬN ........................................................................................................... 52 HƯỚNG PHÁT TRIỂN ĐỀ TÀI ........................................................................... 52 DANH MỤC TÀI LIỆU THAM KHẢO................................................................. 53 QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN iv TÓM TẮT LUẬN VĂN NGHIÊN CỨU KỸ THUẬT TRUYỀN THÔNG TIN VÀ NĂNG LƯỢNG ĐỒNG THỜI TRONG HỆ THỐNG ĐA ANTEN Học viên: Huỳnh Bá Cường. Chuyên ngành: Kỹ thuật Điện tử. Mã số: 60.52.02.03 Khóa: K32. Trường Đại học Bách khoa - ĐHĐN Tóm tắt – Trong những năm gần đây, người ta nhận thấy rằng các tín hiệu trong tần số vô tuyến (Radio Frequence - RF). Ngoài việc truyền thông tin còn có thể truyền năng lượng cho các thiết bị di động trong hệ thống không dây, lĩnh vực này đã thu hút sự chú ý ngày càng tăng của giới khoa học. Vì lý do này, mạng truyền thông tin và năng lượng vô tuyến đồng thời (Simultaneous Wireless Information and Power Transfer - SWIPT) đã xuất hiện như một công nghệ đầy hứa hẹn, kết hợp giải mã thông tin (Information Decoding - ID) với các thiết bị thu năng lượng (Energy Harvesting - EH) để cung cấp cho mạng không dây. Đề tài này khảo sát việc truyền thông tin và năng lượng không dây đồng thời (SWIPT) trong các mạng MIMO quảng bá nơi một máy thu năng lượng (EH) và một máy thu giải mã thông tin chia sẻ cùng một nguồn thời gian và tần số. Đầu tiên, đề tài trình bày tổng quan về hệ thống MIMO và các hệ thống WPT, các kỹ thuật thu năng lượng bằng sóng RF và các ứng dụng hiện có. Sau đó, đề tài xây dựng vấn đề sử dụng WMMSE cho SWIPT giúp làm giảm thiểu tổng trọng số MSE của tín hiệu đến máy thu ID, trong khi việc lưu trữ năng lượng có thể thu được từ tín hiệu của máy thu EH. Tiếp theo, đề tài đề xuất cấu trúc tiền mã hóa tối ưu của vấn đề và xác định khu vực cân bằng tốt nhất về năng lượng MSE thông qua việc cập nhật thay thế của bộ tiền mã hóa tuyến tính tại máy phát với máy thu tuyến tính tại máy thu ID. Từ khóa – Thu nhận năng lượng, SWIPT, WMMSE, MIMO kênh quảng bá, tiền mã hóa. TECHNICAL RESEARCH OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER IN MULTI-ANTENNA SYSTEM Abstract - At present, it is recognized that the signal in radio frequency (RF). In addition to transmitting information that can transmit energy to mobile devices in wireless systems, the field has attracted increasing attention from the scientific community. For this reason, the Simultaneous Wireless Information and Power Transfer (SWIPT) has emerged as a promising technology, combining Information Decoding (ID) with Energy Harvesting (EH) to provide wireless. I consider simultaneous wireless information and power transfer (SWIPT) in MIMO Broadcast networks whereone energy harvesting (EH) user and one information decoding(ID) user share the same sources of time and frequency. The first, I present the overview of the MIMO system and WPT systems, RF energy harvesting techniques and existing applications. Then, I formulate the WMMSE SWIPT problem which minimizes the weighted sum-MSE of the message signal to the ID user, where assatisfying the requirement on the energy that can be harvested from the signal at the EH user. Next, I propose the optimal precoder structure of the problem and identify the best possible MSE- energy tradeoff region through the alternative update of the linear precoder at the transmitter with the linear receiverat the ID user. Key words –energy harvesting, SWIPT, WMMSE, MIMO Broadcast, precoding. v DANH MỤC CÁC KÝ HIỆU Ký hiệu x; y; N; k x; y X; Y xi aij ℂ AT AH A-1 A-T || || diag(A) trace(A) det(A) Ý nghĩa In nghiêng, thường hoặc hoa, là các số vô hướng In đậm, chữ thường là các vector In đậm, chữ hoa là các ma trận Phần tử thứ i của vector x Phần tử hàng i, cột j của ma trận A Tập hợp các số phức Chuyển vị của ma trận A Chuyển vị liên hợp (Hermitian) của ma trận phức A Nghịch đảo của ma trận vuông A, Nghịch đảo rồi chuyển vị của ma trận A Norm p của vector Đường chéo chính của ma trận A Trace của ma trận A Định thức ma trận vuông A vi DANH MỤC CÁC CHỮ VIẾT TẮT Ký hiệu Ý nghĩa AP Access Point AS Antenna Switching FSPL Free Space Path Loss ID Information Decoding IoT Internet of Things MIMO Multiple Input, Multiple Output MIMO BC MIMO Broadcast MISO Multiple Input, Single Output MRT Maximum Ratio Transmission WMMSE Weighted Minimum Mean Squared Error PS Power Splitting QoS Quality of Service RF Radio Frequency RFID Radio-Frequency Identification SIMO Single Input, Multiple Output SISO Single Input, Single Output SNR Signal-to-Noise Ratio SS Spatial Switching SWIPT Simultaneous Wireless Information and Power Transfer TS Time Switching UT User Terminals AS Antenna Switching SS WPH Spatial Switching Wireless Power Harvesting vii DANH MỤC CÁC BẢNG BIỂU Số hiệu Tên bảng bảng 1.1 Số liệu thực nghiệm về thu năng lượng bằng sóng RF 1.2 Điện năng tiêu thụ của các thiết bị SoC đã sản xuất 4.1 Thông số mô phỏng hệ thống Trang 17 18 48 viii DANH MỤC CÁC HÌNH Số hiệu Tên hình vẽ Trang hình vẽ 1.1 Các kỹ thuật truyền SWIPT trong các miền khác nhau: a) thời gian, 5 b) năng lượng, c) anten và d) không gian; α biểu thị hệ số PS. 1.2 Cấu trúc mạng thu nhận năng lượng bằng sóng RF 9 1.3 Cấu trúc của một hệ thống thu hoạch năng lượng RF 10 1.4 Một số cấu trúc máy thu cơ bản (a) Mạch thu sử dụng đa anten 12 riêng biệt (b) Mạch thu sử dụng chuyển mạch thời gian (c) Mạch thu chia tách công suất (d) Bộ thu kết hợp. 1.5 Sự phân bố của vùng trường gần và xa trong không gian. 13 2.1 Tổng quan hệ thống MIMO 22 2.2 Mô hình một hệ thống MIMO 23 2.3 Hệ thống MU-MIMO: MIMO BC 25 2.4 Phân tập theo thời gian. 26 2.5 Các cách phân tập không gian cho hệ thống MIMO. 27 2.6 Kỹ thuật Beamforming. 29 2.7 Ghép kênh không gian giúp tăng tốc độ truyền 29 2.8 Phân tập không gian cải thiện SNR. 30 3.1 Mô hình truyền thông tin và năng lượng đồng thời SWIPT 37 3.2 Một hệ thống MIMO kênh quảng bá cho SWIPT 38 3.3 Mô hình một hệ thống MIMO kênh quảng bá cho SWIPT với bộ 38 thu phát. 3.4 Phương pháp chia đôi Bisection 41 4.1 Một mô hình một hệ thống MIMO BC cho SWIPT với NT=NR=2. 48 4.2 So sánh MSE và tốc độ truyền RATE trong SWIPT MIMO BC 49 4.3 (a)Vùng MSE- Năng lượng (b) Vùng tốc độ thông tin- Năng lượng 50 của phương pháp SWIPT- WMMSE. 4.4 Sự thay đổi giữa tốc độ truyền tín hiệu theo công suất phát 51 1 MỞ ĐẦU 1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI Trong những năm gần đây, người ta nhận thấy rằng các tín hiệu trong tần số vô tuyến (Radio Frequence - RF) ngoài việc truyền thông tin còn có thể truyền năng lượng cho các thiết bị di động trong hệ thống không dây, lĩnh vực này đã thu hút sự chú ý ngày càng tăng của giới khoa học. Vì lý do này, mạng truyền thông tin và năng lượng vô tuyến đồng thời (Simultaneous Wireless Information and Power Transfer - SWIPT) đã xuất hiện như một công nghệ đầy hứa hẹn, kết hợp với các thiết bị thu năng lượng (Energy Harvesting - EH) để cung cấp cho mạng không dây. SWIPT cung cấp một ưu điểm về việc khống chế để đảm bảo yêu cầu về truyền năng lượng và thông tin đồng thời với giá thành thấp mà không cần thay đổi nhiều phần cứng của máy phát. Kết quả là, lượng thông tin truyền và năng lượng truyền không thể đạt cực đại đồng thời. Trong hệ thống SWIPT, thiệt kế máy phát đã được nghiên cứu trong vài năm qua để tối đa tốc độ giải mã thông tin ở người dùng (Information Decoding - ID) và năng lượng thu được ở người dùng EH một cách đồng thời. Vấn đề đặt ra là làm thế nào để tối ưu cho hệ thống SWIPT sử dụng đa anten (Multiple-Input Multiple-Output - MIMO), để người dùng EH và ID thu được mức năng lượng và thông tin tốt nhất trên cùng một tài nguyên phổ tần. Từ những vấn đề nêu trên tôi đề xuất đề tài: “Nghiên cứu kỹ thuật truyền nhận thông tin và năng lượng đồng thời trong hệ thống đa Anten” để người dùng đồng thời thu được mức năng lượng và thông tin tốt nhất trong hệ thống SWIPT. 2. MỤC TIÊU NGHIÊN CỨU - Nghiên cứu mô hình tín hiệu của hệ thống SWIPT. - Nghiên cứu các thuật toán tối ưu hệ thống giữa máy phát và máy thu. - Viết chương trình mô phỏng trên Matlab nhằm đánh giá hiệu năng của các thuật toán tối ưu. 3. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU a) Đối tượng nghiên cứu: - Tìm hiểu mô hình hệ thống SWIPT sử dụng đa anten MIMO. - Nghiên cứu các thuật toán tiền/hậu mã hóa. 2 - Nghiên cứu thuật toán tối ưu cho hệ số WMMSE máy phát. - Viết chương trình mô phỏng bằng Matlab. b) Phạm vi nghiên cứu: Đề tài sử dụng hệ thống SWIPT để khảo sát và cải thiện chất lượng thu nhận thông tin trên máy thu ID và năng lượng trên máy thu EH. Ứng dụng các giải pháp tối ưu để tăng hiệu suất hệ thống. 4. PHƯƠNG PHÁP NGHIÊN CỨU Phương pháp thực hiện luận văn là kết hợp nghiên cứu lý thuyết và mô phỏng để đánh giá hiệu năng của hệ thống: - Tìm hiểu, phân tích các tài liệu liên quan đến đề tài. - Tìm hiểu nguyên lý hoạt động, đánh giá ưu, nhược điểm các phương pháp đã được đề xuất, dựa vào đó đưa ra phương pháp cải thiện chất lượng hệ thống. - Tìm hiểu các thuật toán tối ưu có thể áp dụng vào hệ thống SWIPT. - Nghiên cứu thành phần nhiễu ảnh hưởng đến hệ thống. - Sử dụng công cụ Matlab để thực hiện mô phỏng hệ thống. - Đánh giá kết quả đã mô phỏng của thuật toán tối ưu hệ thống. 5. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN CỦA ĐỀ TÀI Hệ thống truyền thông tin và năng lượng vô tuyến đồng thời (SWIPT) là một giải pháp đầy hứa hẹn để tăng thời lượng sử dụng của các thiết bị không dây. Đặc biệt sự phát triển của công nghệ IoT và mạng cảm biến không dây đòi hỏi các thiết bị nhỏ gọn và công suất sử dụng thấp. Bài toán về nguồn năng lượng của các thiết bị này là vấn đề mà các nhà khoa học đang nghiên cứu và phát triển. Việc sử dụng hệ thống SWIPT một cách tối ưu dự kiến sẽ mang lại một số thay đổi cơ bản trong thiết kế và giải quyết vấn đề năng lượng cho mạng truyền thông không dây trong tương lai. 6. CẤU TRÚC LUẬN VĂN Luận văn gồm 4 chương sau đây: MỞ ĐẦU Nêu lên được tính cấp thiết, mục tiêu nghiên cứu, đối tượng nghiên cứu, phương pháp nghiên cứu và ý nghĩa khoa học và thực tiễn của đề tài. CHƯƠNG 1: TỔNG QUAN HỆ THỐNG SWIPT VÀ KỸ THUẬT TRUYỀN NĂNG LƯỢNG KHÔNG DÂY 3 Trong chương này trình bày tổng quan về hệ thống truyền thông tin và năng lượng đồng thời, quá trình hình thành công nghệ WPT và các ứng dụng thu năng lượng không dây. CHƯƠNG 2: HỆ THỐNG ĐA KÊNH TRUYỀN MIMO Trong chương này sẽ trình bày tổng quan về hệ thống kênh đa anten phát, đa anten thu ( kênh truyền MIMO) và một số vấn đề liên quan đến tiền mã hóa trong hệ thống MIMO. CHƯƠNG 3. MÔ HÌNH HỆ THỐNG VÀ TỐI ƯU THÔNG SỐ WMMSE Chương này trình bày mô hình chung của hệ thống, phương pháp tiền mã hóa tối ưu trọng số WMMSE, giới thiệu một số phương pháp tối ưu khác nhằm cân bằng vấn đề truyền tín hiệu và năng lượng được chuyển đổi. CHƯƠNG 4: MÔ PHỎNG VÀ ĐÁNH GIÁ KẾT QUẢ Mô phỏng hệ thống dựa theo thuật toán tối ưu trọng số WMMSE. Để đánh giá được chất lượng của phương pháp tối ưu WMMSE bằng cách so sánh hiệu suất của hai tiêu chí thiết kế SWIPT của MIMO BC: WMMSE và tốc độ thông tin. KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN CỦA ĐỀ TÀI Tóm tắt lại kết quả nghiên cứu, đóng góp cũng như hạn chế của đề tài và hướng nghiên cứu tiếp theo của đề tài. 4 CHƯƠNG 1. TỔNG QUAN HỆ THỐNG SWIPT VÀ KỸ THUẬT TRUYỀN NĂNG LƯỢNG KHÔNG DÂY 1.1. Giới thiệu hệ thống Việc thu hoạch năng lượng từ các tín hiệu RF là một giải pháp đầy hứa hẹn để cung cấp nguồn điện vĩnh viễn và tiết kiệm chi phí cho các mạng không dây. So với các phương pháp thu hoạch năng lượng truyền thống (EH) phụ thuộc vào các nguồn bên ngoài, như năng lượng mặt trời và năng lượng gió, thu hoạch năng lượng từ tín hiệu RF có thể cung cấp năng lượng cho các thiết bị không dây theo yêu cầu bất cứ lúc nào và do đó mang lại sự tiện lợi và đảm bảo chất lượng dịch vụ cho các hệ thống không dây. Hơn thế nữa, cùng với việc áp dụng rộng rãi các kỹ thuật đa anten thu phát (MIMO) và phủ sóng của các trạm BS trong các hệ thống 5G, có thể truyền tải năng lượng không dây với hiệu quả cao hơn trong tương lai. Bằng cách kết hợp EH với truyền tải thông tin truyền thống, người ta hi vọng dây kết nối để truyền thông tin và năng lượng cho các thiết bị di động sẽ bị loại bỏ hoàn toàn trong truyền thông không dây tương lai. Do những yêu cầu và tiến bộ kỹ thuật, truyền thông không dây và chuyển đổi năng lượng đồng thời (SWIPT) là một trong những kỹ thuật chính cho mạng không dây 5G và đã gây được sự quan tâm rộng rãi từ cả giới học thuật lẫn ngành công nghiệp. Các nghiên cứu tiên phong của SWIPT tập trung vào việc mô tả tốc độ cơ bản và truyền tải năng lượng với giả định rằng cùng một tín hiệu đồng thời có thể truyền tải thông tin và năng lượng. Tuy nhiên, giới hạn bởi các kỹ thuật hiện tại không thể đạt được sự truyền tải đồng thời thông tin và năng lượng với cùng một tín hiệu trong thực tế. Do đó, việc đạt được SWIPT chủ yếu phụ thuộc vào kiến trúc của các máy thu phát và các giao thức hoạt động. Các phương pháp chuyển mạch thời gian (TS) đã được đề xuất để thực hiện bằng cách thay thế giải mã thông tin và thu hoạch năng lượng theo cách phân chia theo thời gian. Hoặc một mô hình phân chia năng lượng (PS), trong đó tín hiệu thu được chia thành hai phần để thu thập thông tin và lưu trữ năng lượng đồng thời tại bộ giải mã thông tin và bộ thu năng lượng tách biệt. Trong bài viết này nghiên cứu một hệ thống phát sóng không dây đa đầu vào đầu ra (MIMO) gồm có ba nút, trong đó một máy thu được năng lượng và một máy thu khác giải mã thông tin riêng biệt, với tín hiệu được gửi bởi một máy phát thông thường và tất cả máy phát và máy thu có thể 5 được trang bị nhiều anten. Nội dung chương này sẽ trình bày tổng quan về các mạng không dây với khả năng thu nhận năng lượng sử dụng RF (WPT). 1.2. Hệ thống SWIPT Các nghiên cứu lý thuyết thông tin ban đầu về SWIPT đã giả định rằng cùng một tí hiệu có thể truyền tải cả năng lượng và thông tin mà không bị tổn thất, tiết lộ một sự cân bằng cơ bản giữa thông tin và chuyển đổi năng lượng [1]. Tuy nhiên, việc chuyển đổi đồng thời này không thể thực hiện được, vì hoạt động thu năng lượng được thực hiện trong miền RF làm phá hủy nội dung thông tin. Để thực tế đạt được SWIPT, tín hiệu nhận được phải được chia thành hai phần riêng biệt, một để thu năng lượng và một để giải mã thông tin. Sau đây, các kỹ thuật đã được đề xuất để đạt được sự phân tách tín hiệu này trong các miền khác nhau (thời gian, năng lượng, anten, không gian) sẽ được thảo luận. Hình 1.1: Các kỹ thuật truyền SWIPT trong các miền khác nhau: a) thời gian, b) năng lượng, c) anten và d) không gian; α biểu thị hệ số PS. 1.2.1. Chuyển mạch thời gian (TS) Nếu TS được sử dụng, máy thu sẽ chuyển đổi theo thời gian giữa giải mã thông tin và thu năng lượng [2]. Trong trường hợp này, việc tách tín hiệu được thực hiện trong miền thời gian và do đó toàn bộ tín hiệu nhận được trong một khe thời gian được sử dụng để giải mã thông tin hoặc truyền tải điện ở hình 1.1(a). Kỹ thuật TS cho phép thực hiện phần cứng đơn giản tại máy thu nhưng yêu cầu đồng bộ hóa thời gian chính xác và 6 lập lịch thông tin/ năng lượng. 1.2.2. Chia công suất (PS) Kỹ thuật PS đạt được SWIPT bằng cách tách tín hiệu nhận được trong hai luồng các mức công suất khác nhau sử dụng thành phần PS. Một luồng tín hiệu được gửi đến mạch chuyển đổi sóng vô tuyến thành năng lượng và luồng kia được chuyển vào bộ giải mã thông tin ở hình 1.1(b) [2]. Kỹ thuật PS đòi hỏi độ phức tạp của máy thu cao hơn so với TS và yêu cầu tối ưu hóa hệ số α của PS. Tuy nhiên, nó đạt được SWIPT tức thời, vì tín hiệu nhận được trong một khe thời gian được sử dụng cho cả giải mã thông tin và truyền tải năng lượng. Do đó, nó phù hợp hơn cho các ứng dụng có thông tin quan trọng hoặc các ràng buộc chậm trễ và gần gũi hơn với lý thuyết thông tin tối ưu. 1.2.3. Chuyển mạch anten (AS) Thông thường, mảng anten được sử dụng để tạo ra nguồn DC cho hoạt động thiết bị là đáng tin cậy. Lấy cảm hứng từ phương pháp này, kỹ thuật AS tự động chuyển đổi từng phần tử anten giữa giải mã / chỉnh lưu để đạt được SWIPT trong phân tập anten ở hình 1.1(c). Trong sơ đồ AS, anten nhận được chia thành hai nhóm, trong đó một nhóm được sử dụng để giải mã thông tin và nhóm khác để thu năng lượng [2]. Kỹ thuật AS yêu cầu giải pháp tối ưu hóa trong mỗi khung giao tiếp để quyết định việc gán tối ưu các phần tử anten nhằm giải mã thông tin và thu năng lượng. Đối với kênh relay MIMO giải mã và chuyển tiếp, nơi nút chuyển tiếp sử dụng năng lượng thu được để truyền lại tín hiệu nhận được, vấn đề tối ưu hóa được xây dựng và được giải quyết bằng lập trình động trong [3]. 1.2.4. Chuyển mạch không gian (SS) Kỹ thuật SS có thể được áp dụng trong các cấu hình MIMO và đạt được SWIPT trong phân tập không gian bằng cách khai thác nhiều mức độ tự do (DoF) của kênh can thiệp [4]. Dựa trên phân tích giá trị số ít (SVD) của kênh MIMO, liên kết truyền thông được chuyển thành các kênh riêng song song có thể truyền tải thông tin hoặc năng lượng ở hình 1.1(d). Tại đầu ra của mỗi kênh riêng có một bộ chuyển đổi đầu ra kênh hoặc để các mạch giải mã thông thường hoặc mạch sửa chữa. Phân bổ kênh riêng khác nhau là một vấn đề để tối ưu, đây là một hệ phi tuyến nên việc tối ưu là khó khăn, đặc biệt là công suất tối đa không giới hạn trên mỗi kênh riêng. 1.3. Kỹ thuật truyền năng lượng không dây 7 1.3.1. Lịch sử hình thành công nghệ WPT Truyền năng lượng không dây là một khái niệm ban đầu được hình thành bởi Nikola Tesla vào những năm 1890, năng lượng được truyền từ một nguồn năng lượng đến một đích đến trong môi trường không dây. Việc sử dụng truyền năng lượng không dây giúp tránh việc phải lên chi phí và lắp đặt dây cáp điện trong các tòa nhà và cơ sở hạ tầng. Một trong những thách thức để thực hiện truyền năng lượng không dây là hiệu quả truyền năng lượng của nó thấp, như là chỉ có một phần nhỏ của năng lượng phát ra có thể được thu ở thiết bị nhận do mất mát lớn trên đường đi và hiệu quả chuyển đổi DC thấp của tần số vô tuyến (RF). Ngoài ra, các thiết bị điện tử ban đầu, như thế hệ đầu tiên của điện thoại di động lại cồng kềnh và bị tiêu thụ điện năng cao. Vì những lý do nêu trên, truyền điện không dây đã không nhận được nhiều sự chú ý cho đến gần đây, mặc dù Tesla đã cung cấp một minh chứng thành công với đèn điện chiếu sáng không dây vào năm 1891. Trong những năm gần đây, một số lượng đáng kể các nỗ lực nghiên cứu đã được dành riêng để làm sống lại các tham vọng cũ của truyền điện năng không dây, được thúc đẩy bởi hai lý do sau đây [6], [7]. Lý do đầu tiên là sự thành công to lớn của mạng cảm biến không dây (WSNs) đã được áp dụng rộng rãi cho giao thông thông minh, giám sát môi trường, v.v. Tuy nhiên, hạn chế của WSNs là năng lượng, vì mỗi cảm biến phải được trang bị một pin mà giới hạn ở một khoảng thời gian trong các trường hợp thực tế riêng biệt. Việc này gây ra sự tốn kém khi thay thế các pin và các ứng dụng của việc nạp năng lượng truyền thống (EH) công nghệ dựa trên các nguồn năng lượng tự nhiên là vấn đề do tính chất liên tục của chúng. Truyền năng lượng không dây có thể được sử dụng như là một thay thế đầy hứa hẹn cho việc tăng tuổi thọ của WSNs. Lý do thứ hai là việc sử dụng rộng rãi hiện nay của các thiết bị năng lượng thấp mà có thể được sạc không dây. Ví dụ, Intel đã chứng minh sạc không dây của một máy đo nhiệt độ và độ ẩm cùng một màn hình tinh thể lỏng, sử dụng tín hiệu của một kênh truyền hình ở khoảng cách là 4 km. Mặc dù các nghiên cứu tổng thể về chủ đề này vẫn còn ở mức sơ khai, tuy nhiên đã có những kết quả nổi bật được báo cáo trong tài liệu [6], [7]. Trong [6], Varshney lần đầu tiên đề xuất một hàm dung lượng - năng lượng (capacity-energy) để mô tả sự cân bằng cơ bản trong việc chuyển giao thông tin và năng lượng đồng thời. Đối với hệ thống 8 đơn anten SISO (một đầu vào và một đầu ra) kênh AWGN với cộng nhiễu biên độ thì nó đã được hiển thị. Trong đó có sự cân bằng không quan trọng trong việc tối đa hóa tốc độ truyền tin so với truyền tải năng lượng bằng cách tối ưu hóa sự phân bố đầu vào. Tuy nhiên, nếu công suất truyền trung bình được thay vào đó, hai mục tiêu trên có thể được hiển thị cho phù hợp với kênh AWGN SISO với tín hiệu đầu vào Gaussian và do đó sự cân bằng không quan trọng. Trong [7], Grover và Sahai mở rộng các kênh AWGN anten chọn lọc tần số với giới hạn công suất trung bình, bằng cách này cho thấy một sự cân bằng cao tồn tại trong phân bổ phổ tần số cho tốc độ truyền tin tối đa so với truyền năng lượng. Kỹ thuật thu năng lượng RF hứa hẹn sẽ giúp thay thế nguồn pin hoặc tăng tuổi thọ của pin trong các thiết bị điện và hệ thống điện năng thấp. Hiện nay, pin chiếm đa số thiết bị cảm biến từ xa công suất thấp và thiết bị nhúng. Trên thực tế, pin có tuổi thọ hữu hạn và yêu cầu thay thế định kỳ. Bằng cách áp dụng công nghệ thu hoạch năng lượng, thiết bị có thể tự cung cấp năng lượng cần thiết cho nó hoạt động, từ đó có được tuổi thọ hoạt động lâu hơn. Như vậy, nhu cầu bảo trì điện sẽ trở nên không đáng kể. Các nguồn năng lượng thu thập từ bên ngoài có sẵn dưới nhiều hình thức như năng lượng mặt trời, năng lượng gió, năng lượng nhiệt, năng lượng điện, động năng, v..v Trong số đó, năng lượng điện từ phong phú trong không gian và có thể được lấy mà không có giới hạn. Sóng điện từ đến từ nhiều nguồn khác nhau như trạm vệ tinh, internet không dây, đài phát thanh và phát sóng đa phương tiện kỹ thuật số. Hệ thống thu năng lượng tần số vô tuyến điện có thể thu nhận và chuyển đổi năng lượng điện từ thành điện áp một chiều (DC). Các đơn vị chính của một hệ thống thu hoạch năng lượng RF là ăngten và mạch chỉnh lưu cho phép chuyển đổi năng lượng RF hoặc dòng xoay chiều (AC) thành năng lượng DC. Kỹ thuật truyền năng lượng (energy harvesting) sử dụng tần số vô tuyến điện (RF) gần đây đã trở thành các phương pháp thay thế để cấp nguồn cho các mạng không dây thế hệ tiếp theo. Công nghệ này góp phần tạo thuận lợi trong việc hỗ trợ các ứng dụng với các yêu cầu về chất lượng dịch vụ, nhằm tối ưu hóa tài nguyên băng tần. 1.3.2. Cấu trúc mạng thu năng lượng RF Một cấu trúc tập trung điển hình của một mạng thu nhận năng lượng sử dụng sóng RF, như thể hiện trong hình 1.2 có ba thành phần chính, như là các cổng thông tin, các 9 nguồn năng lượng RF và các nút mạng / thiết bị mạng. Hình 1.2: Cấu trúc mạng thu nhận năng lượng bằng sóng RF Cổng thông tin nói chung được gọi là trạm cơ sở (BS), bộ định tuyến không dây và các trạm lặp. Các nguồn năng lượng RF có thể là máy phát năng lượng RF chuyên dụng hoặc các nguồn RF xung quanh (ví dụ: tháp truyền hình). Các nút mạng là thiết bị người dùng giao tiếp với các cổng thông tin. Thông thường, cổng thông tin và các nguồn năng lượng RF có nguồn cung cấp điện liên tục và cố định, trong khi các nút mạng lấy năng lượng từ các nguồn RF để hỗ trợ hoạt động của chúng. Trong một số trường hợp, cổng thông tin và nguồn năng lượng RF có thể giống nhau. Như thể hiện trong hình 1.2, các đường mũi tên đại diện cho dòng chảy thông tin, trong khi các đường mũi tên đứt nét là dòng năng lượng. Cổng thông tin có một vùng cung cấp năng lượng và một vùng truyền tải thông tin được biểu diễn bởi những đường cong đứt trong hình 1.2. Các thiết bị trong vùng cung cấp năng lượng có thể thu năng lượng RF từ cổng thông tin. Các thiết bị trong vùng truyền thông tin có thể giải mã thành công các thông tin truyền từ cổng thông tin (gateway). Nói chung, công suất hoạt động của thành phần thu năng lượng cao hơn nhiều 10 so với thành phần giải mã thông tin. Do đó, vùng thu hoạch năng lượng nhỏ hơn vùng truyền tải thông tin. 1.4. Cấu trúc cơ bản của một thiết bị thu năng lượng Hình 1.3 giới thiệu cấu trúc của một hệ thống thu hoạch năng lượng RF và các yếu tố đóng góp vào hiệu suất của toàn bộ hệ thống. Hình 1.3: Cấu trúc của một hệ thống thu hoạch năng lượng RF - Applications: Các icationsoạch năng lượng RF thố - Power management: Gồm thiết bị lưu trữ năng lượng, năng lượng và điện áp đầu ra và có thể sử dụng hai phương pháp để kiểm soát lưu lượng năng lượng đến, tức là sử dụng năng lượng thu được và sử dụng năng lượng thu được được lưu trữ. Trong phương pháp sử dụng năng lượng thu hoạch, năng lượng thu hoạch được sử dụng ngay để cấp nguồn cho nút mạng. Do đó, để nút mạng hoạt động bình thường, điện năng chuyển đổi phải liên tục vượt quá nhu cầu năng lượng tối thiểu của nút mạng. Nếu không, nút sẽ bị tắt. Trong phương pháp sử dụng năng lượng thu được được lưu trữ, nút mạng được trang bị bộ lưu trữ năng lượng hoặc pin có thể sạc lại để lưu trữ điện đã được chuyển đổi. Bất cứ khi nào năng lượng thu được cao hơn lượng tiêu thụ của nút, năng lượng dư thừa sẽ được lưu trữ trong pin để sử dụng trong tương lai.
- Xem thêm -