Đăng ký Đăng nhập
Trang chủ Nghiên cứu công nghệ chế biến bã thải photpho của nhà máy DAP Hải Phòng để sản x...

Tài liệu Nghiên cứu công nghệ chế biến bã thải photpho của nhà máy DAP Hải Phòng để sản xuất các vật liệu xây dựng

.PDF
81
513
151

Mô tả:

VIỆN HOÁ HỌC CÔNG NGHIỆP VIỆT NAM BÁO CÁO TỔNG KẾT ĐỀ TÀI NGHIÊN CỨU CÔNG NGHỆ CHẾ BIẾN BÃ THẢI PHOTPHO CỦA NHÀ MÁY DAP HẢI PHÒNG ĐỂ SẢN XUẤT CÁC VẬT LIỆU XÂY DỰNG CNĐT : NGUYỄN HƯỜNG HẢO 9583 HÀ NỘI – 2012 CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT DAP: Diamon photphat (NH4)2HPO4 GYPS: Bã thải photpho từ nhà máy sản xuất phân bón DAP Hải Phòng TC: Tấm thạch cao TC-VTT: Tấm thạch cao-vải thủy tinh N/TC Lượng nước tiêu chuẩn Nước/Thạch cao FGD Flue-Gas Desulfurization Gypsum- công nghệ khử lưu huỳnh PKHQTX Phổ kế huỳnh quang tia X EDTA Etylen diamino tetra axetic (HOOC-CH2)2N-CH2-CH2-N(CH2-COOH)2 EDS Energy Dispersive X-Ray fluorescence Spectrometer TCVN Tiêu chuẩn Việt Nam ASTM : American standard t method –Tiêu chuẩn của Mỹ ISO: International standard organization – Tiêu chuẩn quốc tế DANH MỤC CÁC BẢNG Bảng 3.1. Phân tích các thành phần bã thải photpho của nhà máy DAP HP............ 33 Bảng 3.2. Ảnh hưởng của nồng độ Ca(OH)2 đến tính chất của sản phẩm................ 35 Bảng 3.3. Ảnh hưởng của thời gian đến quá trình trung hòa.................................. 36 Bảng 3.4. Ảnh hưởng của tốc độ khuấy đến phản ứng trung hòa............................ 37 Bảng 3.5. Ảnh hưởng của kích thước lỗ sàng rây đến hàm lượng thạch cao và hiệu suất thu hồi của thạch cao.............................................................. 41 Bảng 3.6. Ảnh hưởng của nhiệt độ sấy đến tính chất của sản phẩm thạch cao ........ 42 Bảng 3.7. Ảnh hưởng của thời gian sấy đến tính chất của sản phẩm thạch cao chế biến từ bã thải Gyps............................................................................... 43 Bảng 3.8. Các điều kiện công nghệ lựa chọn, xử lý chế tạo bã thải gyps................. 44 Bảng 3.9. Tính chất đặc trưng của sản phẩm thạch cao từ bã thải photpho của nhà máy DAP Hải Phòng và thạch cao bán trên thị trường.......................... 45 Bảng 3.10. Thành phần hóa học của thạch cao thu được từ bã thải photpho và thạch cao nhập khẩu của Trung Quốc.................................................... 47 Bảng 3.11. Ảnh hưởng của số lớp vải mát thủy tinh đến tính chất cơ lý của tấm thạch cao................................................................................................ 48 Bảng 3.12. Ảnh hưởng của mật độ lưới vải thủy tinh đến tính chất cơ lý của tấm TC-VTT................................................................................................. 49 Bảng 3.13. Các tính chất đặc trưng của sản phẩm tấm thạch cao, tấm thạch cao – vải thủy tinh, tấm thạch cao GYPROC.................................................. 51 Bảng 3.14: Khả năng cách nhiệt của các tấm ngăn thạch cao và tấm thạch cao – vải thủy tinh........................................................................................... 51 Bảng 3.15: Đơn nguyên liệu sử dụng để tái chế bã thải gyps và hiệu suất thu hồi thạch cao từ bã thải Gyps....................................................................... 53 DANH MỤC CÁC HÌNH Hình 1.1: Cấu tạo tấm thạch cao ứng dụng làm trần trong xây dựng....................... 16 Hình 1.2: Tấm trần thạch cao tại Trung tâm Hội nghị quốc gia............................... 17 Hình 1.3 : Vách ngăn thạch cao................................................................................ 18 Hình 1.4 : Tường thạch cao Gyproc.......................................................................... 18 Hình 1.5: Tấm thạch cao cạnh vuông........................................................................ 19 Hình 1.6: Tấm thạch cao cạnh vát............................................................................. 19 Hình 1.7: Vật liệu xây không nung (gạch bê tông khí chưng áp)............................. 21 Hình 1.8 : Tường xây từ gạch AAC siêu nhẹ, cách âm, cách nhiệt, chống cháy...... 22 Hình 2.1. Dụng cụ vika xác định thời gian đông kết................................................ 30 Hình 3.1. Ảnh hưởng của nồng độ chất tập hợp VH-2004 đến hàm lượng CaSO4 và SiO2 và hiệu suất thu hồi.................................................................... 38 Hình 3.2. Ảnh hưởng của nồng độ chất tạo bọt đến hàm lượng CaSO4 và SiO2 trong quá trình tuyển trọng lực................................................................ 39 Hình 3.3. Ảnh hưởng của nồng độ huyền phù đến hàm lượng CaSO4 và SiO2........ 40 Hình 3.4. Phổ huỳnh quang tia X của sản phẩm thạch cao chế biến từ bã thải photpho DAP Hải Phòng (bã thải Gyps).................................. .............. 46 Hình 3.5 .Phổ huỳnh quang tia X của thạch cao nhập của Trung Quốc................... 46 Hình 3.6. Độ hút ẩm của vật liệu tấm thạch cao và tấm thạch cao – vải thủy tinh theo thời gian........................................................................................... 50 Hình 3.7. Sơ đồ quy trình xử lý, tái chế bã thải photpho......................................... 52 Hình 3.8. Bãi chứa bã thải GYPS............................................................................. 57 Hình 3.9. Bã thải photpho nhà máy DAP Hải Phòng................................................ 57 Hình 3.10. Sản phẩm thạch cao sau khi sấy ở 150oC – 170oC.................................. 57 Hình 3.11. Sản phẩm thạch cao chế biến từ bã thải ................................................. 57 Hình 3.12. Mẫu sản phẩm tấm thạch cao.................................................................. 58 Hình 3.13. Sản phẩm tấm thạch cao- vải thủy tinh (TC-VTT)................................. 58 MỤC LỤC MỞ ĐẦU........................................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN........................................................................................... 3 1.1. Tình hình nghiên cứu tái chế và sử dụng bã thải photpho trên thế giới................. 3 1.2. Tình hình nghiên cứu xử lý, tái chế bã thải photpho (GYPS) ở Việt Nam........... 4 1.3. Công nghệ sản xuất DAP Hải Phòng và thành phần bã thải photpho.................... 5 1.3.1. Công nghệ sản xuất phân bón diamoni photphat (DAP)....................................... 5 1.3.2. Nguyên liệu sản xuất phân bón DAP...................................................................... 7 1.3.3. Các phản ứng tạo amon và diamon phốt phát (DAP)............................................. 7 1.3.4. Thành phần và hàm lượng của bã thải photpho(Gyps).......................................... 8 1.4. Giới thiệu về thạch cao........................................................................................... 8 1.4.1. Nguồn gốc phương pháp sản xuất thạch cao ......................................................... 8 1.4.2. Quá trình rắn chắc ................................................................................................. 11 1.4.3. Các tính chất cơ bản của thạch cao........................................................................ 11 1.5. Cở sở lý thuyết và các phương pháp xử lý, tái chế bã thải photpho ..................... 13 1.6. Các ứng dụng của thạch cao trong đời sống.......................................................... 15 1.6.1. Ứng dụng làm trần thạch cao................................................................................. 15 1.6.2. Ứng dụng làm vách thạch cao, tường thạch cao, tấm thạch cao.............................. 17 1.6.3. Ứng dụng thạch cao làm phụ gia trong sản xuất xi măng...................................... 19 1.6.4. Ứng dụng thạch cao trong sản xuất vật liệu không nung trong xây dựng.............. 20 1.6.5. Ứng dụng thạch cao trong lĩnh vực khác................................................................ 22 CHƯƠNG 2.THỰC NGHIỆM VÀ CÁC PHƯƠNG PHÁP NGHIÊN CỨU........... 23 2.1. Nguyên liệu và hóa chất............................................................................................. 23 2.2. Thiết bị sử dụng.......................................................................................................... 23 2.3. Phương pháp xử lý, tái chế bã thải photpho để chế tạo thạch cao và tấm ngăn thạch cao - vải thủy tinh.................................................................................................... 24 2.4. Phương pháp hóa học xác định thành phần bã thải gyps........................................... 25 2.5. Các phương pháp xác định tính chất cơ lý của vật liệu.............................................. 29 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN................................................................. 33 3.1. Xác định thành phần bã thải phốtpho của nhà máy DAP Hải Phòng....................... 33 3.2. Nghiên cứu xử lý bã thải với Ca(OH)2 ..................................................................... 34 3.2.1. Ảnh hưởng của nồng độ Ca(OH)2 .......................................................................... 34 3.2.2. Ảnh hưởng của thời gian thực hiện phản ứng trung hòa tới thành phần bã thải... 35 3.2.3. Ảnh hưởng của tốc độ khuấy đến phản ứng trung hòa........................................... 36 3.3. Ảnh hưởng các điều kiện tuyển trọng lực tới quá trình xử lý, tái chế thạch cao....... 37 3.3.1. Ảnh hưởng của nồng độ chất tập hợp VH-2004 đến quá trình tuyển..................... 37 3.3.2. Ảnh hưởng của nồng độ chất tạo bọt đến tính chất sản phẩm................................ 39 3.3.3. Ảnh hưởng của nồng độ huyền phù đến quá trình tuyển trọng lực ....................... 40 3.4. Ảnh hưởng kích thước lỗ sàng rây đến tính chất của sản phẩm thạch cao...................... 41 3.5. Ảnh hưởng các điều kiện chuyển hóa sản phẩm Ca2SO4.2H2O sang sản phẩm thạch cao (Ca2SO4.1/2H2O)............................................................................................... 42 3.5.1. Ảnh hưởng của nhiệt độ sấy đến tính chất của sản phẩm thạch cao...................... 43 3.5.2. Ảnh hưởng của thời gian sấy đến tính chất của sản phẩm thạch cao..................... 43 3.6. Các điều kiện công nghệ thích hợp để xử lý, chế tạo thạch cao từ bã thải photpho của nhà máy DAP Hải Phòng ........................................................................................... 44 3.7. Đặc trưng, tính chất của sản phẩm thạch cao chế biến từ bã thải photpho DAP Hải Phòng................................................................................................................................. 45 3.8. Nghiên cứu chế tạo tấm ngăn thạch cao, tấm ngăn thạch cao- vải thủy tinh................ 47 3.8.1. Ảnh hưởng của hàm lượng vải thủy tinh đến tính chất cơ lý của tấm ngăn thạch cao- vải thủy tinh............................................................................................................... 47 3.8.2. Ảnh hưởng của mật độ lưới vải sợi thủy tinh đến tính chất của tấm thạch caovải thủy tinh (TC-VTT)...................................................................................................... 48 3.9. Đặc trưng tính chất của tấm thạch cao và tấm thạch cao TC-VTT............................ 49 3.9.1. Độ hút ẩm của tấm thạch cao................................................................................. 49 3.9.2. So sánh tính chất đặc trưng của các sản phẩm tấm thạch cao và tấm thạch cao – vải thủy tinh........................................................................................ 50 3.9.3. Khả năng cách nhiệt của các tấm ngăn thạch cao và tấm thạch cao –vải thủy tinh..................................................................................................................................... 51 3.10. Sơ đồ quy trình xử lý, chế biến bã thải phốtpho của nhà máy DAP HP.................. 51 3.11. Chế thử sản phẩm, ứng dụng thực tế và đề xuất phương án sản xuất pilot............ 53 3.12. Dự kiến giá thành sản phẩm..................................................................................... 55 KẾT LUẬN...................................................................................................................... 59 TÀI LIỆU THAM KHẢO.............................................................................................. 60 MỞ ĐẦU Theo định hướng xử lý chất thải rắn của Việt Nam đến 2015 được dự báo tới hàng trăm triệu tấn năm, chỉ tính riêng lượng bã thải rắn tại nhà máy sản xuất DAP Hải Phòng cỡ 86-110 tấn/giờ tương đương 750,000-890,000 tấn/năm [1-2]. Lượng phế thải này nếu không được xử lý hiệu quả sẽ chiếm một diện tích đất đai rất lớn và gây ô nhiễm môi trường đất, nước và không khí. Vì thế, việc xử lý chất thải rắn tại các khu công nghiệp nói chung ở nước ta hiện nay là rất cấp thiết. Thành phần chính trong bã thải rắn từ việc sản xuất DAP chủ yếu là CaSO4 chiếm tới hơn 83,3%, còn lại là nước; Al2O3; SiO2 và các axit như: H2SO4; H3PO4; HF; … chiếm khoảng 16,7%. Tại các nước công nghiệp phát triển, nguồn bã thải này được sử dụng để sản xuất thạch cao sạch và đã được ứng dụng trong ngành sản xuất xi măng và xây dựng [3-11]. Đối với Việt Nam, chúng ta không có mỏ đá thạch cao, hàng năm vẫn đang phải nhập khẩu hàng triệu tấn thạch cao cho ngành sản xuất xi măng, vật liệu xây dựng, đặc biệt là thạch cao tấm ngăn để bao che và trang trí trong xây dựng. Vì vậy, nghiên cứu công nghệ xử lý, tái chế và sử dụng thích hợp nguồn bã thải này thì đây sẽ là nguồn sản xuất, cung cấp và bổ xung thạch cao ổn định tốt cho thị trường trong nước. Xuất phát từ những lý do trên, đề tài “Nghiên cứu công nghệ chế biến bã thải phốtpho của nhà máy DAP Hải Phòng để sản xuất các vật liệu xây dựng” được đặt ra và xác định mục tiêu là: Tận dụng nguồn nguyên liệu bã thải phốt pho của nhà máy DAP Hải Phòng, nghiên cứu qui trình công nghệ chế biến bã thải photpho để sản xuất thạch cao tấm ngăn, có khả năng cách âm, cách nhiệt và chống cháy tốt, ứng dụng trong xây dựng và công nghiệp, góp phần giảm chi phí sản xuất và góp phần bảo vệ môi trường. Để đạt mục tiêu trên đề ra, đề tài xác định nội dung nghiên cứu chính sau: - Phân tích xác định thành phần bã thải phốtpho của nhà máy DAP Hải Phòng (phân tích thành phần hỗn hợp, CaSO4, hàm lượng P2O5 (axit H3PO4), hàm lượng SO3 (H2SO4), HF…). - Nghiên cứu lựa chọn quy trình xử lý, chế biến bã thải phốtpho của nhà máy DAP để chế tạo vật liệu thạch cao tấm ngăn: cách âm, cách nhiệt, chống cháy… đạt yêu cầu chất lượng ứng dụng trong xây dựng. 1 - Nghiên cứu khảo sát ảnh hưởng của các điều kiện công nghệ đến tính chất sản phẩm thạch cao và thạch cao tấm ngăn cách âm, cách nhiệt, chống cháy. - Phân tích tính chất sản phẩm (Hàm lượng, các thông số cơ, lý hóa đặc trưng và khả năng ứng dụng trong xây dựng và đời sống). - Thử nghiệm chế thử sản phẩm: thạch cao tấm ngăn, cách âm, cách nhiệt, chống cháy:10 mẫu kích thước 0,2mx1m. - Đề xuất phương án sản xuất quy mô pilot. 2 CHƯƠNG 1. TỔNG QUAN 1.1. TÌNH HÌNH NGHIÊN CỨU TÁI CHẾ VÀ SỬ DỤNG BÃ THẢI PHOTPHO (GYPS) TRÊN THẾ GIỚI Vấn đề xử lý chất thải công nghiệp đặc biệt là công nghiệp hóa chất đang là nhiệm vụ quan trọng của các cấp quản lý và của nhiều nhà khoa học công nghệ, Giải pháp tối ưu là tìm cách tái sử dụng các chất thải hoặc chuyển chúng thành nguyên liệu hay phụ gia có giá trị hơn cho các quá trình công nghệ khác. Trên thế giới đã có nhiều nhà khoa học tập trung nghiên cứu xử lý, chế biến bã thải phốtpho như: R.F. Korcak (Mỹ) đã nghiên cứu ảnh hưởng của bã thải công nghiệp, bã thải phốt pho ứng dụng trong nông nghiệp với mục đích tái sử dụng phốt pho thạch cao từ nhà máy hóa chất để cải thiện đất mặn, giảm giá trị pH, tăng năng suất cây trồng [12]. Wilison (Mỹ) đã nghiên cứu quá trình xử lý bã thải sản xuất phốt pho bằng phương pháp axit ướt tạo axit photphoric [13] hay nhiều nước trên thế giới đã nghiên cứu sản xuất xi măng chất lượng cao từ bã thải công nghiệp nhiều thành phần. Hiện nay, tại các nước như: Mỹ, Canada, Pháp, Úc…việc tận dụng nguồn bã thải gyps và phế liệu thạch cao để sản xuất các tấm cactong có giá trị sử dụng cao hơn là khá phổ biến. Tại Nga, người ta sử dụng thạch cao được sản xuất từ nguồn bã thải gyps để sản xuất xi măng [3-11], đặc biệt là xi măng giãn nở, hay sử dụng thạch cao sản xuất từ việc tận dùng nguồn phế liệu này cho mục đích xây dựng nhà và công trình chịu tác động ăn mòn của môi trường….[14,15]. Cũng có nhiều công trình nghiên cứu tận dụng nguồn bã thải gyps để chế tạo các tấm vách ngăn có khả năng cách âm, cách nhiệt, chống cháy…. Ngoài ra trong đời sống hiện nay, thạch cao còn được sử dụng khá phổ biến để làm trần hoặc tường, trong trang trí, nội thất xây dựng [16,17]. Tại Canada, hệ thống tái chế thạch cao hiện nay được sử dụng rộng rãi trong việc xử lý lại các phế thải thạch cao để sản xuất các tấm các tông thạch cao mới có chứa tới 25% phế thải. Chất lượng của các tấm mới không bị giảm. Công nghệ tái chế thạch cao đã được nghiên cứu sản xuất thành công ở Vancôvơ 17 năm trước đây. Ngày nay, công nghệ này đang được chú ý áp dụng từ phía các nhà tổ chức chính phủ, thương mại và bảo vệ môi trường thiên nhiên của nhiều nước khác nhau. Sự quan tâm của các nhà máy có các chất thải thạch cao trên công trường còn bởi tiền phạt đối với việc chuyên chở chất thải đổ ra bãi chứa. Đồng thời cùng với sự giảm giá các tấm 3 cáctông thạch cao, thì tổng giá thành của các chế phẩm này bao gồm cả các chi phí chôn lấp chất thải an toàn vẫn tiếp tục tăng lên, đặc biệt so với các hệ tường tối ưu. Sự thiếu chỗ chứa chất thải, mối quan tâm tới sức khoẻ con người có liên quan tới sự tạo thành các sản phẩm tiết ra kiềm ngày càng tăng thêm mối lo cho xã hội. Đây là những vấn đề cần phải giải quyết của toàn ngành sản xuất các chế phẩm thạch cao. Hiện nay ở châu Âu việc tái chế thạch cao hầu như không được thực hiện, hoặc thực hiện với khối lượng rất ít, trừ những chương trình hạn chế của các hãng sản xuất. Tuy nhiên, trong năm 2002 Uỷ ban châu Âu đã thay đổi phân loại các bãi chứa phế thải thạch cao từ bãi loại III trơ đổi thành loại II - bãi không nguy hiểm. Điều này làm tăng tổng số thu gom và sẽ làm tăng giá vận chuyển chất thải ra bãi từ 10 euro/tấn tới 85-150 euro/tấn sau ngày 17/6/2005 theo quy định của Châu Âu. Sáng kiến kinh tế này có được là nhờ nỗ lực tái chế thạch cao từ nguồn chất thải, sẽ thúc đẩy sự phát triển công nghệ tái chế thạch cao nhằm bảo vệ môi trường tự nhiên và nâng cao hiệu quả kinh tế. 1.2. TÌNH HÌNH NGHIÊN CỨU XỬ LÝ, TÁI CHẾ BÃ THẢI PHOTPHO (GYPS) Ở VIỆT NAM Trong những năm gần đây, nước ta cũng đã có một số công trình nghiên cứu và hội thảo về vấn đề xử lý tái chế và sử dụng bã thải gyps như: Nhóm tác giả:Lê Văn Quang, Tạ Ngọc Dũng, Trịnh Thị Châm, Trường đại học bách khoa Hà Nội, đã khảo sát khả năng sử dụng bã thải gyp thay thế thạch cao tự nhiên trong công nghiệp xi măng [18]. Việt Nam chưa có quy trình xử lý các chất thải sau xây dựng một cách triệt để. Nhiều nhà máy, khu công nghiệp vẫn xả khí thải trực tiếp ra môi trường mà chưa qua khâu xử lý và khối lượng chất thải rắn thải ra chiếm dụng rất nhiều đất đai. Điều này gây ra sự lãng phí lớn về tài nguyên đất và vật liệu. Trước thực trạng đó, Hội thảo quốc tế "Tận dụng thạch cao nhân tạo từ khí thải nhà máy nhiệt điện, nhà máy sản xuất hoá chất để sản xuất vật liệu xây dựng và giảm lượng khí thải" ra đời với mục đích nâng cao nhận thức, trình độ, kinh nghiệm cho Việt nam về công nghệ khử lưu huỳnh FGD (Flue-Gas Desulfurization Gypsum) , các ứng dụng của thạch cao vào cuộc sống cùng nhiều chia sẻ, trao đổi kinh nghiệm cởi mở từ các chuyên gia dày dặn kinh nghiệm trong và ngoài nước trong quá trình tận thu và sử dụng thạch cao nhân tạo. Hội thảo đã đem lại các kiến thức khoa học mới, nhiều sáng tạo và ứng dụng, có giá trị 4 thương mại, góp phần giải quyết các nguồn thải, tạo ra thạch cao có chất lượng, đáp ứng nhu cầu ngày một lớn của thị trường Việt Nam - một nhu cầu xanh, với các sản phẩm sạch và có chất lượng [19]. Tại Việt Nam, có một nhà máy sản xuất tấm thạch cao dùng làm vách ngăn và tấm trần tại khu công nghiệp Hiệp Phước, Nhà Bè, Tp,HCM. Đây là nhà máy liên doanh 100% của hai tập đoàn Lafarge của Pháp và Boral của Úc [22]. Hiện tại, cũng có một số công trình nghiên cứu để tận dụng nguồn nguyên liệu bã phốt pho để sản xuất thạch cao, tuy nhiên kết quả nghiên cứu mới dừng lại ở quy mô phòng thí nghiệm. Do đó, việc nghiên cứu chế biến bã thải phốtpho của nhà máy DAP để tạo ra các vật liệu hữu ích, có giá trị cao hơn như: tấm ngăn, vật liệu cách âm, cách nhiệt, chống cháy… và sản phẩm thạch cao sạch, ứng dụng trong xây dựng là việc làm có ý nghĩa rất lớn về mặt kinh tế cũng như vấn đề môi trường. 1.3. CÔNG NGHỆ SẢN XUẤT PHÂN BÓN DAP HẢI PHÒNG VÀ THÀNH PHẦN BÃ THẢI PHOTPHO 1.3.1. Công nghệ sản xuất phân bón diamoni photphat (DAP) Nhà máy hoá chất sản xuất phân bón Diamon phốt phát - (DAP) tại Hải phòng là nhà máy có quy mô công suất lớn và hiện đại. Nhà máy Sản xuất phân bón Diamon Photphat (DAP) thuộc Công ty TNHH MTV DAP Vinachem được khởi công năm 2003 với tổng mức đầu tư là 172,385 triệu USD tại lô GI-7 khu kinh tế Đình Vũ – thành phố Hải Phòng trên tổng diện tích 72 ha. Nhà máy đã được đưa vào vận hành và cho ra sản phẩm đầu tiên vào ngày 12/4/2009. Đây là Nhà máy sản xuất phân phức hợp chất lượng cao đầu tiên được xây dựng tại Việt Nam. Dự án xây dựng Nhà máy đã thu hút sự quan tâm đặc biệt của Chính phủ và các bộ, ngành trung ương với mục tiêu chủ động nguồn cung phân bón DAP cho sản xuất nông nghiệp, hạn chế nhập khẩu, sử dụng có hiệu quả hơn nguồn apatít trong nước, tạo công ăn việc làm cho hơn 600 công nhân khi Nhà máy đi vào hoạt động. Nhà máy có 4 dây chuyền sản xuất chính gồm: dây chuyền sản xuất Diamon Photphat (DAP) công suất 330.000 tấn/năm; dây chuyền sản xuất Axit Sunfuric (H2SO4) công suất 414.000 tấn/năm; dây chuyền sản xuất Axit Photphoric (H3PO4) công suất 161.700 tấn/năm; nhà máy nhiệt điện với 01 nồi hơi đốt than, công suất 35 tấn hơi/giờ và 01 máy phát điện có công suất 12 MW. Dự kiến, Nhà máy sau khi hoàn 5 thành sẽ đem lại doanh thu 330 triệu USD/năm; nộp ngân sách 6,6 triệu USD/năm; tiết kiệm 145 triệu USD/năm do giảm lượng nguyên liệu nhập khẩu. + Công nghệ sản xuất axit sunfuric Công ty sử dụng công nghệ sản xuất axit sunfuric dựa trên phương pháp tiếp xúc kép và hấp thụ kép, nguyên liệu sử dụng là lưu huỳnh nguyên tố. Phương pháp tiếp xúc được hình thành từ 3 quá trình cơ bản. Quá trình đầu tiên là quá trình đốt lưu huỳnh bằng oxi để tạo thành SO2: S + O2 → SO2 Chuyển hóa SO2: Do SO2 liên tục được đưa vào thiết bị chuyển hóa, ở đây SO2 bị oxi hóa với sự trợ giúp của xúc tác vanadi để trở thành SO2 xúc tác → 2SO2 + O2 2SO3 Cuối cùng là SO3 được hấp thụ bằng nước trong dung dịch axit sunfuric để trở thành H2SO4. SO3 + H2O → H2SO4 + Công nghệ sản xuất axit photphoric Nhà máy sử dụng phương pháp ướt để sản xuất axit photphoric. Axit photphoric được tạo ra từ phản ứng giữa axit sunfuric với quặng photphat. Quặng photphat được sử dụng ở đây là quặng tuyển apatit và được cấp liên tục vào thiết bị phản ứng để tiếp xúc với axit sunfuric. Phản ứng xảy ra giữa canxi trong quặng photphat với sunfat để tạo ra canxi sunfat (CaSO4), thường được gọi là GYPS. Phản ứng được thể hiện bằng phương trình dưới đây: Ca3(PO4)2.CaF2 + 10H2SO4 + nH2O → 6H3PO4 + 10CaSO4.nH2O + 2HF GYPS được tách ra khỏi dung dịch bằng phương pháp lọc và thu được axit photphoric loãng. Caxi sunfat tùy thuộc vào lượng nước kết hợp, có 3 dạng: khan nước, ngậm ½ nước và ngậm 2 nước.Dạng CaSO4 và nồng độ H3PO4 thay đổi theo điều kiện phân hủy quặng photphat bằng axít H2SO4. Vì vậy quá trình sản xuất axít H3PO4 chia làm 5 loại: + Quá trình khan nước. - Quá trình ngậm ½ nước (Hemi hydrat). - Quá trình ngậm 2 nước (Dihydrat). 6 - Quá trình Hemi – Dihydrat. - Quá trình Di – Hemi hydrat. + Công nghệ sản xuất DAP Phương pháp sản xuất DAP được dựa vào phản ứng chính sau: H3PO4 + 2 NH3 → (NH4)2HPO4 Quá trình sản xuất bao gồm các giai đoạn sau: - Trung hòa sơ bộ axit photphoric bằng amoniac. - Tạo hạt sản phẩm. - Đóng bao. - Xử lý khí và bụi. 1.3.2. Nguyên liệu sản xuất phân bón DAP Nhà máy Hoá chất sản xuất phân bón Diamon phốt phát - (DAP) tại Hải phòng là nhà máy có quy mô công suất lớn và hiện đại. Để chế tạo phân bón DAP nhà máy sử dụng quặng Aptit Lào Cai, là một loại quặng phosphat có nguồn gốc trầm tích biển, thành hệ tiền Cambri chịu các tác dụng biến chất và phong hoá. Các khoáng vật phosphat trong đá trầm tích, phần lớn chúng biến đổi giữa floroapatit Ca5(PO4)6F2 và cacbonat-floroapatit Ca5([PO4],[CO3])3F. Hầu hết các phosphat trầm tích dưới dạng cacbonat-floroapatit gọi là francolit. Dưới tác dụng của biến chất các đá phi quặng biến thành đá phiến, dolomit và quaczit, còn đá chứa phosphat chuyển thành quặng apatit-dolomit. Quặng apatit với các thành phần cơ bản là : + Ca3 (PO4)2 + 3Ca3 (PO4)2. CaF2 + 3Ca3 (PO4)2. CaCl2 + 3Ca3 (PO4)2. Ca(OH)2 + Fe3(PO4)2. 8H2O + 3Al2O3.2P2O5.12H2O Ngoài các chất trên trong apatit còn chứa các loại như: thạch anh - SiO2; MgO; MnO. 1.3.3. Các phản ứng tạo amon và diamon phốt phát (DAP) (1) Ca3 (PO4)2 + H2SO4 → CaSO4 + H3PO4 . (2) Ca3 (PO4)2 + H3PO4 → 3Ca (H2PO4)2 Supe phốt phát 7 (3) H3PO4 + NH3 → NH4 H2PO4. Amon phốt phát(MAP) (4) NH4H2PO4 + NH3 → (NH4)2 HPO4 Diamon phốt phát (DAP) (5) H2SO4 + 2NH3→ (NH4)2SO4. Chúng ta thấy apatit tác dụng với H2SO4 để tạo ra H3PO4 và thải ra thạch cao dạng CaSO4 hay CaSO4.2H2O ( khi có nước). Tiếp theo H3PO4 hay sản phẩm phản ứng (3) NH4H2PO4 lại tác dụng với NH3 tạo ra Amon phốt phát hay Diamon phốt phát (NH4)2HPO4. 1.3.4. Thành phần bã thải photpho(Gyps). Do bã thải photpho là sản phẩm từ đá photphat (hay quặng apatit) tác dụng với axit sunfuric, nên thành phần bã thải photpho cũng rất đa dạng phụ thuộc vào nguồn quặng photphat và quá trình công nghệ sản xuất axit photphoric[20,23, 28-32]. Thành phần chính của bã thải phopho là thạch cao CaSO4; CaSO4.2H2O, có kích thước dạng hạt trong khoảng 0-100µm trong đó khoảng 30% hạt có kích thước < 40 µm, một lượng nhỏ còn lại H2SO4 ; HF; H3PO4; SiO2. Bã thải GYPS chứa khoảng 75 % CaSO4.2H2O, còn lại là nước tự do; H2SO4; P2O5; F: SiO2 ; Al2O3 và các chất khác chiếm 25 %. Bã thải phopho Gyps thường có pH = 4,5-5, với lượng lớn chất thải vô cơ và lượng các chất khác không nhỏ sẽ dẫn đến sự ảnh hưởng tới chất lượng sản phẩm thạch cao và môi truờng xung quanh là điều không tránh khỏi[11,12,21]. 1.4. GIỚI THIỆU VỀ THẠCH CAO 1.4.1. Nguồn gốc phương pháp sản xuất thạch cao Thạch cao, tiếng anh là gypsum mà trong tự điển Bách Khoa Encarta Encyclopedia định nghĩa là một loại chất khoáng rất phổ thông mang tên hóa học là canxi sulfat, được tìm thấy trong đá vôi (limestone), và hầu như có mặt ở mọi vùng trên trái đất [24-26]. Trong tự nhiên CaSO4 tồn tại ở dạng 3 cơ bản: Canxi sunphat khan CaSO4, canxi sunphat hemihyđrat CaSO4.0,5H2O và canxi sunphat đihyđrat CaSO4.2H2O (thạch cao). Riêng canxi sunphat hemihyđrat có hai pha α - canxi sunphat hemihyđrat (α-CaSO4.0,5H2O gọi tắt là α hemihyđrat) và β - canxi sunphat hemihyđrat (βCaSO4.2H2O gọi tắt là β hemihyđrat). Trong các pha hệ canxi sunphat tồn tại sự chuyển hoá qua lại: 8 CaSO4.2H2O ↔ CaSO4.0,5H2O ↔ CaSO4 Tùy trong mỗi điều kiện môi trường như nhiệt độ hay độ ẩm mà canxi sunphat có thể tồn tại ở các pha khác nhau. Sự tồn tại của các pha hệ canxi sunphat được chỉ ra trên giản đồ pha CaSO4.H2O: Theo giản đồ pha hệ CaSO4-H2O thấy rằng, trong khoảng 0 đến 40oC độ hòa tan của canxi sunphat hêmihyđrat tăng. Trong khoảng nhiệt độ lớn hơn 40oC khi nhiệt độ tăng độ hòa tan của tất cả các pha canxi sunphat đều giảm. Canxi sunphat có nhiều ứng dụng quan trọng, từ xa xưa con người đã biết và sử dụng làm vữa trát hoặc tạo hình trong những công trình kiến trúc cổ ở Ý, Ai Cập… cho đến nay người ta vẫn sử dụng rất nhiều làm vật liệu xây dựng, vữa trát tường, kỹ thuật nặn tượng… Những ứng dụng đặc biệt hơn như làm khuôn đúc chịu nhiệt, hay khuôn mẫu trong nha khoa, làm chất hút ẩm. Trong y tế còn dùng làm khung xương, bó bột. Ngay phấn sử dụng viết bảng cũng có thành phần chính là canxi sunphat. Tuy nhiên không nhiều người hiểu cụ thể về cơ chế quá trình chuyển pha trong hệ, chỉ biết rằng mua bột thạch cao trên thị trường về trộn với nước và nó rất nhanh đông cứng. Có thể giải thích quá trình cơ bản như sau: Bột thạch cao trên thị trường thường là canxi sunphat hemihyđrat hoặc canxi sunphat khan. Khi hỗn hợp với nước nó sẽ chuyển sang dạng pha canxi sunphat ngậm 2 nước (CaSO4.2H2O) và đóng cứng lại theo phương trình: CaSO4.0,5H2O + 1,5H2O = CaSO4.2H2O hoặc CaSO4 + 2 H2O = CaSO4.2H2O Phương trình trên mô tả cơ chế trong các quá trình sử dụng vữa thạch cao. Tuy nhiên vấn đề là làm thế nào để có CaSO4 dạng khan hoặc hemihyđrat? Có rất nhiều quá trình dẫn tới sự hình thành cùa canxi sunphat. Đơn giản như phản ứng chế tạo H3PO4 trong công nghiệp: Ca5F(PO4)3 + 5H2SO4 + 10H2O = 5CaSO4.2H2O + 3H3PO4 + HF Hay phản ứng xử lý khí thải chứa khí sunfurơ trong công nghiệp bằng đá vôi: CaCO3 + SO2 + 0,5H2O = CaSO4.2H2O + CO2 Hoặc đơn giản như các phản ứng của các muối canxi với H2SO4: CaCO3 + H2SO4+ H2O = CaSO4.2H2O + CO2 Trong quá trình sản xuất supe lân đi từ quặng apatit và đá vôi, giai đoạn đầu của phản ứng hình thành canxi sunphat như phản ứng điều chế H3PO4. Tuy nhiên nó nằm 9 ở dạng hemihydrat, sau đó quá trình ủ trong phòng hoá thành hêmihyđrat sẽ hút ẩm tạo thành thạch cao. Canxi sunphat đihyđrat hình thành trong tự nhiên có thể là thạch cao, còn tìm thấy ở dạng tinh thể dạng phiến phẳng, rắn chắc là statin. Statin óng ánh có cấu trúc tinh thể theo lớp phẳng dẹt, được khai thác làm đá xẻ. Ngoài ra có thể gặp dạng canxi sunphát đihyđrát dạng hạt rắn chắc gọi là alabaster. Muốn sử dụng người ta khai thác về, sau đó nung trong các lò nung hoặc rang trên các chảo lớn. Bán thành phẩm được nghiền mịn, đóng bao cẩn thận rồi bán ra thị trường. Từ đầu thế kỷ XIX nhiều nhà nghiên cứu đi vào chuyển pha thạch cao thành hemihyđrat trong môi trường dung dịch chứa các chất điện ly như CaCl2, MgCl2, H2SO4, NaCl… và kết quả rất khả quan khi sản phẩm hình thành dạng α hemihyđrat có nhiều thuộc tính tốt hơn như kích thước tinh thể lớn, độ hút ẩm nhỏ, thời gian đóng rắn chậm. Ứng dụng đặc biệt của α hemihyđrat như làm khuôn đúc chịu nhiệt lên tới 1050oC với độ thay đổi thể tích nhỏ hơn 0,3%, hoặc làm khuôn mẫu trong nha khoa… Tuy nhiên để chế tạo được các mẫu α hemihyđrat với tính chất tốt đã và đang làm tốn rất nhiều thời gian và công sức của nhiều nhà khoa học. Với các xu hướng như giảm nhiệt độ chuyển pha, thời gian chuyển pha nhanh, kích thước tinh thể lớn hoặc dung dịch môi trường thực hiện chuyển pha (còn gọi là dung dịch chất xúc tiến). Riêng canxi sunphat khan hyđrat hoá đóng rắn trở lại có cường độ chịu lực kém, do đó trong quá trình chuyển pha, chỉ mong muốn dừng ở dạng hemihyđrat vừa nhanh, đỡ tốn năng lượng và sản phẩm có tính chất quý hơn. Có thể nói rằng, β hemihyđrat được sử dụng rất rộng rãi, tuy nhiên ứng dụng được các nhà khoa học quan tâm chế tạo hơn cả lại là dạng α hemihyđrat. Nhiều nhà khoa học còn nghiên cứu cụ thể quá trình thu hồi thạch cao từ quá trình sản xuất H3PO4 tránh gây ô nhiễm môi trường, hay chế tạo α hemihyđrat từ những quá trình công nghiệp. Đối với thạch cao tự nhiên chủ yếu mang nung rồi sử dụng trong xây dựng hay kỹ thuật nặn tượng. Ban đầu con người biết đến và sử dụng thạch cao bằng cách khai thác từ các mỏ thạch cao, sau đó đưa về rang trên các chảo lớn ở nhiệt độ khoảng hơn 200oC, rồi nghiền mịn để sử dụng. Sau này phát triển hơn, quá trình chuyển pha được thực hiện trong các lò nung như lò đứng hoặc lò quay. Hiện nay thạch cao sử dụng trong công nghiệp xây dựng vẫn được chế tạo chính theo phương pháp này. Tuy nhiên sản phẩm 10 thu được thường là hemihyđrat dạng β có cường độ chịu lực không cao, thời gian đóng rắn nhanh và khi sử dụng cần một lượng nước khá lớn để có vữa thạch cao. Tuy nhiên nó vẫn đáp ứng được yêu cầu trong kỹ thuật nặn tượng hoặc làm vữa trát tường. Hiện nay Việt Nam chưa có nhà máy sản xuất thạch cao nào, chỉ có vài cơ sở thủ công nhỏ lẻ thực hiện quá trình nung thạch cao. Một lượng lớn thạch cao của Trung Quốc thâm nhập thị trường được sử dụng phổ biến làm vữa, tấm trần thạch cao. Nước ta có mỏ thạch cao trữ lượng khá lớn nằm ở Sơn La, song đến nay sự khai thác và chế biến quy mô vẫn chưa được áp dụng. Thạch cao xây dựng là một chất kết dính cứng rắn được trong không khí, chế 0 tạo bằng cách nung thạch cao hai phân tử nước (CaSO4 .2H2O) ở nhiệt độ 140-170 C đến khi biến thành thạch cao nửa phân tử nước (CaSO4.0,5 H2O) rồi nghiền thành bột nhỏ. Cũng có thể nghiền thạch cao hai nước trước rồi mới nung thành thạch cao nửa nước. Trong một số sơ đồ công nghệ việc nghiền và nung được tiến hành cùng trong một thiết bị: Khi nung thạch cao xảy ra theo phản ứng CaSO4.2H2O → CaSO4.0.5H2O + 1.5 H2O Nếu nhiệt độ nung cao 600 – 700oC thì đá thạch cao hai nước biến thành thạch cao cứng CaSO , loại này có tốc độ cứng rắn chậm hơn so với thạch cao xây dựng. 4 1.4.2. Quá trình rắn chắc Khi nhào trộn thạch cao với nước sẽ sinh ra một loại vữa dẻo có tính linh động tốt rồi dần dần sau một quá trình biến đổi lý, hóa, tính dẻo mất dần, quá trình đó gọi là quá trình đông kết, sau đó thạch cao trở thành cứng rắn, độ chịu lực tăng dần, đây là quá trình rắn chắc. Cả hai quá trình này được gọi chung là quá trình rắn chắc của thạch cao. Thạch cao tác dụng với nước theo phương trình phản ứng sau : CaSO4.0,5H2O + 1,5 H2O = CaSO4.2H2O . Quá trình rắn chắc của thạch cao chia làm 3 thời kỳ : Thời kỳ hòa tan, thời kỳ hóa keo. thời kỳ kết tinh. Hai thời kỳ đầu gọi là thời kỳ đông kết, thời kỳ thứ 3 gọi là thời kỳ rắn chắc và thạch cao có khả năng chịu lực. Ba thời kỳ của quá trình rắn chắc không phân chia tách biệt và xảy ra xen kẽ với nhau. 1.4.3. Các tính chất cơ bản của thạch cao a) Độ mịn 11 Thạch cao nung xong được nghiền thành bột mịn, thạch cao càng mịn thì quá trình thủy hóa càng nhanh, cứng rắn càng sớm và cường độ càng cao. 2 Độ mịn của thạch cao phải đạt chỉ tiêu lượng sót trên sàng 918 lỗ/cm đối với thạch cao loại I không lớn hơn 25% đối với loại II không lớn hơn 35% b) Khối lượng riêng và khối lượng thể tích 3 Khối lượng riêng : ρ = 2600 - 2700 kg/m . 3 Khối lượng thể tích : ρ = 800 - 1000 kg/m . v c) Lượng nước tiêu chuẩn Khi nhào trộn thạch cao với nước để tạo ra vữa, nếu trộn ít nước quá thì vữa sẽ khô khó thi công, nếu lượng nước trộn nhiều quá thì vữa sẽ nhão dễ thi công nhưng nước thừa nhiều khi bay hơi đi để lại nhiều lỗ rỗng làm cho cường độ chịu lực của vữa giảm. Vì vậy phải nhào trộn với một lượng nước thích hợp nhằm đảm bảo hai yêu cầu vừa dễ thi công vừa đạt được cường độ chịu lực cao. Lượng nước đảm bảo cho vữa thạch cao đạt được hai yêu cầu trên gọi là lượng nước tiêu chuẩn. Lượng nước đó đảm bảo cho hồ thạch cao có độ đặc tiêu chuẩn và được biểu thị bằng tỷ lệ % nước so với khối lượng của thạch cao. d) Tính chất cơ, lý nhiệt Tính chất cơ lý và nhiệt vật lý của thạch cao phụ thuộc vào nhiều yếu tố: tỷ lệ nước, hàm lượng thạch cao và các tạp chất,... Điểm mạnh của thạch cao nhẹ cốt sợi là cách nhiệt, chịu kéo uốn, chống va đập tốt, độ bền dẻo dai cao. Do đó, chúng rất phù hợp với những kết cấu cần cách nhiệt, cách âm, đồng thời chịu kéo uốn hay va đập. Sự có mặt của sợi làm giảm đáng kể hiện tượng biến đổi thể tích của thạch cao nhẹ trong quá trình rắn chắc hay do quá trình thay đổi nhiệt độ hay độ ẩm. Điều này làm tăng tuổi thọ của thạch cao cốt sợi. Cốt sợi sử dụng trong thạch cao siêu nhẹ có nhiều loại. Nhưng phổ biến nhất là bông sợi thủy tinh, sợi amian, sợi tổng hợp…Nhìn chung, các loại sợi có độ bền và khả năng dính bám cao. Hiện nay, ở nước ta đã chế tạo thành công thạch cao cốt sợi thủy tinh nói chung và thạch cao nhẹ nói riêng cùng các loại khác được dùng trong xây dựng và trang trí nội thất chủ yếu ở dạng tấm, vách ngăn. Loại này có khối lượng thể tích khoảng 1000-1600 kg/m3 , cường độ nén 10-12 Mpa, cường độ kéo 4-6 Mpa. Gần 12 đây, Viện Khoa học công nghệ vật liệu xây dựng đã chế tạo thành công tấm Composit từ cốt sợi rơm. Tuy nhiên sản phẩm này kém bền trong môi trường ẩm. Trên đây là một số loại thạch cao nhẹ thông dụng nhất, chúng được sử dụng rộng rãi trong nghành xây dựng và thiết kế trang trí nội thất, không ngừng phát triển cả trong nước và trên thế giới với nhiều chủng loại, kích cỡ và tính năng sử dụng. Trong điều kiện khí hậu nhiệt đới nóng ẩm, việc sử dụng thạch cao siêu nhẹ cho công trình xây dựng sẽ mang lại hiệu quả kỹ thuật to lớn. 1.5. CƠ SỞ LÝ THUYẾT VÀ CÁC PHƯƠNG PHÁP XỬ LÝ, TÁI CHẾ BÃ THẢI PHOTPHO Với việc xây dựng nhà máy xử lý lại chất thải GYPS để tạo sản phẩm thạch cao sạch là việc làm có ý nghĩa rất lớn đến nguồn nguyên liệu thạch cao cho công nghiệp xây dựng và sản xuất xi măng cũng như môi trường. GYPS thải được sử dụng để sản xuất thạch cao là loại thải đã để lâu trải qua mùa mưa. Trường hợp sử dụng thải GYPS ngay từ băng tải của DAP thì chỉ tăng thêm một lượng sữa vôi và hoá chất khác trong quá trình ngâm rửa. * Quy trình xử lý chất thải GYPS Loại bỏ các chất có hại trong thải GYPS - Xử lý chất đen Chất đen đuợc tạo thành do các tạp chất hữu cơ bị cháy bởi phản ứng hoá học giữa Apatit và axit H2S04. Để tạo cho sản phẩm thạch cao có chất lượng cao và có màu trắng, công nghệ sản xuất cần loại bỏ các tạp chất đen. Do bị cháy nên chúng hầu như có tỷ trọng nhỏ hơn nước, khi cho vào nước sẽ nổi lên trên mặt nước và được vớt để tách ra. - Xử lý H3PO4 hay P2O5 Thực tế phốt pho thuờng ở các dạng trắng và màu. Phốt pho trắng có độ hoà tan cao. Màu đỏ, đen khó hoà tan hơn. H3PO4 là sản phẩm của phản ứng (1) hoặc hình thành từ P2O5. Khi dư và ở trong môi trường nước thì phân ly: H3PO4 → H+ + H2PO4- H2PO4- → H+ + HPO42- HPO42- → H+ + PO4 3- 13 Gốc ion POx này có khả năng tác dụng với các chất bazơ hay muối gốc kim loại tạo muối kết tủa dạng rắn hay hoà tan trong nước và trôi đi (Do hàm luợng quá ít lên không gây ảnh huởng tới môi trường và bản thân là chất ít gây độc hại). H3PO4 + Ca(OH)2 → Ca3(PO4)2 + H2O H3PO4 + Na(OH→ Na3PO4 + H2O H3PO4 + Ca(OH)2 → Ca3(PO4)2 (thành phần khoáng Apatit - rắn) H3PO4 → HO- P(OOH) - O - P(OOH) - O - P(OOH) - OH Nếu có Na Na - P(OOH) - O - P(OOH) - O - P(OOHO - Na Khi tham gia phản ứng với NaOH NaOH + H3PO4 → Na4P2O7 + H2O Hàm lượng NaOH phải được tính toán cụ thể vì nó sẽ gây tác dụng xấu tới bê tông cốt thép. - Xử lý F hay HF Trong apatit có CaF2thì: CaF2 + H2SO4→ CaSO4 + HF (Phản ứng ở nhiệt độ 200oC). Thạch cao được tạo ra. Còn HF làm chảy thạch anh. Còn SiF2 ; CaF2; Si(OH)4… rắn ở cùng cát thạch anh và có thể một phần nhỏ nằm trong bùn thạch cao SiF2 + H2O → Si(OH)4 + HF HF + Ca(OH)2 → CaF2 + H2O HF + NaOH → NaF + H2O Nhưng do hàm luợng có trong thải rất ít 0,02 % (HF còn tham gia với Ca(OH)2 tạo CaF2 ở dạng rắn, hay với NaOH tạo NaF). Nếu trong Apatit có Mg thì sẽ tạo MgSiF6 Nếu F ở dạng nguyên tố độc lập thì F thuộc nhóm 7 chu kỳ 2 giống như H; Cl nó dễ bay hơi. - Xử lý SiO2 Thạch anh SiO2 có trong thải GYPS tới 15 % là một chất vô cơ ít ảnh hưởng tới chất lượng của xi măng cũng như bê tông. Để tạo thạch cao CaSO4.2H2O có hàm lượng cao (90 %) thì chúng ta phải loại bỏ thạch anh SiO2 với 15 % chiếm trong thải GYPS. Để loại bỏ các hạt thạch anh trơ trên thì biện pháp tối ưu nhất là sàng loại bỏ trước khi sấy hoặc sau khi sấy. 14
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng