Tài liệu Nghiên cứu công nghệ tạo hình chi tiết dạng vỏ mỏng bằng phương pháp dập thủy tĩnh

  • Số trang: 133 |
  • Loại file: PDF |
  • Lượt xem: 64 |
  • Lượt tải: 1
nhattuvisu

Đã đăng 27125 tài liệu

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan đây là đề tài nghiên cứu của riêng tôi. Các số liệu kết quả nêu trong Luận án là trung thực và chưa từng được ai công bố trong các công trình nào khác! Hà Nội, tháng 9 năm 2013 Giáo viên hướng dẫn PGS.TS. Phạm Văn Nghệ Nghiên cứu sinh Lê Trung Kiên ii LỜI CẢM ƠN Tôi xin chân thành cảm ơn GS.TS. Nguyễn Trọng Giảng - Hiệu trưởng Trường Đại học Bách Khoa Hà Nội và Ban giám hiệu Trường Đại học Bách khoa Hà Nội đã cho phép tôi có thể thực hiện Luận án tại Trường Đại học Bách khoa Hà Nội. Tôi xin cảm ơn Viện Đào tạo Sau đại học, Viện Cơ khí và Bộ môn gia công áp lực đã luôn tạo điều kiện thuận lợi nhất trong suốt quá trình tôi làm Luận án. Tôi xin chân thành cảm ơn PGS.TS. Phạm Văn Nghệ và PGS.TS. Nguyễn Đắc Trung đã tận tình hướng dẫn tôi về chuyên môn để tôi có thể thực hiện và hoàn thành Luận án. Tôi xin cảm ơn Phòng Đo lường, Viện Tên Lửa đã tạo điều kiện giúp đỡ và cho phép sử dụng các cảm biến đo các thông số công nghệ phục vụ thu thập và xử lý tín hiệu trong thực nghiệm. Tôi xin cảm ơn Công ty TNHH FC Hòa lạc đã tạo điều kiện giúp đỡ đo các thông số hình học của sản phẩm sau khi thực nghiệm. Tôi xin cảm ơn Viện Máy và Dụng cụ công nghiệp IMI – Bộ Công Thương đã giúp đỡ cho phép tôi sử dụng nguồn chất lỏng cao áp phục vụ thí nghiệm. Tôi xin bày tỏ lòng biết ơn sâu sắc đến các Thầy phản biện, các Thầy trong hội đồng chấm luận án đã bớt chút thời gian đọc và góp những ý kiến quý báu để tôi có thể hoàn chỉnh Luận án và định hướng nghiên cứu trong trương lai. Cuối cùng tôi xin gửi lời cảm ơn chân thành tới gia đình và bạn bè, đồng nghiệp những người đã động viên khuyến khích tôi trong suốt thời gian tôi tham gia nghiên cứu và thực hiện công trình này. Nghiên cứu sinh Lê Trung Kiên iii MỤC LỤC LỜI CAM ĐOAN ............................................................................................................................................... i LỜI CẢM ƠN ................................................................................................................................................... ii MỤC LỤC ....................................................................................................................................................... iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ........................................................................................ v DANH MỤC CÁC BẢNG BIỂU..................................................................................................................... vi DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ................................................................................................... vii MỞ ĐẦU ........................................................................................................................................................... 1 i. ii. iii. iv. v. Mục đích, đối tượng và phạm vi nghiên cứu của đề tài ............................................... 2 Phương pháp nghiên cứu .............................................................................................. 2 Ý nghĩa khoa học và ý nghĩa thực tiễn ......................................................................... 3 Các đóng góp mới của luận án ..................................................................................... 3 Các nội dung chính trong luận án ................................................................................ 3 CHƯƠNG 1. TỔNG QUAN CÔNG NGHỆ DẬP THỦY TĨNH .......................................................... 4 1.1. Những nét cơ bản tạo hình kim loại bằng công nghệ dập thủy tĩnh ............................ 4 1.1.1. Ưu điểm của tạo hình bằng chất lỏng cao áp. .................................................. 6 1.1.2. Nhược điểm của tạo hình bằng chất lỏng cao áp. ............................................ 8 1.2. Các phương pháp tạo hình bằng chất lỏng cao áp. ...................................................... 8 1.2.1. Dập thủy cơ ..................................................................................................... 8 1.2.2. Dập thủy tĩnh phôi ống .................................................................................... 9 1.2.3. Dập thủy tĩnh phôi tấm: ................................................................................. 12 1.3. Các nghiên cứu về dập thủy tĩnh phôi tấm. ............................................................... 17 1.3.1. Trên thế giới .................................................................................................. 17 1.3.2 Trong nước: .................................................................................................... 27 Kết luận chương 1: ........................................................................................................... 28 CHƯƠNG 2. CƠ SỞ LÝ THUYẾT VỀ DẬP THỦY TĨNH .......................................................................... 30 2.1 Trạng thái ứng suất,biến dạng trong dập thủy tĩnh .................................................... 30 2.2 Áp suất chất lỏng cần thiết để tạo hình, lực dập, lực chặn trong dập thủy tĩnh .......... 32 2.2.1 Áp suất chất lỏng cần thiết P0 ......................................................................... 32 2.2.2 Lực dập ........................................................................................................... 34 2.2.3 Lực chặn ......................................................................................................... 34 2.2.4 Miền làm việc của thông số công nghệ chính khi dập thủy tĩnh chi tiết tấm . 35 Kết luận chương 2 .............................................................................................................. 35 CHƯƠNG 3 KẾT QUẢ NGHIÊN CỨU BẰNG MÔ PHỎNG SỐ ................................................................ 36 3.1 Vật liệu và mô hình vật liệu sử dụng dập thủy tĩnh .................................................... 36 3.1.1 Vật liệu thí nghiệm ......................................................................................... 36 3.1.2 Xác định cơ tính của vật liệu thí nghiệm ........................................................ 36 3.2 Mô phỏng số và phần mềm mô phỏng số trong gia công áp lực .............................. 37 3.3 Nghiên cứu ảnh hưởng thông số công nghệ tới quá trình DTT bằng mô phỏng số ... 39 3.3.1 Thiết lập bài toán mô phỏng ........................................................................... 39 3.3.2 Khảo sát ảnh hưởng của các thông số công nghệ ........................................... 44 3.3.2.1 Ảnh hưởng của lực chặn đến áp suất chất lỏng tạo hình lòng cối P0 ...... 44 3.3.2.2 Mô phỏng ảnh hưởng của chiều cao tương đối X1 đến áp suất chất lỏng cần thiết tạo hình trong lòng cối .............................................................................. 50 3.4 Mối quan hệ của độ biến mỏng  với áp suất tạo hình P0, lực chặn Q ....................... 54 Kết luận chương 3 .............................................................................................................. 55 iv CHƯƠNG 4. XÂY DỰNG HỆ THỐNG THỰC NGHIỆM ........................................................................... 56 4.1 Yêu cầu và các thành phần của hệ thống thiết bị thực nghiệm .................................. 56 4.2 Tính toán thiết kế hệ thống thí nghiệm dập thủy tĩnh ................................................. 57 4.2.1 Hệ thống cấp chất lỏng cao áp ........................................................................ 58 4.2.2 Khuôn thí nghiệm ........................................................................................... 59 4.2.3 Hệ thống thu thập và xử lý tín hiệu ................................................................ 61 4.2.4 Hệ thống đối áp cho khuôn thí nghiệm .......................................................... 64 4.2.5 Máy ép thủy lực .............................................................................................. 66 4.2.6 Một vài hình ảnh gia công lắp ráp hệ thống thí nghiệm ................................. 67 4.2.7 Kết quả thử nghiệm và đánh giá độ tin cậy của hệ thống ............................... 69 Kết luận chương 4 .............................................................................................................. 71 CHƯƠNG 5. THỰC NGHIỆM VÀ ĐÁNH GIÁ KẾT QUẢ ......................................................................... 72 5.1 Nghiên cứu ảnh hưởng của các thông số công nghệ tới quá trình tạo hình chi tiết chỏm cầu trong trường hợp không có đối áp ...................................................................... 72 5.1.1 Ảnh hưởng của lực chặn ................................................................................. 73 5.1.2 Quan hệ của chiều cao tương đối với áp suất cần thiết trong lòng cối ........... 75 5.1.3 Xác định miền làm việc của áp suất chất lỏng cần thiết lòng cối P0 phụ thuộc lực chặn Q, chiều cao tương đối X1 trong trường hợp không đối áp....................... 79 5.2 Nghiên cứu ảnh hưởng của các thông số công nghệ tới quá trình tạo hình chi tiết chỏm cầu trong trường hợp có đối áp .................................................................................. 84 5.2.1 Ảnh hưởng của đối áp..................................................................................... 84 5.2.2 Ảnh hưởng của lực chặn trong trường hợp có đối áp ..................................... 86 5.2.3 Quan hệ chiều cao tương đối sản phẩm và áp suất trong lòng cối trong trường hợp có đối áp ........................................................................................................... 89 5.2.4 Xác định miền làm việc của áp suất chất lỏng cần thiết lòng cối P0 phụ thuộc lực chặn Q, chiều cao tương đối X1 trong trường hợp có đối áp ............................. 91 5.3 Khảo sát độ biến mỏng chiều dày sản phẩm trong quá trình dập thủy tĩnh ................ 95 5.3.1 Khảo sát mức độ biến mỏng trong quá trình DTT khi không đối áp ............. 96 5.3.2 Khảo sát mức độ biến mỏng trong quá trình DTT khi có đối áp .................... 99 Kết luận chương 5 ............................................................................................................ 103 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN CỦA ĐỀ TÀI ............................................................................ 104 Kết luận chung .................................................................................................................. 104 Những vấn đề cần được nghiên cứu tiếp .......................................................................... 105 TÀI LIỆU THAM KHẢO ............................................................................................................................ 106 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ .................................................................................... 112 PHỤ LỤC ..................................................................................................................................................... 113 v DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Kí hiệu D D0 H Hi H X1 = i D S X2 = i D k m N P0 P1 P2 Q Rc rc R0 R45 R90 R S0 Si  z   0 Diễn giải Đường kính miệng chi tiết dập Đường kính phôi Chiều cao sản phẩm Chiều cao tức thời của sản phẩm Đơn vị mm mm mm mm Chiều cao tương đối Chiều dày tương đối Mức độ dập vuốt Hệ số dập vuốt Lực đối áp kN Áp suất chất lỏng trong lòng cối bar Áp suất trong xi lanh chặn bar Áp suất trong xilanh đối áp bar Lực chặn kN Bán kính cối mm Bán kính góc lượn cối mm Thông số dị hướng Lankford theo phương cán Thông số dị hướng Lankford theo phương 450 so với phương cán Thông số dị hướng Lankford theo phương vuông góc phương cán Thông số dị hướng Lankford trung bình Chiều dày phôi mm Chiều dày phôi bị biến mỏng mm % Độ biến mỏng Mức độ biến dạng tương đối hướng trục Mức độ biến dạng tương đối hướng tiếp Mức độ biến dạng tương đối hướng kính Mức độ biến dạng tương đối thời điểm vật liệu chuyển từ trạng thái đàn hồi sang trạng thái dẻo p Mức độ biến dạng dẻo logarit  P (N.s/m2) Độ nhớt động lực  μ Hệ số ma sát Ứng suất tương đương MPa  σb Ứng suất bền MPa σf Ứng suất chảy MPa MPa Ứng suất theo phương dập σ σz Ứng suất hướng trục MPa σθ Ứng suất hướng tiếp MPa σρ Ứng suất hướng kính MPa FLC Forming Limit Curve – Đường cong biến dạng tới hạn FLD Forming Limit Diagram - Giản đồ biến dạng tới hạn PTHH Phần tử hữu hạn Л70 Đồng Latông A70 (tiêu chuẩn ΓOCT) CDA260 Đồng Latông A70 (TCVN 1659-75) DTT Dập thủy tĩnh CLCA Chất lỏng cao áp vi DANH MỤC CÁC BẢNG BIỂU Bảng 1.1 Bảng 3.1 Bảng 3.2 Bảng 3.3 Bảng 3.4 Bảng 3.5 Bảng 3.6 Bảng 3.7 Bảng 3.8 Bảng 3.9 Bảng 3.10 Bảng 3.11 Bảng 3.12 Bảng 3.13 Thông số mô hình vật liệu Thành phần hóa học đồng CDA260 Tính chất vật liệu đồng CDA260 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với X1 = 0.5 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với X1 = 0.1 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với X1 = 0.2 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với X1 = 0.3 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với X1 = 0.4 Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với Q = 49 kN Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với Q = 53 kN Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với Q = 57 kN Quan hệ giữa lực chặn và áp suất chất lỏng tạo hình với Q = 61 kN Giá trị áp suất tạo hình cần thiết phụ thuộc vào chiều cao tương đối X1 Trạng thái ứng suất và biến dạng của sản phẩm qua các trường hợp mức độ biến dạng khác nhau Bảng 3.14 Độ biến mỏng chi tiết phụ thuộc vào lực chặn Q Bảng 3.15 Bảng tổng hợp độ biến mỏng, biến dầy lớn nhất khi mô phỏng chi tiết cầu D50 Bảng 4.1 Thông số của hệ thống tăng áp Bảng 4.2 Thông số kỹ thuật xi lanh khí nén đường kính 50 mm Bảng 4.3 Thông số kỹ thuật máy ép thủy lực 125 tấn Bảng 4.4 Bảng giá trị thử nghiệm mối quan hệ chiều cao tương đối – áp suất xi lanh chặn – Áp suất lòng cối Bảng 5.1 Thành phần hóa học và cơ tính đồng CDA260 Bảng 5.2 Giá trị lực chặn ứng với các sản phẩm đạt chất lượng Bảng 5.3 Giá trị áp suất cần thiết tạo hình phụ thuộc vào chiều cao tương đối Bảng 5.4 Giá trị lực đối áp với các sản phẩm đạt chiều cao tương đối X1 Bảng 5.5 Giá trị lực chặn ứng với sản phẩm đạt chất lượng trường hợp đối áp N = 0.4 kN Bảng 5.6 Giá trị áp suất cần thiết tạo hình phụ thuộc vào chiều cao tương đối trường hợp đối áp N = 0.4 kN Bảng 5.7 Bảng thống kê độ biến mỏng tại các điểm đo phụ thuộc vào lực chặn Q trong trường hợp không có đối áp Bảng 5.8 Bảng thống kê độ biến mỏng tại các điểm đo phụ thuộc vào lực chặn Q trong trường hợp có đối áp Trang 25 36 36 44 46 47 48 49 50 50 51 51 52 53 54 55 58 66 67 70 72 75 78 86 89 89 97 100 vii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1 Hình 1.2 Hình 1.3 Hình 1.4 Hình 1.5 Hình 1.6 Hình 1.7 Hình 1.8 Hình 1.9 Hình 1.10 Hình 1.11 Hình 1.12 Hình 1.13 Hình 1.14 Hình 1.15 Hình 1.16 Hình 1.17 Hình 1.18 Hình 1.19 Hình 1.20 Hình 1.21 Hình 1.22 Hình 1.23 Hình 1.24 Hình 1.25 Hình 1.26 Hình 1.27 Hình 1.28 Hình 1.29 Hình 1.30 Hình 1.31 Hình 1.32 Hình 1.33 Hình 1.34 Hình 1.35 Hình 1.36 Hình 1.37 Hình 1.38 Hình 1.39 Hình 1.40 Hình 1.41 Hình 1.42 Hình 1.43 Hình 1.44 Hình 1.45 Hình 1.46 Hình 1.47 Trang Phân loại các dạng tạo hình bằng chất lỏng cao áp 4 Khả năng công nghệ của phương pháp dập bằng chất lỏng cao áp 5 Sơ đồ thiết bị dập thủy tĩnh chi tiết tấm 5 Sơ đồ thiết bị dập thủy tĩnh chi tiết ống 6 Sơ đồ thiết bị dập thủy cơ chi tiết tấm 6 Ưu điểm của phương pháp tạo hình bằng chất lỏng cao áp 6 So sánh ứng suất giữa dập vuốt truyền thống và dập chất lỏng cao áp 7 Ống tạo hình bằng chất lỏng cao áp được áp dụng trên khung ô tô 7 Sơ đồ các bước dập thủy cơ 8 Các chi tiết khung ô tô 9 Sơ đồ các bước dập thủy tĩnh chi tiết dạng ống 10 Phôi được cắt và uốn theo biên dạng gần đúng của sản phẩm 10 Phôi đặt vào lòng khuôn 10 Tạo hình theo biên dạng mong muốn và hoàn thiện sản phẩm 11 Sơ đồ công nghệ và dạng sản phẩm ống nối, ống dẫn 11 Dạng trục bậc, trục cam 11 Các chi tiết trong công nghiệp ô tô, xe máy 12 Nguyên lý cơ bản dập thủy tĩnh phôi tấm 12 Các giai đoạn tạo hình khi dập thủy tĩnh phôi tấm 13 Mức độ dập vuốt tăng lên khi dập thủy tĩnh 13 Dập tấm chỏm cầu 13 Số lượng nguyên công giảm khi dập thủy tĩnh phôi tấm 14 So sánh độ nhám bề mặt khi dập thủy tĩnh và dập vuốt truyền thống 14 Dập thủy tĩnh phôi tấm đơn và cặp phôi tấm 15 Nguyên lý dập thủy tĩnh phôi tấm đơn kết hợp dập vuốt truyền thống 15 Nguyên lý dập thủy tĩnh cặp phôi tấm kết hợp dập vuốt truyền thống 15 Các chi tiết vỏ xe ô tô (capo, tai xe, nóc xe) 16 Các chi tiết có dạng không gian rỗng trong xe ô tô 16 Sản phẩm lệch vành khi dập thủy tĩnh do sự chảy không ổn định 16 Hình ảnh thí nghiệm bị biến mỏng 17 Tỉ lệ công bố khoa học theo khu vực và theo năm công bố 18 Sơ đồ nguyên lý hệ thống thực nghiệm công nghệ dập thủy tĩnh tấm 19 Quá trình dập thủy tĩnh phôi tấm đơn 19 Các kết cấu của đối áp khi dập phôi tấm đơn 19 Kết cấu cối có phần di chuyển 20 So sánh biến mỏng khi thực nghiệm có cối di chuyển và không cối di chuyển 20 Chu kỳ tác động áp suất dạng sóng va đập 20 Sơ đồ kết nối các phần tử đo và thu thập dữ liệu đo 21 Các thông số ảnh hưởng đến áp lực chất lỏng cao áp yêu cầu để tạo hình 21 Sơ đồ thí nghiệm sự chảy của vật liệu phụ thuộc vào các thông số công nghệ 22 Các dạng hỏng và ảnh hưởng chiều sâu dập vuốt của vật liệu FeP04 22 Miền làm việc của lực chặn tương đương với áp suất cần thiết tạo hình 22 Đồ thị tra lực chặn cần thiết khi biết áp suất chất lỏng lớn nhất trong lòng cối 23 Đường cong chảy của vật liệu 23 Đường cong biến dạng khi dập chi tiết hình trụ chiều cao 25 và 30 mm 23 Đường cong biến dạng khi dập chi tiết hình hộp tại các điểm trên chi tiết 24 Quan hệ biến mỏng và ma sát giữa phôi và vành chặn khi thực nghiệm thép 24 không gỉ viii Hình 1.48 Đánh giá hệ số ma sát tối ưu chi tiết đường kính 90mm dày 0.5 mm vật liệu AISI 304 Hình 1.49 Đường quan hệ lực – biến dạng khi kéo thử mẫu Hình 1.50 Ứng suất và giới hạn rách sản phẩm khi mô phỏng và thực nghiệm Hình 1.51 Đường cong giới hạn tạo hình FLD Hình 1.52 Giá trị biến dạng tới hạn với chi tiết hình trụ và hình hộp dùng vẽ đường cong tới hạn Hình 1.53 Kết cấu bề mặt cối khảo sát mức độ kéo phôi vào trong cối Hình 1.54 Khảo sát mức độ kéo phôi vào trong cối Hình 2.1 Sơ đồ trạng thái ứng suất, biến dạng dập vuốt thông thường Hình 2.2 Sơ đồ trạng thái ứng suất, biến dạng dập vuốt thủy cơ Hình 2.3 Sơ đồ trạng thái ứng suất, biến dạng dập vuốt thủy tĩnh Hình 2.4 Phần phôi ép vào thành (chiều cao h) khi đi qua bán kính góc lượn cối Hình 2.5 Sơ đồ trạng thái ứng suất và biến dạng vùng tự do trong cối thủy tĩnh khi có đối áp bằng chất lỏng Hình 2.6 Sơ đồ lực tác dụng lên phôi phẳng khi DTT phần vành phôi Hình 2.7 Sơ đồ tính toán dập chi tiết có độ cong kép Hình 2.8 Sơ đồ xác định độ biến dạng tiếp tuyến trung bình và thông số vùng lõm chỏm cầu Hình 2.9 Miền làm việc và quan hệ các thông số tạo hình khi DTT Hình 3.1 Thông số mẫu thí nghiệm kéo JIS-5 Hình 3.2 Mẫu thí nghiệm kéo theo 3 hướng Hình 3.3 Thí nghiệm kéo mẫu trên máy kéo nén MTS-809 Axial / Torsinal Test System,hệ thống đo lực / biến dạng Hình 3.4 Đồ thị quan hệ ứng suất- biến dạng của vật liệu khi kéo theo các hướng 0o,45o,và 90o so với hướng cán Hình 3.5 Mô hình hình học Hình 3.6 Bản vẽ chi tiết chỏm cầu Hình 3.7 Mô hình chia lưới mô phỏng dập thủy tĩnh chỏm cầu Hình 3.8 Lựa chọn bài toán dập thủy tĩnh Hình 3.9 Hộp thoại định nghĩa phôi cho quá trình tạo hình Hình 3.10 Định nghĩa các thông số chính và đường cong chảy cho vật liệu Hình 3.11 Định nghĩa đường cong giới hạn Hình 3.12 Định nghĩa các chi tiết chính của bài toán DTT Hình 3.13 Định nghĩa điều kiện tiếp xúc giữa phôi và dụng cụ gia công Hình 3.14 Định nghĩa vị trí dụng cụ tạo hình ( chày,cối và chặn) Hình 3.15 Mô hình chạy Animator Hình 3.16 Sản phẩm nhăn do không đủ lực chặn Hình 3.17 Sản phẩm rách do lực chặn quá lớn Hình 3.18 Sản phẩm đạt yêu cầu Hình 3.19 Độ kéo phôi vào so với phôi ban đầu Hình 3.20 Quan hệ giữa áp suất chất lỏng tạo hình và lực chặn khi X1= 0.5 Hình 3.21 Quan hệ giữa lực chặn với áp suất chất lỏng tạo hình khi X1 = 0.1 Hình 3.22 Sản phẩm với chiều cao Hi = 5 mm Hình 3.23 Quan hệ giữa lực chặn với áp suất chất lỏng tạo hình khi X1= 0.2 Hình 3.24 Sản phẩm chỏm cầu với chiều cao Hi = 10 mm Hình 3.25 Quan hệ giữa lực chặn với áp suất chất lỏng tạo hình khi X1= 0.3 Hình 3.26 Sản phẩm chỏm cầu với chiều cao Hi = 15 mm Hình 3.27 Quan hệ giữa lực chặn với áp suất chất lỏng tạo hình khi X1= 0.4 Hình 3.28 Sản phẩm chỏm cầu với chiều cao Hi = 20 mm 25 26 26 26 26 27 27 30 30 31 31 32 32 33 34 35 36 37 37 37 40 40 40 41 42 42 42 43 43 43 44 45 45 45 45 46 46 47 47 47 48 48 49 49 ix Hình 3.29 Quan hệ giữa áp suất chất lỏng tạo hình với chiều cao tương đối khi lực chặn Q = 49 kN Hình 3.30 Quan hệ giữa áp suất chất lỏng tạo hình với chiều cao tương đối khi lực chặn Q = 53 kN Hình 3.31 Quan hệ giữa áp suất chất lỏng tạo hình với chiều cao tương đối khi lực chặn Q = 57 kN Hình 3.32 Quan hệ giữa áp suất chất lỏng tạo hình với chiều cao tương đối khi lực chặn Q= 61 kN Hình 3.33 So sánh giữa chiều cao tương đối thấp và chiều cao tương đối cao hơn Hình 3.34 Sơ đồ điểm đo biến mỏng trên khi mô phỏng chi tiết chỏm cầu Hình 4.1 Thành phần của hệ thống DTT phôi tấm Hình 4.2 Sơ đồ khối hệ thống thực nghiệm DTT Hình 4.3 Sơ đồ nguyên lý hệ thống thực nghiệm Hình 4.4 Thành phần hệ thống thực nghiệm Hình 4.5 Bộ khuôn DTT Hình 4.6 Kết cấu bộ khuôn DTT Hình 4.7 Bản vẽ và chi tiết cối thủy tĩnh tương ứng bán kính góc lượn cối 1, 2, 3 mm Hình 4.8 Sơ đồ hệ thống đo áp suất - hành trình Hình 4.9 Cấu trúc cảm biến đo áp suất Hình 4.10 Sơ đồ khối của cảm biến điện trở tiếp xúc Hình 4.11 Sơ đồ mạch gia công tín hiệu đo áp suất Hình 4.12 Sơ đồ ghép nối card thu thập số liệu với hệ thống Hình 4.13 Hệ thống đo áp suất – hành trình Hình 4.14 Hệ thống đo hành trình lắp ráp trên khuôn thí nghiệm Hình 4.15 Chương trình đo và lưu các thông số áp suất - hành trình Hình 4.16 Chương trình đọc kết quả thông số áp suất - hành trình Hình 4.17 Ma sát cản trở kéo phôi vào cối dưới tác dụng của áp suất thủy tĩnh Hình 4.18 Sơ đồ nguyên lý phát triển quá trình dập vuốt phôi phẳng có sự chuyển dịch mặt bích, bằng chày chất lỏng và chất khí trong cối cứng Hình 4.19 Hệ thống khuôn và đối áp sử dụng khí nén Hình 4.20 Hình ảnh và thông số xi lanh đối áp Hình 4.21 Hình ảnh lắp ráp hệ thống đối áp Hình 4.22 Máy ép thuỷ lực 125 tấn Hình 4.23 Hệ thống điều khiển áp suất lắp vào máy ép thuỷ lực 125 tấn Hình 4.24 Lắp nửa khuôn dưới và nửa khuôn trên Hình 4.25 Lắp hệ thống đối áp và đo hành trình Hình 4.26 Hệ thống khuôn dập thủy tĩnh vật liệu tấm sau khi lắp hoàn chỉnh Hình 4.27 Phôi tấm sau khi được cắt hình Hình 4.28 Quá trình thí nghiệm với phôi đồng CDA260 và sản phẩm dập thử Hình 4.29 Sản phẩm dập thử với chiều cao và áp suất xi lanh chặn khác nhau Hình 4.30 Các sản phẩm dập thử chưa đạt yêu cầu Hình 4.31 Sản phẩm đạt yêu cầu Hình 5.1 Sản phẩm dập với lực chặn Q = 45 kN Hình 5.2 Hình 5.3 Hình 5.4 Hình 5.5 Hình 5.6 Hình 5.7 Hình 5.8 Sản phẩm dập bị lệch Sản phẩm dập với lực chặn Q = 49 kN (đồ thị mẫu D01) Sản phẩm dập với lực chặn Q = 65 kN Sản phẩm chiều cao Hi = 5 mm, lực chặn Q = 49 kN (đồ thị mẫu A001) Sản phẩm chiều cao Hi = 10mm, lực chặn Q = 49 kN (đồ thị mẫu A01) Sản phẩm chiều cao Hi = 15mm, lực chặn Q = 49 kN (đồ thị mẫu B01) Sản phẩm chiều cao Hi = 20 mm, lực chặn Q = 49 kN (đồ thị mẫu C01) 50 50 51 51 52 54 56 57 57 58 59 60 60 61 61 62 62 62 62 63 63 64 64 65 65 65 66 66 67 67 68 68 69 69 70 71 71 73 73 74 74 76 76 77 77 x Hình 5.9 Hình 5.10 Hình 5.11 Hình 5.12 Hình 5.13 Hình 5.14 Hình 5.15 Hình 5.16 Hình 5.17 Hình 5.18 Hình 5.19 Hình 5.20 Hình 5.21 Hình 5.22 Hình 5.23 Hình 5.24 Hình 5.25 Hình 5.26 Hình 5.27 Hình 5.28 Hình 5.29 Hình 5.30 Hình 5.31 Hình 5.32 Hình 5.33 Hình 5.34 Hình 5.35 Hình 5.36 Hình 5.37 Hình 5.38 Hình 5.39 Hình 5.40 Hình 5.41 Hình 5.42 Hình 5.43 Hình 5.44 Hình 5.45 Hình 5.46 Hình 5.47 Hình 5.48 Hình 5.49 Sản phẩm chiều cao Hi = 25 mm, lực chặn Q = 49 kN (đồ thị mẫu D01) Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 49 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 53 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 57 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 61 kN Đồ thị so sánh quan hệ áp suất chất lỏng lòng cối và X1 các trường hợp lực chặn Q = 49 ÷ 61 kN khi thực nghiệm và mô phỏng số Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.1 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.2 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.3 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.4 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.5 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q theo X1 = 0.1 ÷ 0.5 (so sánh giữa thực nghiệm và mô phỏng) Đồ thị áp lực lòng cối theo chiều cao tương đối X1 và áp suất chặn khi không có đối áp Sản phẩm dập lực chặn Q = 65 kN, lực đối áp N = 0.1 kN Sản phẩm thực nghiệm với N = 0.3 kN ÷ 0.7 kN (Q = 65 kN) Sản phẩm với lực đối áp N = 0.9; 1 kN Sản phẩm dập với lực chặn Q = 45kN, lực đối áp N = 0.4 kN Sản phẩm dập với lực chặn Q = 49kN, lực đối áp N = 0.4 kN Sản phẩm dập với lực chặn Q = 84 kN, lực đối áp N = 0.4 kN (đồ thị ứng với chi tiết E91) Sản phẩm dập với lực chặn Q = 87 kN, lực đối áp N = 0.4 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 49 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 53 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 57 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 61 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 65 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 68 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 72 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 76 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và X1 khi Q = 80 kN Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.1 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.2 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.3 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.4 Đồ thị quan hệ áp suất chất lỏng lòng cối và lực chặn Q khi X1 = 0.5 Đồ thị áp lực lòng cối theo X1 và lực chặn khi có đối áp N = 0.4 kN Sơ đồ điểm đo biến mỏng chi tiết chỏm cầu dập bằng công nghệ DTT Hình ảnh biến mỏng và chiều dầy mẫu tương ứng tại các mặt cắt sản phẩm dập với lực chặn Q = 49 kN, đối áp N = 0 kN Hình ảnh biến mỏng và chiều dầy mẫu tương ứng tại các mặt cắt sản phẩm dập với lực chặn Q = 61 kN, đối áp N = 0 kN Đồ thị quan hệ độ biến mỏng tại điểm 1 trên chi tiết tương ứng với lực chặn Q = 49 kN 61 kN trong trường hợp không đối áp N = 0 kN Đồ thị quan hệ độ biến mỏng tại điểm 2 trên chi tiết tương ứng với lực chặn Q = 49 kN  61 kN trong trường hợp không đối áp N = 0 kN Đồ thị quan hệ độ biến mỏng tại điểm 3 trên chi tiết tương ứng với lực chặn Q = 49 kN 61 kN trong trường hợp không đối áp N = 0 kN 78 79 79 80 80 80 81 81 81 81 81 82 83 84 85 85 86 87 88 88 91 91 91 91 92 92 92 92 92 93 93 93 94 94 95 96 96 97 98 98 98 xi Hình 5.50 Đồ thị quan hệ độ biến mỏng tại điểm 4 trên chi tiết tương ứng với lực chặn Q = 49 kN  61 kN trong trường hợp không đối áp N = 0 kN Hình 5.51 Đồ thị quan hệ độ biến mỏng tại điểm 5 trên chi tiết tương ứng với lực chặn Q = 49 kN  61 kN trong trường hợp không đối áp N = 0 kN Hình 5.52 Hình ảnh biến mỏng và chiều dầy mẫu tương ứng tại các mặt cắt sản phẩm dập với lực chặn Q = 49 kN, đối áp N = 0.4 kN Hình 5.53 Hình ảnh biến mỏng và chiều dầy mẫu tương ứng tại các mặt cắt sản phẩm dập với lực chặn Q = 80 kN, đối áp N = 0.4 kN Hình 5.54 Đồ thị quan hệ độ biến mỏng tại điểm 1 trên chi tiết tương ứng với lực chặn Q = 49  80 kN, N = 0.4 kN (P2 = 2 bar) Hình 5.55 Đồ thị quan hệ độ biến mỏng tại điểm 2 trên chi tiết tương ứng với lực chặn Q = 49  80 kN, N = 0.4 kN (P2 = 2 bar) Hình 5.56 Đồ thị quan hệ độ biến mỏng tại điểm 3 trên chi tiết tương ứng với lực chặn Q = 49  80 kN, N = 0.4 kN (P2 = 2 bar) Hình 5.57 Đồ thị quan hệ độ biến mỏng tại điểm 4 trên chi tiết tương ứng với lực chặn Q = 49  80 kN, N = 0.4 kN (P2 = 2 bar) Hình 5.58 Đồ thị quan hệ độ biến mỏng tại điểm 5 trên chi tiết tương ứng với lực chặn Q = 49  80 kN, N = 0.4 kN (P2 = 2 bar) 98 99 99 100 101 102 102 102 103 1 MỞ ĐẦU Việt Nam đang trong tiến trình phát triển và ngày càng hội nhập sâu rộng vào kinh tế thế giới, nhiều ngành công nghiệp đang được đầu tư lớn, trong đó có ngành cơ khí chế tạo, ngành than, điện lực, xi măng, sản xuất nguyên liệu giấy, công nghiệp ôtô xe máy…. Ngành cơ khí chế tạo là một ngành công nghiệp nền tảng, có vai trò đặc biệt quan trọng trong phát triển kinh tế - xã hội. Để thúc đẩy sự phát triển của ngành cơ khí, từ năm 2002, Chính phủ đã ban hành Quyết định 186/2002/QĐ-TTg phê duyệt Chiến lược phát triển ngành cơ khí Việt Nam đến năm 2010, tầm nhìn đến 2020, nhằm tập trung phát triển ngành cơ khí hiệu quả, bền vững trên cơ sở phát huy các nguồn lực trong nước, kết hợp với nguồn lực nước ngoài, khuyến khích các thành phần kinh tế tham gia, phấn đấu đến năm 2020, ngành cơ khí đáp ứng 45-50% nhu cầu sản phẩm cơ khí trong nước và xuất khẩu 30-35%. Để đáp ứng được mục tiêu trên, trong ngành công nghiệp ôtô xe máy, việc nâng cao tỷ lệ nội địa hóa đang được đặt lên hàng đầu. Các chi tiết kim loại được sản xuất bằng công nghệ dập tạo hình với hình dáng phức tạp, sản xuất từ vật liệu khó gia công, yêu cầu kỹ thuật khắt khe hiện nay chúng ta vẫn đang phải nhập công nghệ và thiết bị từ nước ngoài. Để làm chủ công nghệ, nâng cao năng lực sản xuất, tiết kiệm ngoại tệ nhập khẩu, việc nghiên cứu ứng dụng công nghệ tiên tiến để chế tạo các chi tiết dạng tấm vỏ có hình dạng phức tạp là hết sức cần thiết. Ngoài công nghệ tạo hình truyền thống sử dụng chày cứng – cối cứng, công nghệ gia công áp lực hiện nay sử dụng các công nghệ mới nhằm giảm số lượng các nguyên công, nâng cao chất lượng sản phẩm, tránh được các khuyết tật như rách, nứt hoặc nhăn. Một trong những phương pháp gia công áp lực tiên tiến hiện nay là sử dụng chất lỏng cao áp để tạo hình. Dập bằng chất lỏng áp lực cao có 2 phương pháp chính đó là : Công nghệ dập thủy tĩnh và dập thủy cơ. Công nghệ dập thủy tĩnh (DTT) được nghiên cứu và ứng dụng sản xuất các chi tiết dạng tấm và ống với đặc điểm sử dụng chất lỏng cáo áp tác dụng trực tiếp lên bề mặt của phôi gây biến dạng vật liệu. Hình dạng của chi tiết phụ thuộc vào hình dáng của cối trong trường hợp dập phôi tấm và theo hình dạng của hai nửa khuôn trong trường hợp phôi ống. Trong công trình nghiên cứu này, các quá trình tạo hình, thông số công nghệ khi dập chi tiết dạng tấm có hình dạng phức tạp được khảo sát. Luận án chủ yếu tập trung nghiên cứu quá trình hình thành chi tiết, các thông số ảnh hưởng tới mức độ biến dạng và khả năng biến dạng, sự biến mỏng. Do đó, việc áp dụng phương pháp phần tử hữu hạn (FEM) để mô phỏng quá trình hình thành của chi tiết và dự đoán khả năng phá hủy được thảo luận. Cuối cùng, quá trình hình thành và các giá trị thông số công nghệ tối ưu dựa trên mô phỏng số được thực hiện bằng thực nghiệm trong điều kiện sản xuất tại Việt Nam. Kết quả thu được cuối cùng đã được thực hiện khi tạo hình chi tiết có hình dạng chỏm cầu đường kính 50mm vật liệu đồng CDA260. Những ảnh hưởng của các thông số quá trình trong tạo hình chi tiết được điều tra. Với mục đích này, một mô hình thực nghiệm đầu tiên được nghiên cứu để đánh giá ảnh hưởng của các thông số công nghệ và trạng thái ứng suất - biến dạng. Dựa trên những kết luận thu được từ kết quả phân tích, luận án này sẽ đề cập nghiên cứu xây dựng miền làm việc và hàm quan hệ của bộ thông số công nghệ hợp lý, phù hợp với điều kiện thiết bị hiện có tại Phòng thí nghiệm Bộ môn Gia công áp lực, Viện Cơ khí, Trường Đại học bách khoa Hà Nội, khả năng ứng dụng cao nhất vào sản xuất 2 thực tế trong điều kiện của Việt Nam, đáp ứng được yêu cầu kỹ thuật, yêu cầu làm việc của chi tiết có hình dạng phức tạp, là rất cấp thiết và có ý nghĩa khoa học. i. Mục đích, đối tượng và phạm vi nghiên cứu của đề tài *) Mục đích của đề tài Công nghệ dập thủy tĩnh (DTT) là một trong các phương pháp gia công áp lực tiên tiến sử dụng chất lỏng cao áp tác dụng trực tiếp vào phôi để tạo hình các chi tiết dạng tấm và ống. Hình dạng của chi tiết phụ thuộc vào hình dáng của cối trong trường hợp dập phôi tấm và theo hình dạng của hai nửa khuôn trong trường hợp phôi ống. Đề tài “Nghiên cứu công nghệ tạo hình chi tiết dạng vỏ mỏng bằng phương pháp dập thủy tĩnh” được nghiên cứu trong khuôn khổ dập tạo hình thủy tĩnh chi tiết tấm đơn với mục đích làm chủ công nghệ tạo hình kim loại bằng công nghệ DTT để chế tạo các chi tiết dạng tấm có dạng chỏm cầu trong công nghiệp sản xuất phụ tùng Ô tô, xe máy phù hợp với điều kiện thiết bị hiện có ở Việt Nam, gồm: - Nghiên cứu ảnh hưởng của các thông số công nghệ đến khả năng tạo hình chi tiết tấm. Xây dựng miền làm việc và hàm quan hệ của thông số công nghệ chính: lực chặn, chiều cao tương đối của sản phẩm. - Xác định ảnh hưởng của các thông số công nghệ cơ bản đến độ chính xác hình học của sản phẩm đáp ứng yêu cầu chế tạo các chi tiết trong ngành công nghiệp ôtô, xe máy. *) Đối tượng và phạm vi nghiên cứu - Đối tượng nghiên cứu: sản phẩm dạng cầu đường kính 50mm, vật liệu đồng CDA260 chế tạo bằng công nghệ dập thủy tĩnh nhằm xác định bộ thông số công nghệ hợp lý. - Phạm vi nghiên cứu: ảnh hưởng và hàm quan hệ của 3 thông số công nghệ cơ bản bao gồm lực chặn, áp suất chất lỏng chất lỏng cần thiết, chiều cao tương đối sản phẩm (Hi/D)trong hai trường hợp có đối áp N = 0.4kN và không đối áp N = 0 kN. Các nội dung nghiên cứu của Luận án được tiến hành tại phòng thí nghiệm Bộ môn Gia công áp lực - Viện Cơ khí - Trường Đại học Bách khoa Hà Nội. ii. Phương pháp nghiên cứu: Kết hợp nghiên cứu lý thuyết với thực nghiệm - Thứ nhất từ lý thuyết – tìm hiểu các công trình đã công bố liên quan đến đề tài ở trong và ngoài nước, xác định những gì đã công bố, điểm mới đặt ra cho luận án giải quyết. - Cách tiếp cận thứ hai là từ thực tiễn – tìm hiểu cơ sở vật chất, trang thiết bị sẵn có và của các đơn vị nghiên cứu trong nước để thực hiện luận án. Ngoài ra, tìm hiểu thêm nguồn nguyên liệu và khả năng ứng dụng thực tiễn sản xuất. - Để thực hiện đề tài, một số phương pháp sau được sử dụng: + Sử dụng phương pháp mô phỏng số nhằm định lượng các thông số công nghệ, các kết quả mô phỏng sau đó làm cơ sở cho thiết lập các thông số khi thực nghiệm để đánh giá ảnh hưởng của các thông số công nghệ đến quá trình tạo hình. + Sử dụng các thiết bị có sẵn phù hợp với điều kiện thực nghiệm tại Phòng thí nghiệm Bộ môn Gia công áp lực, Viện Cơ khí, Trường Đại học Bách khoa Hà Nội để thiết kế và chế tạo hệ thống thiết bị phục vụ thực nghiệm đảm bảo độ chính xác, độ tin cậy thu thập và xử lý các thông số công nghệ. + Sử dụng thiết bị đo và các phần mềm hiện đại hiện có ở Việt Nam để đo và xử lý số liệu cho kết quả đảm bảo độ tin cậy. + Thực nghiệm xác định các thông số công nghệ trong trường hợp không đối áp và có đối áp. Kết quả được đánh giá trên cơ sở tạo hình các chi tiết đạt yêu cầu không bị nhăn, rách, biến mỏng và chất lượng bề mặt tốt. So sánh đối chiếu trường hợp không đối áp và có đối áp. + Xử lý số liệu thí nghiệm, tính toán xây dựng mô hình toán học và đồ thị quan hệ giữa các thông số công nghệ. Mối quan hệ của áp suất chất lỏng cần thiết trong lòng cối phụ thuộc vào lực chặn, chiều cao tương đối của sản phẩm trong hai trường hợp có đối áp 3 và không sử dụng đối áp. Xây dựng đồ thị quan hệ giữa độ biến mỏng và các thông số công nghệ, xây dựng miền làm việc của chi tiết cầu đường kính 50 mm sử dụng công nghệ DTT. iii. Ý nghĩa khoa học và ý nghĩa thực tiễn a) Ý nghĩa khoa học: - Nghiên cứu hệ thống hóa cơ sở lý thuyết về các công nghệ tạo hình kim loại bằng chất lỏng cao áp trong đó có công nghệ DTT, để xác định miền điều chỉnh của các thông số công nghệ chính làm cơ sở khoa học cho chế tạo các chi tiết tấm có hình dạng phức tạp bằng công nghệ DTT. - Xây dựng được mô hình toán học thực nghiệm phản ánh mối quan hệ giữa các thông số công nghệ chính tới khả năng tạo hình tương ứng từ đó lựa chọn miền điều chỉnh phù hợp, đảm bảo tạo hình chi tiết và ứng dụng vào sản xuất công nghiệp. - Kết hợp phương pháp nghiên cứu mô phỏng số với thực nghiệm nhằm nâng cao hiệu quả nghiên cứu và tiết kiệm chi phí, qua đó góp phần vào sự phát triển của các phương pháp thiết kế và tối ưu quá trình nhờ công nghệ ảo. b) Ý nghĩa thực tiễn: - Góp phần đào tạo nâng cao năng lực chuyên môn nghiệp vụ cho đội ngũ cán bộ KHCN thuộc lĩnh vực công nghệ tạo hình biến dạng vật liệu, nâng cao hiệu quả nghiên cứu ứng dụng các công nghệ tiên tiến của thế giới phù hợp với điều kiện Việt Nam mà chưa cần phải đầu tư thiết bị mới. - Luận án được tiến hành nghiên cứu sát với điều kiện thực tế ở Việt Nam nên rất thuận lợi trong triển khai ứng dụng công nghệ này vào sản xuất công nghiệp. iv. Các đóng góp mới của luận án 1) Xây dựng được bộ các thông số công nghệ có xem xét ảnh hưởng của độ biến mỏng khi tạo hình các chi tiết dạng tấm. 2) Xác định được mức độ biến mỏng theo từng vị trí của chi tiết trong 2 trường hợp có và không có đối áp. 3) Đưa ra mô hình toán học dạng hàm mục tiêu, hàm thông số công nghệ dạng 2D và 3D. v. Các nội dung chính trong luận án Luận án ngoài các mục quy định và phần Mở đầu được trình bày trong 05 Chương: Chương 1: Tổng quan về công nghệ dập thủy tĩnh; Chương 2: Cơ sở lý thuyết công nghệ dập thủy tĩnh; Chương 3: Các kết quả nghiên cứu bằng phương pháp mô phỏng số; Chương 4: Xây dựng hệ thống thực nghiệm; Chương 5: Thực nghiệm và đánh giá kết quả; Kết luận quan trọng của luận án và những vấn đề cần nghiên cứu tiếp theo sẽ được trình bày trong kết luận chung và hướng phát triển của đề tài. 4 CHƯƠNG 1. TỔNG QUAN VỀ CÔNG NGHỆ DẬP THỦY TĨNH 1.1. Sơ lược về tạo hình kim loại bằng công nghệ DTT Công nghệ DTT nằm trong nhóm công nghệ tạo hình bằng chất lỏng cao áp (hình 1.1). Chất lỏng cao áp được cung cấp bởi hệ thống tăng áp tác dụng trực tiếp lên bề mặt của phôi gây biến dạng theo hình dạng của cối (DTT phôi tấm) và theo hình dạng hai nửa khuôn trên và khuôn dưới (DTT phôi ống). Tạo hình kim loại bằng chất lỏng cao áp là công nghệ sử dụng chất lỏng (nước, dầu) để biến dạng kim loại. Công nghệ này hiện nay được ứng dụng khá nhiều để chế tạo các chi tiết trong công nghiệp ôtô, xe máy nhằm giảm trọng lượng, tăng độ bền và độ cứng các chi tiết, chi phí khuôn dập giảm do có thể kết hợp nhiều nguyên công thành một nguyên công. Các chi tiết trên xe ôtô như khung, dầm, bảng điều khiển, Cácte chứa dầu, các bình lọc dầu, và một vài chi tiết dập vuốt khác hiện nay được chế tạo bằng phương pháp này. Dập bằng CLCA thường sử dụng với 2 loại hình : - Tạo hình ống - Tạo hình tấm Dập bằng chất lỏng Tạo hình tấm Dập thủy cơ Tạo hình ống Dập thủy tĩnh Dập cặp tấm Dập tấm đơn Hình 1.1 Phân loại các dạng tạo hình bằng CLCA [52, 57] 5 Sử dụng công nghệ DTT có thể tạo ra các chi tiết có hình dạng phức tạp mà công nghệ dập truyền thống khó thực hiện được, đồng thời có khả năng ghép nối các chi tiết rời thành 1 chi tiết nhằm giảm các khuyết tật do hàn, khuyết tật… Công nghệ này cũng làm đơn giản hóa trong lắp ráp các chi tiết phức tạp. Công nghệ dập bằng chất lỏng cao áp được phát minh năm 1950 bởi Fred Leuthesser [5] nhằm chế tạo các chi tiết gia dụng dạng tấm. Phương pháp này làm giảm chi phí sản xuất các chi tiết dạng dập vuốt có số lượng nhỏ. Hiện nay công nghệ này chủ yếu phục vụ ngành công nghiệp ôtô với những sản phẩm có ưu điểm nổi bật: khỏe, nhẹ, hình dáng phức tạp, không bị khuyết tật trong kết cấu …. Mặt đồng hồ Ống chữ T Khung xe ô tô Ống giảm thanh Các chi tiết vỏ xe ô tô Hình 1.2 Khả năng công nghệ của phương pháp dập bằng chất lỏng cao áp, [37, 60] Các thiết bị sử dụng cho công nghệ dập này thường là thiết bị chuyên dụng, hệ thống bao gồm máy ép thủy lực (dùng để chặn), hệ thống cung cấp chất lỏng cao áp (dùng để tạo hình), hệ thống điều khiển và đo các thông số trong quá trình tạo hình. Hình 1.3 Sơ đồ thiết bị dập thủy tĩnh chi tiết tấm [22, 36] 6 Hình 1.4 Sơ đồ thiết bị dập thủy tĩnh chi tiết ống [37] Hình 1.5 Sơ đồ thiết bị dập thủy cơ chi tiết tấm [22] 1.1.1. Ưu điểm của tạo hình bằng CLCA. Trong nguyên công dập vuốt các chi tiết dạng tấm, tạo hình bằng CLCA tương tự như phương pháp truyền thống tuy nhiên có lợi đáng kể về số lượng các nguyên công cần thiết để tạo hình , giảm chi phí khuôn mẫu và chi phí sản xuất. Hình 1.6 Ưu điểm của phương pháp tạo hình bằng CLCA [13, 37] Mức độ biến dạng lớn: dập bằng CLCA cho phép tạo ra sản phẩm với mức độ biến dạng lớn hơn so với phương pháp dập vuốt truyền thống. 7 a, Dập vuốt truyền thống b, Dập bằng chất lỏng cao áp Hình 1.7 So sánh ứng suất giữa dập vuốt truyền thống và dập CLCA [51, 37] - Mức độ biến mỏng vật liệu lớn - Giảm ứng suất dư và khử đàn hồi lại - Sự biến dày tại vành không đều - Đồng nhất độ bền và giảm phế phẩm - Ứng suất dư phần vành lớn - Độ chính xác cao Bề mặt sản phẩm tốt hơn : So với phương pháp dập vuốt truyền thống, dập bằng CLCA tránh được sự tiếp xúc trực tiếp của sản phẩm với khuôn nên bề mặt sản phẩm không bị xước. Trong quá trình dập bằng CLCA, khi áp suất đạt giá trị yêu cầu thì tấm tiếp xúc với dụng cụ nên đảm bảo quá trình hình thành chi tiết không có sự cào xước. Cho phép tạo hình các loại vật liệu khó biến dạng: Phương pháp tạo hình bằng CLCA có khả năng biến dạng với mức độ biến dạng tối ưu các vật liệu có trở lực biến dạng lớn như: thép không gỉ, magie, titan [26] hoặc các hợp kim đặc biệt. Với những tấm kim loại có chiều dày từ 0,05 đến 6 mm, khả năng biến dạng của phương pháp dập bằng CLCA lớn hơn nhiều so với phương pháp dập vuốt thông thường. Tiết kiệm chi phí dụng cụ: Chi phí sản xuất khuôn mẫu trong phương pháp dập bằng chất lỏng cao áp có thể giảm đến 80% so với phương pháp dập truyền thông [22, 37], do nguyên nhân số lượng nguyên công có thể giảm, chỉ cần chày hoặc cối khi tạo hình. Trong nguyên công tạo hình các chi tiết ống : Phương pháp dập bằng CLCA các chi tiết ống làm khung và dầm ô tô làm giảm tối đa trọng lượng xe. Do phần lớn trọng lượng xe là phần khung nên để giảm được trọng lượng xe sẽ cải thiện được mức tiêu thụ nhiên liệu, giảm lượng khí thải... Tuy nhiên, mức độ giảm như thế nào phụ thuộc vào các tiêu chí khác như: độ bền, mỹ thuật … do đó sự lựa chọn kết cấu khung ô tô bằng ống hiện nay đang được ứng dụng một cách hiệu quả nhằm giảm tối đa trọng lượng xe. Hình 1.8 Ống tạo hình bằng CLCA được áp dụng trên khung ô tô [36] 8 1.1.2. Nhược điểm của tạo hình bằng CLCA. Thiết bị đắt tiền: Các thiết bị cao áp đòi hỏi độ kín khít lớn, khả năng chịu áp cao nên các trang thiết bị sử dụng cho hệ thống thường đắt tiền Đòi hỏi chế tạo và lắp ráp thiết bị công nghệ cao : Với áp suất tạo hình có thể đến 10,000 bar nên đòi hỏi việc lắp ráp và chế tạo thiết bị đảm bảo theo các tiêu chuẩn khắt khe của các thiết bị cao áp. 1.2. Các phương pháp tạo hình bằng CLCA. 1.2.1. Dập thủy cơ: Dập thủy cơ là phương pháp tạo hình vật liệu nhờ nguồn chất lỏng cao áp kết hợp với lực nén của chày. Chất lỏng cao áp tạo thành là do trong quá trình làm việc, chày chuyển động nén chất lỏng trong lòng cối. Phương pháp này được ứng dụng để tạo hình các chi tiết vỏ mỏng phức tạp. Sơ đồ các bước dập thủy cơ được thể hiện trên hình 1.9. P P P Q Q Q Q Q Q Hình 1.9 Sơ đồ các bước dập thủy cơ [80] Quá trình dập thủy cơ có thể được chia thành các bước sau [50, 81]: - Đưa phôi vào khuôn dập. - Phôi được cố định và kẹp chặt nhờ cơ cấu chặn phôi: không gian ép được hình thành giữa phôi và lòng cối. - Chất lỏng được bơm vào trong lòng cối với áp suất ban đầu p0 làm phôi bị phồng lên. 9 - Chày chuyển động đi vào trong cối: áp suất chất lỏng trong lòng cối tăng tỷ lệ thuận với hành trình của chày, đẩy phôi áp vào bề mặt của chày. - Lấy sản phẩm dập ra khỏi khuôn. Các sản phẩm dập thủy cơ Từ mô phỏng số quá trình biến dạng đến sản xuất Hình 1.10 Các chi tiết khung ô tô [50] 1.2.2. Dập thủy tĩnh phôi ống: Dập thủy tĩnh phôi ống là phương pháp dùng nguồn chất lỏng cao áp để biến dạng các chi tiết từ phôi ban đầu dạng ống thành các chi tiết nối, khung ô tô … Phương pháp này sử dụng chất lỏng cao áp để biến dạng bên trong ống phôi còn máy ép có tác dụng đóng khuôn. Khi áp suất bên trong lòng ống tăng lên cũng là lúc lực dọc trục tác dụng làm phôi được đẩy vào trong lòng cối, lúc đó áp suất đạt giá trị lớn nhất để tạo hình chi tiết. Dưới tác dụng của các thông số chính của quá trình là lực tác dụng dọc trục, áp suất bên trong tạo hình … ống được biến dạng theo hình dạng chính xác theo cối.
- Xem thêm -