Đăng ký Đăng nhập
Trang chủ Nghiên cứu chế tạo và tính chất quang của vật liệu ha, ha f, β tcp, β tcp sr pha...

Tài liệu Nghiên cứu chế tạo và tính chất quang của vật liệu ha, ha f, β tcp, β tcp sr pha tạp eu, er, dy và mn

.PDF
147
184
122

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan rằng các kết quả khoa học được trình bày trong luận án này là thành quả nghiên cứu của bản thân tôi trong suốt thời gian làm nghiên cứu sinh và chưa từng xuất hiện trong công bố của các tác giả khác. Các kết quả đạt được là chính xác và trung thực. Hà Nội, ngày TM. Tập thể hướng dẫn tháng Người cam đoan i năm 2017 LỜI CẢM ƠN Đầu tiên, tôi xin chân thành bày tỏ lời cảm ơn chân thành và sâu sắc đến thầy TS. Phạm Hùng Vượng và cô TS. Nguyễn Thị Kim Liên đã trực tiếp hướng dẫn, định hướng khoa học trong suốt quá trình học tập, nghiên cứu. Cảm ơn thầy cô đã dành nhiều thời gian và tâm huyết, hỗ trợ về mọi mặt để tác giả hoàn thành luận án. Tác giả xin chân thành cảm ơn TS. Nguyễn Duy Hùng đã hướng dẫn các phép đo huỳnh quang, các thầy cô Viện Tiên tiến Khoa học và Công nghệ đã đóng góp ý kiến để luận án được hoàn thành tốt hơn. Tác giả xin chân thành cảm ơn đến các Anh/Chị Nghiên cứu sinh đã giúp đỡ, trao đổi kiến thức trong suốt quá trình tác giả làm nghiên cứu. Tác giả xin trân trọng cảm ơn Lãnh đạo Trường Đại học Bách khoa Hà Nội, Viện Đào tạo Sau Đại học, Viện Tiên tiến Khoa học và Công nghệ đã tạo mọi điều kiện thuận lợi nhất cho nghiên cứu sinh trong suốt quá trình học tập và nghiên cứu. Cuối cùng, tác giả xin bày tỏ lòng biết ơn đến cha mẹ và các anh chị trong gia đình, những ngườn luôn động viên, hỗ trợ về tài chính và tinh thần, giúp tôi có thể hoàn thành tốt nhất công việc của mình. Tác giả luận án Hoàng Như Vân ii MỤC LỤC LỜI CAM ĐOAN……………………………………………………………………………i LỜI CẢM ƠN…………………………………………………..…………………………..ii MỤC LỤC………………………………………………………………………………… iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT.......................................................... vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ............................................................................ viii DANH MỤC CÁC BẢNG BIỂU...................................................................................... xvii MỞ ĐẦU ............................................................................................................................... 1 1. Lý do chọn đề tài ............................................................................................................... 1 2. Mục tiêu nghiên cứu .......................................................................................................... 3 3. Các đóng góp mới của luận án .......................................................................................... 4 4. Bố cục luận án ................................................................................................................... 5 CHƯƠNG 1 TỔNG QUAN VỀ VẬT LIỆU HUỲNH QUANG, TÍNH CHẤT QUANG CỦA VẬT LIỆU HA/β-TCP PHA TẠP ............................................................................... 6 1.1. Giới thiệu ........................................................................................................................ 6 1.2. Vật liệu phát quang chứa đất hiếm ................................................................................. 6 1.2.1. Cấu tạo vỏ điện tử và tính chất quang của ion đất hiếm .......................................... 6 1.2.2. Sự tách mức năng lượng của ion đất hiếm............................................................. 10 1.2.3. Phát quang truyền năng lượng. .............................................................................. 11 1.2.4. Huỳnh quang của các ion Eu3+, Eu2+, Dy3+, Mn2+ ................................................. 12 1.3. Tổng quan về vật liệu huỳnh quang trên cơ sở nền HA/β-TCP.................................... 20 1.3.1. Cấu trúc của và tính chất của hydroxyapatite (HA/β-TCP) ................................... 20 1.3.2. Tính chất quang của vật liệu HA-F:Eu .................................................................. 27 1.3.3. Tính chất quang của vật liệu β-TCP:Eu, Mn ......................................................... 30 1.3.4. Tính chất quang của vật liệu HA:Eu, Dy ............................................................... 35 1.3.5. Tính chất quang của vật liệu HA/β-TCP:Er .......................................................... 38 iii 1.4. Kết luận chương 1 .................................................................................................... 40 CHƯƠNG 2 QUY TRÌNH CÔNG NGHỆ CHẾ TẠO VÀ CÁC KỸ THUẬT THỰC NGHIỆM ................. ………………………………………………………………………42 2.1. Giới thiệu .................................................................................................................. 42 2.2. Quy trình chế tạo vật liệu huỳnh quang trên cơ sở mạng nền HA bằng phương pháp đồng kết tủa ..................................................................................................................... 42 2.2.1. Phương pháp đồng kết tủa……………………………………………………… 42 2.2.2. Tổng hợp vật liệu HA-F:Eu .................................................................................. 43 2.2.3. Tổng hợp vật HA:Eu, Dy ……………………... ……………………………… 46 2.2.4. Tổng hợp vật liệu β-TCP:Mn và β-TCP:Eu, Mn…….………………………… 46 2.2.5. Tổng họp vật liệu HA/β-TCP:Er và HA/β-TCP-Sr:Er………………………… 47 2.3. Các phương pháp thực nghiệm khảo sát tính chất của vật liệu .................................... 48 2.3.1. Phương pháp khảo sát hình thái và kích thước hạt ................................................ 48 2.3.2. Phổ tán sắc năng lượng tia X (EDS) ...................................................................... 48 2.3.3. Phương pháp xác định liên kết trong vật liệu bằng phổ hồng ngoại (FTIR) ......... 49 2.3.4. Giản đồ nhiễu xạ tia X (XRD) ............................................................................... 49 2.3.5. Các phương pháp khảo sát tính chất quang của vật liệu ........................................ 49 CHƯƠNG 3 NGHIÊN CỨU CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU HA-xF:Eu và HA:Eu, Dy .................................................................................................... 51 3.1. Giới thiệu ...................................................................................................................... 51 3.2. Kết quả phân tích cấu trúc bằng giản đồ nhiễu xạ tia X (XRD). .................................. 52 3.2.1. Kết quả phân tích cấu trúc bằng giản đồ nhiễu xạ tia X (XRD) của hệ vật liệu HA-F:Eu. ......................................................................................................................... 52 3.2.2. Kết quả phân tích cấu trúc bằng giản đồ nhiễu xạ tia X (XRD) của hệ vật liệu HA:Eu,Dy……………………………………………………………………………… 55 iv 3.3 Kết quả nghiên cứu cấu trúc hình thái bề mặt của vật liệu ........................................... 56 3.3.1. Kết quả phân tích ảnh TEM của hệ vật liệu HA-F:Eu........................................... 56 3.3.2. Kết quả phân tích ảnh TEM và phổ EDS của hệ vật liệu HA:Eu, Dy ................... 58 3.4. Kết quả phân tích phổ FTIR của hệ vật liệu HA-F:Eu ................................................. 59 3.5. Kết quả phân tích phổ EDS của hệ vật liệu HA-F:Eu .................................................. 60 3.6. Kết quả đo phổ huỳnh quang của hệ HA-F:Eu ............................................................. 61 3.6.1. Phổ huỳnh quang của vật liệu theo nồng độ flo ủ nhiệt ở 150 oC ......................... 61 3.6.2. Ảnh hưởng của nồng độ flo đến tính chất quang của vật liệu ............................... 62 3.6.3. Ảnh hưởng của nhiệt độ ủ mẫu đến tính chất quang của vật liệu…………… …..64 3.6.4. Ảnh hưởng của pH đến tính chất quang của vật liệu ............................................. 66 3.6.5. Phổ phát xạ của vật liệu ủ trong môi trường khử (H2/Ar) ..................................... 68 3.6.6. Phổ kích thích huỳnh quang của vật liệu HA-F:Eu………………………………69 3.7. Kết quả đo phổ huỳnh quang của hệ HA:Eu, Dy ......................................................... 71 3.7.1. Sự phụ thuộc cường độ huỳnh quang của các mẫu bột HA:Dy, Eu vào nồng độ Dy pha tạp.............................................................................................................................. 71 3.7.2. Sự phụ thuộc cường độ huỳnh quang của các mẫu bột HA:Dy, Eu vào thời gian ủ nhiệt ................................................................................................................................. 72 3.7.3. Sự phụ thuộc cường độ PL của các mẫu bột HA:Dy, Eu vào nhiệt độ ủ mẫu ...... 73 3.7.4. Phổ kích thích huỳnh quang của vật liệu HA:Eu, Dy……………………………75 3.8. Kết luận chương 3 ......................................................................................................... 76 CHƯƠNG 4. NGHIÊN CỨU CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU β-TCP:Mn và β-TCP:Eu, Mn .............................................................................................. 77 4.1. Giới thiệu ...................................................................................................................... 77 4.2. Kết quả phân tích cấu trúc bằng giản đồ nhiễu xạ tia X (XRD). .................................. 78 4.2.1. Phổ XRD của các mẫu bột β-TCP:Mn .................................................................. 78 4.2.2. Phổ XRD của các mẫu bột β-TCP:Eu, Mn ............................................................ 80 v 4.3. Kết quả phân tích ảnh FESEM ..................................................................................... 82 4.3.1. Ảnh FESEM của vật liệu β-TCP:Mn..................................................................... 82 4.3.2. Ảnh FESEM của mẫu β-TCP:Eu, Mn ................................................................... 83 4.4. Kết quả phân tích phổ EDS .......................................................................................... 85 4.5 . Kết quả đo phổ huỳnh quang ....................................................................................... 86 4.5.1. Phổ PL và PLE của hệ β-TCP:Mn ......................................................................... 86 4.5.2. Phổ PL và PLE của hệ β-TCP:Eu,Mn ................................................................... 91 4.6. Kết luận chương 4………………………………………………………………… …98 CHƯƠNG 5 NGHIÊN CỨU CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA VẬT LIỆU HA/β-TCP:Er và HA/β-TCP-Sr:Er...................................................................................... 99 5.1. Giới thiệu ...................................................................................................................... 99 5.2. Kết quả nghiên cứu cấu trúc và hình thái của hệ vật liệu HA/β-TCP:Er và HA/β-TCPSr:Er .............................................................................................................................. 100 5.2.1. Kết quả nghiên cứu cấu trúc bằng giản đồ nhiễu xạ tia X (XRD) ....................... 100 5.2.2. Kết quả đo giản đồ XRD đối với hệ vật liệu HA/β-TCP-Sr:Er ........................... 101 5.2.3. Kết quả phân tích hình thái bề mặt mẫu bằng ảnh FESEM. ................................ 103 5.3. Kết quả phân tích thành phần hóa học bằng phổ EDS. .............................................. 107 5.4. Kết quả nghiên cứu tính chất quang ........................................................................... 108 5.4.1. Kết quả đo phổ huỳnh quang của hệ vật liệu HA/β-TCP:Er ............................... 108 5.4.2. Kết quả đo phổ huỳnh quang của hệ vật liệu HA/β-TCP-Sr:Er .......................... 110 5.5. Kết luận chương 5 ...................................................................................................... 114 KẾT LUẬN ....................................................................................................................... 115 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ............................. 117 TÀI LỆU THAM KHẢO .................................................................................................. 118 vi DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu Tên tiếng Anh Tên tiếng Việt λem Emission Wavelength Bước sóng phát xạ λex Excitation Wavelength Bước sóng kích thích ∆E Transition Energy Năng lượng chuyển tiếp Ev Valence band edge Năng lượng đỉnh vùng hóa trị E Energy Năng lượng Chữ viết tắt Tên tiếng Anh Tên tiếng Việt EDS Energy dispersive X-ray spectroscopy Phổ tán sắc năng lượng tia X FESEM Field emission scanning electron Hiển vi điện tử quét phát xạ trường microscopy TEM Transmission electron microscopy Hiển vi điện tử truyền qua IR Infrared Hồng ngoại FWHM Full-width half –maximum Nữa bề rộng dải phổ LED Light emitting diode Điốt phát quang PL Photoluminescence spectrum Phổ quang huỳnh quang PLE Photoluminescence excitation spectrum Phổ kích thích huỳnh quang NUV Near –Ultraviolet Tử ngoại gần NIR Near- Infrared Hồng ngoại gần RE Rare Earth Đất hiếm XRD X-ray diffraction Nhiễu xạ tia X WLED White light emitting diode Điốt phát quang ánh sáng trắng HA Hydroxyapatite Hydroxyapatit β-TCP β-Tricalcium phosphate Tricanxi phốt phát vii DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Trang Hình 1.1. Giản đồ mức năng lượng của các ion RE3+ 8 Hình 1.2. Mô hình tách mức năng lượng lớp 4f 10 Hình 1.3. Sự chồng chập giữa phổ PLE của Eu2+ và phổ PL của Ce3+ 11 Hình 1.4. Sơ đồ mô tả sự truyền năng lượng từ Ce3+ đến Tb3+ 12 Hình 1.5. Phổ kích thích của ion Eu3+ 13 Hình 1.6. Các mức năng lượng của ion Eu2+ và Eu3+ 14 Hình 1.7. Tách mức năng lượng 5d trong trường tinh thể 16 Hình 1.8. (a) Phổ phát xạ của PKAlCaF:Dy3+, (b) Phổ phát xạ của Ca3(PO4)2:Dy3+ 17 Hình 1.9. Giản đồ mức năng lượng của ion Dy3+ 18 Hình 1.10. Các mức năng lượng của Mn2+ 19 Hình 1.11. Cấu trúc của tinh thể HA:(a) Vị trí của Ca1 hình trụ và Ca2 trục xoáy; 20 (b) Vị trí của Ca trong HA;(c) Mạng tinh thể hydroxyapatite nhìn theo trục c; (d và e) Số phối trí và vị trí các nguyên tử xung quanh Ca1 và Ca2 Hình 1.12. Các nguyên tử và nhóm nguyên tử có thể thay thế vào các vị trí của HA 22 Hình 1.13. Cấu trúc và số phối trí của các nguyên tử Ca trong Ca3(PO4)2 , (a) Ca1, 23 (b) Ca2,(c) Ca3, (d) Ca4, (e) Ca5 Hình 1.14. Các dạng tồn tại của tinh thể HA, (a) dạng hình que, b) dạng hình trụ, (c) 24 dạng hình cầu, (d) dạng hình sợi, (e) dạng hình vảy, (f) dạng hình kim Hình 1.15. Công thức cấu tạo của HA 25 Hình 1.16. (A) Phổ XRD của HA-F:Eu, (B) ảnh TEM, (C) Phổ PL của HA-F:Eu 27 Hình 1.17. Phổ PL của HA:Eu và HA-F:Eu 28 Hình 1.18. Phổ hấp thụ của chlorophyll thực vật 30 Hình 1.19. (A)- Phổ PL của Ca3(PO4)2:Eu2+, Mn2+ theo các nồng độ Mn khác nhau. 31 (B)- Quang phổ phát xạ của đèn UV-LED chế tạo sử dụng bột huỳnh quang Ca3(PO4)2:Eu2+, Mn2+ (DC = 25mA) Hình 1.20. (A) Sự chồng chập giữa phổ PL của β-TCP:Eu2+ và phổ PLE của βTCP:Mn2+, hình nhỏ là phổ PL của β-TCP:Mn2+. (B) Phổ PL của β- viii 33 TCP:Eu2+, Mn2+, hình chèn nhỏ là sự phụ thuộc cường độ phổ PL theo nồng độ Mn2+ và Eu2+ Hình 1.21. (A), (B) Phổ PL của Ca2Sr(PO4)2:Eu2+. (C) Phổ PL và PLE của 34 Ca2Sr(PO4)2:Mn2+. (D) Phổ PL và PLE của Ca2Sr(PO4)2:Eu2+, Mn2+. (E) Phổ PL của Ca2Sr(PO4)2:Eu2+, Mn2+ theo nồng độ Mn2+ Hình 1.22. (A) Phổ PL và PLE của Ca3(PO4)2:Eu; (B) Phổ PL và PLE của Ca3(PO4)2:Eu, Dy 35 Hình 1.23. Phổ PL và PLE của:(a) Ca3(PO4)2:Eu2+; (b) Ca3(PO4)2:Dy3+; (c) 37 Ca3(PO4)2:Eu2+, Dy3+ Hình 1.24. Phổ hấp thụ của vật liệu HA:Er 39 Hình 1.25. Phổ phát xạ của vật liệu HA:Er 39 Hình 2.1. Sơ đồ tổng hợp các hệ vật liệu theo phương pháp đồng kết tủa 44 Hình 2.2. Quy trình nâng nhiệt lò nung (a), (b) hệ khí và lò nung mẫu trong các môi 45 trường khác nhau Hình 2.3. Thiết bị FESEM-JEOL/JSM-7600F tích hợp đo FESEM và EDS tại Viện 49 Tiên tiến Khoa học và Công nghệ (AIST) – Trường Đại học Bách khoa Hà Nội. Hình 2.4. Hệ đo huỳnh quang (Nanolog, Horiba Jobin Yvon) nguồn kích thích là 50 đèn Xenon công suất 450W tại Viện Tiên tiến Khoa học và Công nghệ (AIST), Trường Đại học Bách khoa Hà Nội Hình 3.1. Phổ XRD của vật liệu HA-xF:0,3Eu sấy sơ bộ ở 150 oC, (A):x=0%, 52 (B):x=0,2%, (C): x=0,3%, (D):x=0,5%, (E):pH=6, (F): pH=8, (G): pH=12, (A, B, C, D):pH =10, ( *:HA/Β-TCP). Hình 3.2. Phổ XRD của mẫu bột HA-xF:0,3Eu, (M0): x = 0% sấy sơ bộ ở 150 oC, 53 (M0.2): x = 0,2%, (M0.3): x = 0,3%, (M0.4): x = 0,4%, (M0.2, M0.3, M0.4): ủ nhiệt ở 900 oC trong môi trường không khí, thời gian 2 giờ, (*:HA, ≠: β-TCP). Hình 3.3. Phổ XRD của các mẫu bột: (A) HA:Eu, (B) HA:Eu, 0.5Dy, (C) H:Eu, 1Dy, (D) HA:Eu, 1.5Dy, (E) HA:Eu, 2Dy, các mẫu (A, B, C, D, E) sấy sơ bộ ở 150 oC trong môi trường không khí, (F) HA:Eu, Dy ủ nhiệt ở ix 55 1100 oC trong môi trường không khí với thời gian 1 giờ. Hình 3.4. Ảnh TEM của vật liệu HA-xF:0,3Eu tổng hợp ở pH =10 và sấy sơ bộ ở 56 150 oC, (A: x=0%), (B:x=0,2%), (C:x=0,3%), (D:x=0,5%). Hình 3.5. Ảnh TEM của vật liệu HA-0,3F:0,3Eu tổng hợp ở các giá trị pH khác 58 nhau: (E:pH=6), (F:pH=8), (G:pH=12),(E, F, G: sấy ở 150 oC), (H: pH =10, ủ nhiệt ở 900 oC trong không khí, thời gian 2 giờ). Hình 3.6. Ảnh TEM (A) và phổ EDS (B) của mẫu bột HA:Eu, 1Dy 58 Hình 3.7. Phổ FTIR của các mẫu HA-xF:0,3Eu tổng hợp ở pH = 10 và ủ nhiệt ở 59 900 oC trong môi trường không khí với thời gian 2 giờ, (A: x=0%), (B:x=0,2%), (C:x=0,3%), (D: x=0,4% mol flo). Hình 3.8. Phổ EDS của vật liệu HA-0,3F:0,3Eu ủ nhiệt ở nhiệt độ 900 oC trong 60 trong môi trường không khí, thời gian 2 giờ. Hình 3.9. Phổ huỳnh quang đo ở nhiệt độ phòng của vật liệu HA-xF:0,3Eu, (x =0, 61 x=0,2, x=0,3 và x=0,4% flo) ủ nhiệt ở 150 oC, bước sóng kích thích 393 nm Hình 3.10. Phổ phát xạ đo ở nhiệt độ phòng của vật liệu HA-xF:0,3Eu, (x=0; 0,2; 63 0,3; 0,4% mol flo) ủ nhiệt ở 900 oC trong môi trường không khí với thời gian 2 giờ, bước sóng kích thích λex = 393 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613nm vào nồng độ F. Hình 3.11. Phổ phát xạ đo ở nhiệt độ phòng của vật liệu HA-0,3F:0,3Eu ủ ở các 65 nhiệt độ khác nhau 800-1100 oC trong thời gian 2 giờ, môi trường không khí, bước sóng kích thích 393 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613 nm vào nhiệt độ ủ mẫu. Hình 3.12. Phổ phát xạ đo ở nhiệt độ phòng của vật liệu HA-0,3F:0,3Eu chế tạo ở 67 các giá trị pH khác nhau (pH=6, 8, 10, 12), bước sóng kích thích λex = 393 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613 nm vào giá trị pH tổng hợp. Hình 3.13. Phổ phát xạ đo ở nhiệt độ phòng của vật liệu HA-0,3F:0,3Eu (x=0; 0,2; 0,3; 0,5% mol) ủ nhiệt trong môi trường khử 5%H2/95%Ar ở nhiệt độ 900 oC, thời gian 2 giờ, bước sóng kích thích λex = 393 nm. x 69 Hình 3.14. Phổ PLE của mẫu HA-0,3F:0,3Eu ủ nhiệt ở 900 oC trong môi trường 70 không khí và môi trường khử H2/Ar, thời gian 2 giờ, tương ứng với bước sóng phát xạ mạnh nhất 613 nm (Eu3+) và 448 nm (Eu2+). Hình 3.15. Phổ PL đo ở nhiệt độ phòng của các mẫu bột: (a) Các mẫu bột HA:Eu, 71 xDy (x = 0,5; 1; 1,5; 2% mol), bước sóng kích thích λex = 360 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613nm, 572nm vào nồng độ Dy3+; (b) Phổ PL chuẩn hóa giữa hai mẫu bột HA:Eu, Dy và HA:Eu. Tất cả các mẫu được ủ nhiệt ở 1100 oC trong môi trường không khí với thời gian 1 giờ Hình 3.16. Phổ PL của các mẫu bột HA:Dy, Eu ủ trong môi trường không khí ở 73 1100 oC với thời gian khác nhau: 5 phút, 30 phút, 60 phút, 120 phút, 180 phút, bước sóng kích thích λex = 360 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613nm, 572nm vào thời gian ủ nhiệt. Hình 3.17. Phổ PL của các mẫu bột HA:1Dy, Eu ủ trong môi trường không khí với 74 thời gian 1 giờ ở các nhiệt độ khác nhau: 600-1100 oC, bước sóng kích thích λex = 360 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 613nm, 572nm vào nhiệt độ ủ. Hình 3.18. Phổ PL của mẫu bột HA:1Dy, Eu theo bước sóng kích thích khác nhau 74 Hình 3.19. Phổ PLE của các mẫu bột HA:1Dy, Eu được ủ nhiệt trong môi trường 75 không khí ở 1100 oC trong thời gian 1 giờ, tương ứng với các đỉnh phát xạ mạnh nhất 613 nm (Eu3+) và 572 nm (Dy3+): (A) HA:Dy, Eu; (B) So sánh phổ PLE giữa HA:Eu và HA:Dy, Eu. Hình 4.1. Phổ XRD của các mẫu bột β-TCP:xMn (A:x=0, B:x=4, C:x=5, D:x=6, 78 E:x=8% Mn) ủ ở 1100 oC trong môi trường Ar với thời gian 1 giờ (hình a), hình (b) là phóng to đỉnh nhiễu xạ ứng với góc 2θ (30-31,7o), hình (c) là tính toán tỉ lệ pha β-TCP và HA có trong mẫu, theo nồng độ Mn pha tạp. Hình 4.2. Phổ XRD của các mẫu bột ủ ở các nhiệt độ khác nhau trong môi trường H2/Ar và Ar, (A, β-TCP), (B, β-TCP:6Mn; 900 oC-Ar), (C, β-TCP:6Mn; 1000 oC-Ar), (D, β-TCP:6Mn; 1100 oC-Ar), (E, β-TCP:6M; 1100 oC- xi 80 H2/Ar) hình (a), hình (b) là tính toán tỉ lệ pha β-TCP và HA có trong mẫu, theo nhiệt độ ủ và môi trường ủ khác nhau. Hình 4.3. Phổ XRD của các mẫu bột β-TCP:0,3Eu, xMn (A:β-TCP), (B:x=5,5), 81 (C:x=6), (D:x=6,5), (E:x=7,5), (F:x=8%) ủ nhiệt ở 1100 oC trong môi trường H2/Ar với thời gian 1 giờ (hình a), hình b là phóng to đỉnh nhiễu xạ ứng với góc 2θ (30-31,8o) Hình 4.4. Phổ XRD của các mẫu bột β-TCP:0,3Eu, 7,5Mn ủ ở các nhiệt độ từ 900- 82 1200 oC trong môi trường H2/Ar, thời gian 1 giờ Hình 4.5 Ảnh FESEM của các mẫu bột β-TCP:xMn (x=4, 5, 6, 8%) ủ nhiệt ở 1100 82 C trong môi trường Ar với thời gian 1 giờ. o Hình 4.6. Ảnh FESEM của các mẫu bột β-TCP:0,3Eu, 7,5Mn ủ ở các nhiệt độ khác 83 nhau, từ 200-1200 oC Hình 4.7. Ảnh FESEM của các mẫu bột β-TCP:0,3Eu, 7,5Mn ủ trong môi trường 84 H2/Ar ở nhiệt độ 1100 oC với thời gian khác nhau 0,5 giờ (A), 1 giờ(B), 1,5 giờ (C), 2 giờ (D) Hình 4.8. Phổ EDS của mẫu: (A), β-TCP:6Mn ; (B), β-TCP:0,3Eu, 7,5Mn 85 Hình 4.9. Phổ PL của các mẫu bột β-TCP:xMn (x=4, 5, 6, 8% mol) ủ ở nhiệt độ 86 1100 oC trong môi trường Ar với thời gian 1 giờ, bước sóng kích thích 412 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 660 nm vào nồng độ Mn pha tạp. Hình 4.10. Phổ PL đo ở nhiệt độ phòng của các mẫu β-TCP:6Mn ủ trong môi trường 87 Ar, thời gian 1 giờ ở các nhiệt độ khác nhau (900-1100 oC), bước sóng kích thích 412 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 660 nm vào nhiệt độ ủ mẫu. Hình 4.11. Phổ PL đo ở nhiệt độ phòng của mẫu bột β-TCP:6Mn ủ nhiệt ở 1100 oC 88 trong môi trường H2/Ar và Ar, thời gian 1 giờ, bước sóng kích thích 412 nm. Hình 4.12. Phổ PL của mẫu β-TCP:6Mn2+ theo bước sóng kích thích khác nhau từ 89 350 – 450 nm Hình 4.13. Phổ PLE của mẫu bột β-TCP:6Mn được ủ nhiệt 1100 oC trong môi xii 90 trường Ar, thời gian 1 giờ, tương ứng với các bước sóng phát xạ cực đại 580 nm (HA:Mn2+) và 660 nm (β-TCP:Mn2+). Hình 4.14. (a) Phổ PL đo ở nhiệt độ phòng của mẫu bột β-TCP:0,3Eu, xMn (x =5,5; 91 6; 6,5; 7,5; 8% mol Mn) được ủ nhiệt ở 1100 oC trong môi trường 5%H2/95%Ar với thời gian 1 giờ, bước sóng kích thích 350 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 660 nm, 430 nm vào nồng độ Mn pha tạp. Hình 4.15. (a) Phổ PL của mẫu β-TCP:0,3Eu, 7,5Mn ủ nhiệt ở các nhiệt độ khác 93 nhau (900–1200 oC) trong môi trường 5%H2/95%Ar với thời gian 1 giờ, bước sóng kích thích 350 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 660 nm, 430 nm vào nhiệt độ ủ mẫu. Hình 4.16. (a) Phổ PL đo ở nhiệt độ phòng của mẫu β-TCP:xEu, 7,5Mn (x=0,2; 0,3; 93 0,5; 0,7 và 0,9% mol), ủ nhiệt ở 1100 oC trong môi trường 5%H2/95%Ar với thời gian 1 giờ, bước sóng kích thích 350 nm. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 660 nm, 430 nm vào nồng độ Eu pha tạp. Hình 4.17. Chuẩn hóa cường độ đỉnh phát xạ của Mn2+ theo nồng độ Eu pha tạp 94 Hình 4.18. Sự phụ thuộc cường độ huỳnh quang đỉnh 660 nm của mẫu β-TCP:0,3Eu, 95 7,5Mn vào bước sóng kích thích. Hình 4.19. (a) Phổ PLE của mẫu bột β-TCP:0,3Eu, 7,5Mn, tương ứng với các bước 96 sóng phát xạ cực đại 430 nm (Eu2+) và 660 nm (Mn2+); (b) Phổ PLE của các mẫu bột β-TCP:6Mn và β-TCP:0,3Eu, 7,5Mn chồng trên cùng một hình, bước sóng phát xạ λem = 660 nm. Hình 4.20. Tính toán tỉ lệ cường độ Blue/Red theo các điều kiện tổng hợp khác 97 nhau: (a) theo nồng độ Mn pha tạp (5,5-8%), (b) theo nhiệt độ ủ khác nhau (900-1200 oC), (c) theo nồng độ Eu pha tạp (0,2-0,9%). Hình 5.1. Phổ XRD nhận được của mẫu bột HA/β-TCP:0,5Er ủ ở các nhiệt độ khác 100 nhau (A) 600, (B) 800, (C) 1000, (D) 1200 oC trong môi trường không khí, thời gian 1 giờ Hình 5.2. Phổ XRD của các mẫu bột HA/β-TCP-xSr:0,5Er (A, x = 0), (B, x = 0,5), xiii 101 (C, x = 1% mol) sấy ở 200 oC trong môi trường không khí. Hình nhỏ bên trái là phóng to ở vị trí góc nhiễu xạ 2θ ( 29 – 33 o) Hình 5.3. Phổ XRD của mẫu bột HA/β-TCP-0,5Sr:0,5Er ủ trong môi trường không 102 khí với thời gian 1 giờ, ở các nhiệt độ khác nhau: 600, 800, 1100 oC Hình 5.4. Ảnh FESEM của các mẫu bột HA/β-TCP:Er ủ trong môi trường không 103 khí với thời gian 1 giờ, ở các nhiệt độ khác nhau: (A) 600, (B) 800, (C) 1000, (D) 1200 oC Hình 5.5. Ảnh FESEM của các mẫu bột HA/β-TCP-xSr:0,5Er với các nồng độ Sr 103 khác nhau: (A) x=0, (B) x=0,5, (C) x=0,8, (D) x=1,5% mol được ủ nhiệt ở 800 oC trong môi trường không khí, thời gian 1 giờ Hình 5.6. Ảnh FESEM của các mẫu bột HA/β-TCP-xSr:0,5Er ủ trong môi trường 105 không khí với thời gian 1 giờ ở các nhiệt độ khác nhau: 600, 800, 900,1100 oC Hình 5.7. Ảnh FESEM của các mẫu bột HA/β-TCP-xSr:Er ủ nhiệt ở 800 oC trong 106 môi trường không khí với thời gian khác nhau: (A) 5 phút, (B) 30 phút, (C) 60 phút, (D) 120 phút Hình 5.8. Ảnh TEM của các mẫu bột HA/β-TCP-xSr:xEr ủ nhiệt ở 200 oC trong 106 môi trường không khí: (A) HA/β-TCP:0,5Er, (B) x= 0,5, (C) x= 1, (D) x=1,5% mol Hình 5.9. Phổ EDS của các mẫu bột (A) HA/β-TCP:Er, (B) HA/β-TCP-Sr:Er ủ 107 nhiệt ở 800 oC trong môi trường không khí với thời gian 1 giờ Hình 5.10. Phổ PL nhận được của mẫu bột HA/β-TCP:0,5Er ủ ở các nhiệt độ khác 108 nhau: 600, 800, 1000, 1100 và 1200 oC trong môi trường không khí với thời gian 1 giờ. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 1540 nm vào nhiệt độ ủ mẫu. Hình 5.11. Phổ huỳnh quang 3D đo ở nhiệt độ phòng của mẫu HA/β-TCP:0,5Er ủ 109 nhiệt ở 1200 oC trong môi trường không khí với thời gian 1 giờ. Hình 5.12. Kết quả đo phổ PL của các mẫu bột HA/β-TCP-0,5Sr:xEr (x = 0,5; 1; 1,5%) ủ ở 800 oC trong môi trường không khí với thời gian 1 giờ. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 1540 nm vào nồng độ Er xiv 110 pha tạp. Hình 5.13. Phổ PL của các mẫu bột HA/β-TCP-xSr:0,5Er (x=0; 0,5; 1%) ủ ở nhiệt 111 độ 800 oC trong môi trường không khí với thời gian 1 giờ Hình 5.14. Phổ PL của các mẫu bột HA/β-TCP-Sr:Er được ủ nhiệt trong môi trường 112 không khí với thời gian 1 giờ, ở các nhiệt độ khác nhau: 600, 800, 900, 1100 oC. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 1540 nm vào nhiệt độ ủ mẫu. Hình 5.15. Phổ PL của mẫu bột HA/β-TCP-Sr:Er ủ ở 800 oC trong môi trường không khí với thời gian khác nhau: 5 phút, 30 phút, 60 phút, 120 phút. Hình chèn nhỏ là sự phụ thuộc cường độ đỉnh phát xạ 1540 nm vào thời gian ủ nhiệt. xv 113 DANH MỤC CÁC BẢNG BIỂU Trang Bảng 1.1. Cấu hình điện tử và số hạng cơ bản của ion nguyên tố đất hiếm 8 Bảng 1.2. Thông tin về cấu trúc của hợp chất Ca10(PO4)6(OH)2 23 Bảng 1.3. Thông tin về cấu trúc của hợp chất β - Ca3(PO4)2 25 Bảng 2.1. Các hóa chất sử dụng tổng hợp vật liệu trong luận án 43 Bảng 2.2. Lượng hóa chất tính toán dùng chế tạo mẫu Ca10(PO4)6(OH)2 -F:Eu 46 Bảng 2.3. Lượng hóa chất tính toán dùng chế tạo mẫu Ca10(PO4)6(OH)2:Eu, 46 Dy Bảng 2.4. Lượng hóa chất tính toán dùng chế tạo mẫu Ca10(PO4)6(OH)2:Eu, 47 Mn Bảng 2.5. Lượng hóa chất tính toán dùng chế tạo mẫu Ca10-x 47 Srx(PO4)6(OH)2:Er Bảng 2.6. (A) Nồng độ F pha tạp 47 Bảng 2.6. (B) Nồng độ Dy pha tạp 49 Bảng 2.6. (C) Nồng độ Mn, Eu pha tạp 50 Bảng 2.6. (D) Nồng độ Er và Sr pha tạp 50 Bảng 2.7 Danh sách các mẫu chế tạo trong luận án 50 Bảng 3.1. Thông số cấu trúc của mạng nền Ca10(PO4)6(OH)2 57 Bảng 3.2. Tỉ lệ cường độ R theo nồng độ ion F pha tạp 68 Bảng 3.3. Tỉ lệ cường độ R theo nhiệt độ ủ mẫu 70 Bảng 3.4. Giá trị R theo pH của môi trường tổng hợp mẫu 72 xvi MỞ ĐẦU 1. Lý do chọn đề tài Ngày nay khoa học công nghệ đang phát triển mạnh mẽ, thúc đẩy sự phát triển của kinh tế xã hội. Đối với mỗi quốc gia sự phát triển của kinh tế luôn đi kèm theo với bài toán tiết kiệm năng lượng. Xu hướng sử dụng nguồn năng lượng giá rẻ, thân thiện môi trường ngày càng được quan tâm nghiên cứu và áp dụng. Ngành công nghiệp chiếu sáng cũng nằm trong xu thế đó, sử dụng những sản phẩm chiếu sáng tiết kiệm năng lượng, giá rẻ và thân thiện với môi trường [81, 52, 140]. Với sự thay thế dần bóng đèn sợi đốt bằng đèn huỳnh quang và đèn LED tiết kiệm năng lượng, chúng tôi cho rằng đó là một bước tiến lớn của nhân loại. Đèn huỳnh quang, đèn LED với ưu điểm là tiết kiệm năng lượng, tuổi thọ cao (thời gian chiếu sáng cao), thân thiện với môi trường, đang được sử dụng rộng rãi trên toàn thế giới [140, 121, 125]. Năm 2014, ba giáo sư Isamu Akasaki, Hiroshi Amano và Shuji Nakamura người Nhật Bản đã được trao giải Nobel vì công trình chế tạo ra đèn LED phát sáng màu xanh da trời (Blue). Đó là điều khẳng định giá trị to lớn mà đèn LED mang lại. Để tạo ra ánh sáng trắng thì cần trộn ba màu cơ bản blue (xanh da trời), green (xanh lá cây) và red (đỏ). Thực trạng hiện nay của các đèn LED phát ánh sáng trắng là thiếu màu đỏ, dẫn đến hệ số trả màu (CRI) thấp, ảnh hưởng xấu đến thị lực của mắt người [140, 15, 19, 40]. Do đó phát triển công nghệ chế tạo bột huỳnh quang màu đỏ là hết sức cần thiết trong bối cảnh hiện nay. Nghiên cứu chế tạo bột huỳnh quang áp dụng cho chiếu sáng đã được tiến hành từ những năm đầu của thế kỷ XIX [40, 46]. Tuy nhiên sự phát triển của khoa học kỹ thuật luôn đặt ra các yêu cầu ngày càng cao đối với các loại bột huỳnh quang. Đó đang là cơ hội cũng như thách thức đối với các nhà nghiên cứu trên toàn thế giới. Ngày nay các nhà khoa học song song với việc tìm kiếm những vật liệu mới có tính năng cao hơn thì xu hướng mở rộng ứng dụng của bột huỳnh quang cũng đang được quan tâm [43, 47, 50]. Đối với những vật liệu huỳnh quang, chất nền (mạng nền) có ảnh hưởng rất lớn đến chất lượng bột huỳnh quang cũng như hiệu suất phát quang của sản phẩm. Mạng nền phải đảm bảo được các tiêu chí như có độ kết tinh tốt, bền với tác nhân lý hóa của môi trường, thân thiện với môi trường và giá thành điều chế rẻ [32, 30, 81]. Vật liệu Hydroxyapatite (HA) đã được các nhà khoa học quan tâm nghiên cứu từ rất sớm [16, 17, 30, 124]. HA có thành phần tương tự thành phần cấu tạo nên xương và răng người, do đó nó không độc và thân thiện với môi trường, hơn nữa giá thành sản xuất 1 rẻ [124, 16]. Hydroxyapaite (HA) với cấu trúc linh hoạt (có thể cho sự thay thế nhiều nguyên tử và nhóm nguyên tử vào các vị trí Ca2+, PO43- hay OH-) và tính tương thích sinh học đang được sử dụng rộng rãi làm vật liệu nền trong chế tạo vật liệu huỳnh quang [6, 8, 16] Bột huỳnh quang trên cơ sở mạng nền HA có thể ứng dụng cho chiếu sáng hoặc cho lĩnh vực Y-sinh học [20, 35, 16, 124, 30]. β-TCP (tricanxi phốt phát) sinh ra từ pha HA thông qua quá trình ủ ở nhiệt độ cao, β-TCP cũng được nghiên cứu ứng dụng trong công nghệ chiếu sáng và y-sinh học [140, 141, 125]. Khác với mạng nền HA, Mạng nền β-TCP không chứa nhóm OH gây dập tắt huỳnh quang. Gần đây, xu hướng phát triển bột huỳnh quang trên cơ sở mạng nền β-TCP ứng dụng cho đèn LED chiếu sáng nông nghiệp cũng được nhiều nhà khoa học quan tâm nghiên cứu. Bột huỳnh quang β-TCP:Eu, Mn cho phát xạ ở vùng bước sóng màu xanh (430 nm) và vùng ánh sáng màu đỏ (660 nm), hai vùng phát xạ này trùng với vùng hấp thụ của cây trồng [140, 141]. Tuy nhiên các nghiên cứu chủ yếu chế tạo vật liệu theo phương pháp phản ứng pha rắn ở nhiệt độ cao (1400-1600 oC) và thời gian dài (4-6 giờ), điều kiện như vậy không phù hợp với một số phòng thí nghiệm ở Việt Nam. Do vậy tiếp cận hướng chế tạo vật liệu β-TCP:Eu, Mn ở nhiệt độ thấp hơn, thời gian ít hơn nhằm tiết kiệm năng lượng và giảm giá thành chế tạo cũng là một hướng nghiên cứu cần thiết. Cùng với những ứng dụng trong lĩnh vực chiếu sáng, bột huỳnh quang cũng được ứng dụng trong truyền tín hiệu quang học [7, 56, 97, 42]. Đặc biệt việc phát triển vật liệu phát xạ ánh sáng trong vùng hồng ngoại gần (NIR) ứng dụng trong viễn thông quang học như ống dẫn sóng và y-sinh học đang đặt ra những thách thức cũng như cơ hội cho các nhà nghiên cứu trong tương lai. Nguyên tố Er đang được ứng dụng trong lĩnh vực truyền tín hiệu quang học, hiện tại những nghiên cứu về tính chất quang của Er đang diễn ra hết sức sôi nổi [56, 42, 97]. Các nghiên cứu về tính chất quang của HA pha tạp Er chưa được các nhà khoa học quan tâm đúng mức, một số công trình đã công bố nhưng kết quả nhận được còn hạn chế [7, 56]. Theo hiểu biết của chúng tôi chưa có công trình nào công bố về sự phát quang của vật liệu HA/β-TCP:Er trong vùng hồng ngoại gần cỡ 1540 nm được tổng hợp bằng phương pháp đồng kết tủa. Chúng ta biết rằng dải bước sóng 1540 nm là phù hợp với dải bước sóng được sử dụng trong truyền thông tin quang học [7, 56, 139, 42]. Do đó nghiên cứu phát triển vật liệu HA/β-TCP:Er cho phát xạ bước sóng 1540 nm là hết sức cần thiết và là một hướng nghiên cứu rất triển vọng. Để tăng hiệu suất phát quang của vật liệu trên nền HA, các nghiên cứu tập trung vào sự thay thế các nguyên tố (Sr, Ba, Mg …) vào vị trí của Ca trong cấu trúc. Nhiều công 2 trình đã công bố khi thay thế các nguyên tố trên vào mạng nền HA thì chất lượng tinh thể tốt hơn do đó tính chất quang của vật liệu cũng được cải thiện [6, 8, 47, 57]. Nghiên cứu ảnh hưởng của nguyên tố Sr đến cường độ huỳnh quang của vật liệu HA/β-TCP-Sr:Er cũng được chúng tôi thực hiện trong luận án. Sr thay thế vào mạng nền HA/β-TCP nhằm tăng mức độ kết tinh của sản phẩm[97, 47, 57]. Một số công trình công bố về sự pha tạp Sr vào mạng nền HA/β-TCP đã đạt được một số kết quả nhất định. Do đó chúng tôi lựa chọn tổng hợp và nghiên cứu tính chất quang của hệ vật liệu HA/β-TCP-Sr:Er nhằm định hướng ứng dụng trong thông tin quang học và y-sinh học. Tuy nhiên theo hiểu biết của chúng tôi ở Việt Nam cũng như trên Thế giới, các nghiên cứu về tính chất quang của vật liệu trên cơ sở mạng nền HA, β-TCP còn chưa tương xứng với tiềm năng ứng dụng của chúng. Do vậy, phát triển các hướng nghiên cứu tính chất quang liên quan đến HA, β-TCP là cần thiết và hứa hẹn nhiều triển vọng. Như vậy nghiên cứu chế tạo bột huỳnh quang trên cơ sở mạng nền HA/β-TCP đang được các nhà khoa học quan tâm nghiên cứu cho các ứng dụng trong chiếu sáng và y-sinh học. Với mục đích có thêm hiểu biết về vật liệu huỳnh quang cũng như có thể làm chủ được quy trình công nghệ tổng hợp bột huỳnh quang, từ đó định hướng ứng dụng trong thực tế, chúng tôi lựa chọn đề tài: Nghiên cứu chế tạo và tính chất quang của vật liệu HA, HA-F, β-TCP, β-TCP-Sr pha tạp Eu, Er, Dy và Mn. Sự thành công của đề tài sẽ mở ra nhiều hướng ứng dụng cho vật liệu huỳnh quang, trên hết là chúng ta có thể làm chủ được quy trình công nghệ chế tạo, từ đó định hướng quy mô sản xuất phục vụ cho các ngành công nghiệp. 2. Mục tiêu nghiên cứu Để hoàn thành tốt được các nội dung của luận án, chúng tôi đề ra những mục tiêu cụ thể như sau: - Tăng cường phát xạ đỏ của Eu3+ trong vật liệu HA:Eu bằng cách pha tạp thêm nguyên tố F; Bổ sung ánh sáng xanh và ánh sáng vàng của Dy3+ vào phát xạ đỏ của Eu3+, nhằm tạo ra phổ phát xạ ánh sáng trắng trong cùng một vật liệu nền HA:Eu, Dy, định hướng ứng dụng trong lĩnh vực chiếu sáng và y-sinh. - Tổng hợp vật liệu β-TCP:Eu, Mn cho phổ phát xạ trùng với phổ hấp thụ của cây trồng: Vùng màu xanh 430 nm (blue) và vùng màu đỏ 660 nm (red) và định hướng ứng dụng cho đèn LED chiếu sáng nông nghiệp. 3
- Xem thêm -

Tài liệu liên quan