Tài liệu Nghiên cứu các phần tử ngoại lai trong cơ sở dữ liệu và ứng dụng

  • Số trang: 60 |
  • Loại file: PDF |
  • Lượt xem: 64 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 27125 tài liệu

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG NGUYỄN XUÂN TRƢỜNG NGHIÊN CỨU CÁC PHẦN TỬ NGOẠI LAI TRONG CSDL & ỨNG DỤNG LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH THÁI NGUYÊN – 2014 1 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG NGUYỄN XUÂN TRƢỜNG NGHIÊN CỨU CÁC PHẦN TỬ NGOẠI LAI TRONG CSDL & ỨNG DỤNG Chuyên ngành: Khoa học máy tính Mã số: 60 48 01 LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH Ngƣời hƣớng dẫn khoa học: GS.TS VŨ ĐỨC THI THÁI NGUYÊN – 2014 2 LỜI CAM ĐOAN Luận văn thạc sỹ này tôi nghiên cứu và thực hiện dƣới sự hƣớng dẫn của Thầy giáo GS.TS Vũ Đức Thi . Để hoàn thành bản luận văn này, ngoài các tài liệu đã liệt kê, tôi cam đoan không sao chép các công trình hoặc thiết kế tốt nghiệp của ngƣời khác. Thái Nguyên, ngày 18 tháng 04 năm 2014 Học viên Nguyễn Xuân Trƣờng 3 LỜI CẢM ƠN Trƣớc hết, tôi vô cùng biết ơn sâu sắc đến Thầy giáo GS.TS Vũ Đức Thi, ngƣời thầy đã trực tiếp dành nhiều thời gian tận tình hƣớng dẫn, cung cấp những thông tin, tài liệu quý báu giúp đỡ tôi hoàn thành bản luận văn này. Sau cùng tôi xin bày tỏ lòng biết ơn đến ngƣời thân, cùng bạn bè, đồng nghiệp cơ quan, những ngƣời luôn cổ vũ động viên tôi hoàn thành bản luận văn tốt nghiệp này. Thái Nguyên, ngày 18 tháng 04 năm 2014 Học viên Nguyễn Xuân Trƣờng 4 MỤC LỤC LỜI CAM ĐOAN ............................................................................................. 1 LỜI CẢM ƠN ................................................................................................... 4 DANH MỤC THUẬT NGỮ ............................................................................. 7 DANH MỤC HÌNH VẼ .................................................................................... 8 MỞ ĐẦU ........................................................................................................... 9 CHƢƠNG I: KHÁM PHÁ TRI THỨC TRONG CƠ SỞ DỮ LIỆU VÀ PHẦN TỬ NGOẠI LAI .................................................................................. 10 1.1 Khám phá tri thức...................................................................................... 10 1.2 Các ứng dụng sử dụng kỹ thuật khai thác dữ liệu..................................... 14 1.3 Phần tử ngoại lai........................................................................................ 14 1.4 Mối quan hệ giữa các phần tử ngoại lai và khai thác dữ liệu. .................. 18 1.5 Ứng dụng của các phần tử ngoại lai. ......................................................... 19 CHƢƠNG II: CÁC ĐỊNH NGHĨA, THUẬT TOÁN TÌM KIẾM CÁC PHẦN TỬ NGOẠI LAI. ............................................................................................. 21 2.1 Các định nghĩa và thuật ngữ các phần tử ngoại lai. .................................. 21 2.2 Các thuật toán tìm kiếm các phần tử ngoại lai trong cơ sở dữ liệu. ......... 26 2.2.1 Thuật toán Nested – Loop. .................................................................. 26 5 2.2.2 Thuật toán tìm kiếm các phần tử ngoại lai không tầm thƣờng (FindNonTrivialOuts) .................................................................................. 30 2.2.3 Thuật toán đánh giá theo ô. ................................................................. 33 CHƢƠNG III: CHƢƠNG TRÌNH THỰC NGHIỆM .................................... 53 KẾT LUẬN ..................................................................................................... 57 TÀI LIỆU THAM KHẢO ............................................................................... 59 6 DANH MỤC THUẬT NGỮ Nghĩa của từ Từ viết tắt Box_Cox Tên phép biến đổi thành dạng xấp xỉ chuẩn DB (Distance Based) Dựa theo khoảng cách DSE (Donoho Stahel) Tên bộ ƣớc lƣợng mạnh đa biến KDD (Know ledgement Khám phá tri thức trong cơ sở dữ liệu Discovery in Database ) LOF ( Local Outlier Factor) Yếu tố ngoại lai cục bộ MAD (Median Absolute Là tên một bộ ƣớc lƣợng mạnh đơn biến Deviation) NL ( Nested Loop) Tên một thuật toán phát hiện phần tử ngoại lai Shorth ( Shortest half) Là tên một bộ ƣớc lƣợng mạnh đơn biến 7 DANH MỤC HÌNH VẼ Hình 1.1: Qui trình KDD Knowledgement Discovery in Database – Khám phá tri thức trong Cơ sở dữ liệu . ..................................................... 11 Hình 2.1: .......................................................................................... 32 Hình 2.2.a: ........................................................................................ 39 Hình 2.2.b: ....................................................................................... 39 Hìn 2.2.c: .......................................................................................... 40 Hình 2.2.d: ....................................................................................... 40 8 MỞ ĐẦU Thế kỷ XXI đƣợc xem là một kỷ nguyên của nền kinh tế tri thức. Các công nghệ khám phá tri thức đƣợc áp dụng rộng rãi trong nhiều lĩnh vực và đã đem lại những thành tựu to lớn. Nhƣng các công nghệ khám phá tri thức thƣờng nhằm mục đích tìm kiếm, khám phá, các dạng mẫu thƣờng gặp. Chủ yếu tập trung vào các hƣớng: Tìm kiếm các luật kết hợp, nhận dạng và phân lớp mẫu…Còn lĩnh vực khám phá phần tử ngoại lai mới bƣớc đầu đƣợc sự quan tâm nghiên cứu. Mặc dù nó đƣợc ứng dụng trong nhiều lĩnh vực trong cuộc sống: nhƣ phát hiện những thẻ bất thƣờng trong hệ thống ngân hàng, những tuyến đƣờng bất ổn không hợp lý trong giao thong, ứng dụng trong hệ thống an ninh, dự báo thời tiết, trong thị trƣờng chứng khoán, trong lĩnh vực thể thao ... Tuy nhiên, với số lƣợng dữ liệu đƣợc tập trung và lƣu trữ trong cơ sở dữ liệu ngày càng lớn thì việc tìm kiếm các ngoại lệ hoặc các phần tử ngoại lai trở nên cấp thiết hơn nhiều. 9 CHƢƠNG I: KHÁM PHÁ TRI THỨC TRONG CƠ SỞ DỮ LIỆU VÀ PHẦN TỬ NGOẠI LAI Nội dung của chƣơng này giới thiệu quá trình khám phá tri thức, khai thác dữ liệu và các ứng dụng thực tế có sự hỗ trợ của các kỹ thuật khai thác dữ liệu. Đồng thời trình bày khái niệm về phần tử ngoại lai và mối quan hệ giữa các lĩnh vực khám phá phần tử ngoại lai và lĩnh vực khai thác dữ liệu. 1.1 Khám phá tri thức. Với sự tiến bộ của khoa học kỹ thuật và nhu cầu con ngƣời ngày càng tăng đã tạo nên một thời đại bùng nổ thông tin trong mọi lĩnh vực của đời sống. Với lƣợng thông tin “ khổng lồ” đó thì cần có các kỹ thuật khai thác dữ liệu hiệu quả để lấy ra những thông tin hữu ích. Một số các ngôn ngữ chuy vấn đƣợc sử dụng nhằm lấy ra những thông tin yêu cầu của ngƣời sử dụng, nhƣng hầu hết các ngôn ngữ này chỉ lấy ra đƣợc dữ liệu theo những yêu cầu đơn giản. Các kiểu dữ liệu đa phƣơng tiện đƣợc một số các hệ thống cơ sở dữ liệu hỗ trợ nhƣ: Dữ liệu âm thanh, hình ảnh…không thể đáp ứng đƣợc khi các yêu cầu của ngƣời sử dụng ngày càng cao và phức tạp. Do đó, với nhu cầu tìm kiếm tri thức trong cơ sở dữ liệu đã hình thành một lĩnh vực mới: Khám phá tri thức trong cơ sở dữ liệu. Khám phá tri thức là toàn bộ quá trình tìm kiếm tri thức dữ liệu, bao gồm các bƣớc sau: - Chuẩn bị dữ liệu : Dữ liệu đƣợc tập chung vào trong các cơ sở dữ liệu, các kho dữ liệu. Dữ liệu có thể là chƣa sạch tức là có cả dữ liệu sai sót, không phù hợp, nhiễu, và các dữ liệu không đủ thông tin. Do đó, trong bƣớc này dữ liệu đƣợc làm sạch để loại bỏ các dữ liệu không phù hợp, dữ liệu không liên quan. Công việc này có thể đƣợc tiến hành trƣớc hoặc sau khi phát hiện dữ liệu không sạch. Đồng thời, sau khi đƣợc làm sạch, dữ liệu đƣợc làm 10 giàu để bổ sung những thông tin cần thiết. Sau đó dữ liệu đƣợc biến đổi theo dạng phù hợp để thực hiện quá trình khai thác dữ liệu. - Khai thác dữ liệu: Khai thác dữ liệu là một bƣớc quan trọng trong quá trình khám phá tri thức. Bƣớc này sử dụng các kỹ thuật, các phƣơng thức thông minh để xác định các mẫu dữ liệu theo yêu cầu. Khai thác dữ liệu được định nghĩa là quá trình khai thác, khám phá những thông tin hữu ích, chưa được biết trước, tiềm ẩn và không tầm thường từ những tập dữ liệu lớn.  Tìm kiếm các luật kết hợp: Sử dụng các luật đơn giản để biểu diễn tri thức . Tìm kiếm những mối quan hệ có ích của dữ liệu.  Dự báo: Xác định các hàm hồi quy.  Nhận dạng và phân lớp mẫu :Tìm kiếm, xác định các mẫu theo yêu cầu, phân chia các mẫu thành các lớp nhằm phục vụ cho mục đích sử dụng.  Phát hiện phần tử ngoại lệ : Tìm kiếm và xác định các các đối tƣợng dữ liệu lỗi, bất thƣờng và các phần tử ngoại lai. Môi trƣờng khám phá tri thức nhằm mục đích hỗ trợ quá trình khai thác dữ liệu .Do đó, hai thuật ngữ “ khai thác dữ liệu”( Data Mining) và “ khám phá tri thức”(Knowledge Discovery) thƣờng đƣợc sử dụng để thay thế cho nhau. - Đánh giá : Bƣớc đánh giá bao gồm đánh giá mẫu và biểu diễn tri thức. Đánh giá mẫu là tìm ra những mẫu quan tâm từ các mẫu đã có trong bƣớc khai thác dữ liệu. Có thể sử dụng các ngƣỡng cần thiết để lọc ra các mẫu cần khai thác.Biểu diễn tri thức là quá trình cho phép 11 ngƣời sử dụng tƣơng tác với hệ thống bằng các nhiệm vụ hoặc các truy vấn tìm kiếm dữ liệu cụ thể. Cung cấp thông tin nhằm mục đích trợ giúp việc tìm kiếm và thực hiện khai thác dữ liệu chi tiết dựa trên dữ liệu đã đƣợc khai thác. Ngoài ra, biểu diễn tri thức cho phép ngƣời sử dụng trình duyệt các lƣợc đồ cơ sở dữ liệu và kho dữ liệu hoặc các cấu trúc dữ liệu. Hình 1.1 trình bày tổng thể qui trình KDD, không chỉ bao gồm khai thác dữ liệu mà còn có các bƣớc khác để có đƣợc kết quả. Các bƣớc khai thác dữ liệu thƣờng tiêu tốn thời gian và phức tạp nhất của qui trình, tuy nhiên các bƣớc tiền xử lý và hậu xử lý cũng không đơn giản và có thể tiêu tốn nhiều thời gian hơn so với các thuật toán khai thác dữ liệu. Chúng tôi thực hiện hầu hết các bƣớc trên hình 1.1 trong việc tìm kiếm các phần tử ngoại lai DB.Một số bƣớc tiền xử lý liên quan đến việc tìm các giá trị khởi tạo hợp lý cho p và D.Hậu xử lý có thể đƣợc thực hiện bởi chuyên gia. Những sự lựa chọn thích hợp đƣợc thực hiện trong các bƣớc tiền xử lý bởi cả ngƣời sử dụng và máy có thể giảm nhiều thời gian liên quan đến bƣớc khai thác dữ liệu và có thể giảm thủ công trong phần hậu xử lý. Bằng cách lựa chọn các giá trị thích hợp cho p và D, quy trình KDD có thể làm cho các phần tử ngoại lai có nhiều ý nghĩa hơn đối với ngƣời sử dụng và giảm thời gian xác định p và D. 12 KNOWLEDGE Đánh Giá và Biểu Diễn Khai thác Dữ Liệu Các Mẫu Trích Chọn Trích Chọn và Biến Đổi Dữ Liệu Làm Sạch và Tích Hợp Dữ Liệu Các Cơ Sở Dữ Liệu Các File Bằng Hình 1.1 Qui trình KDD Knowledgement Discovery in Database – Khám phá tri thức trong Cơ sở dữ liệu. 13 1.2 Các ứng dụng sử dụng kỹ thuật khai thác dữ liệu. Có rất nhiều ứng dụng trong các lĩnh vực khác nhau sử dụng các kỹ thuật khai thác dữ liệu nhằm hỗ trợ cho mục đích sử dụng. Ví dụ: Trong thƣơng mại, một công ty hay một tổ chức sử dụng các kỹ thuật khai thác dữ liệu để tặng khuyến mãi cho các khách hàng dựa vào tần suất truy cập website, kiểu khách hàng, số lƣợng hàng đã mua ở các lần trƣớc. Trong ngân hàng, ngƣời ta sử dụng các kỹ thuật khai thác dữ liệu để xác định rủi ro về thẻ tín dụng. Trong các công ty bảo hiểm, sử dụng kỹ thuật khai thác dữ liệu để xác định các lỗi và các trƣờng hợp rủi ro cao có thể xảy ra.Các tổ chức chống tội phạm sử dụng các kỹ thuật khai thác dữ liệu để tìm kiếm, nhận dạng tội phạm. Các công cụ tìm kiếm trang Web áp dụng các kỹ thuật thông mjnh để có thể tìm kiếm đƣợc những trang Web theo yêu cầu của ngƣời sử dụng với độ chính xác cao. Các kỹ thuật khai thác dữ liệu còn đƣợc áp dụng trong các lĩnh vực khác nhau nhƣ phân tích thị trƣờng chứng khoán, dự báo tỷ lệ thay đổi ngoại tệ, mô hình hóa Protein, tìm kiếm các gen trong chuỗi DNA, dự báo thời tiết, nhận dạng ảnh và văn bản… 1.3 Phần tử ngoại lai. Trong các tập dữ liệu thƣờng tồn tại các đối tƣợng dữ liệu không tuân theo một hình thức hoặc một mô hình dữ liệu chung, các đối tƣợng dữ liệu mà giá trị dữ liệu đƣợc là nằm ngoài pham vi hoặc không liên quan tới tập dữ liệu còn lại. Những đối tƣợng có đặc tính trên đƣợc gọi là các phần tử ngoại lai. Các phần tử ngoại lai có thể do lỗi thực hiện hoặc lỗi phép đo gây ra. Ví dụ: việc hiển thị một ngƣời có tuổi 999 có thể là do việc lập mặc định chƣơng trình không giới hạn tuổi dữ liệu. Mặt khác, các phần tử ngoại lai có thể là kết quả của quá trình tự nhiên. 14 Có nhiều thuật toán khai thác dữ liệu cố gắng làm cực tiểu hóa sự ảnh hƣởng của các phần tử ngoại lai, loại bỏ chúng cùng một lúc. Tuy nhiên, điều đó có thể làm mất những thông tin tiềm ẩn quan trọng khi “ nhiễu của ngƣời này lại là tín hiệu của ngƣời khác”. Có nhiều định nghĩa đƣợc đƣa ra để định nghĩa phần tử ngoại lai nhƣ định nghĩa của Barnet và Levis: “Một phần tử ngoại lai là đối tƣợng xuất hiện không nhất quán với tập dữ liệu còn lại.”. Hawkins mô tả định nghĩa trực quan về phần tử ngoại lai có thể là “ Một đối tƣợng mà nó lệch hƣớng rất nhiều với đối tƣợng khác do đó dẫn đến sự nghi ngờ rằng chúng đƣợc tạo ra bởi một kỹ thuật khác .”[20]. Nói khác đi, các đối tƣợng không cùng một mô hình tạo sinh với tập dữ liệu còn lại đƣợc xem là các phần tử ngoại lai. Một phần tử ngoại lai có thể là một đối tƣợng dữ liệu trong các trƣờng hợp sau: Nằm trong một phân bố khác với phân bố của tập dữ liệu còn lại. Là một đối tƣợng có giá trị hợp lệ nhƣng không phải là đối tƣợng mong muốn. Là đối tƣợng dữ liệu đƣợc tạo sinh có sai sót. Đối với trƣờng hợp các phần tử ngoại lai có thể là các đối tƣợng hợp lệ nhƣng chúng có giá trị không mong muốn, ta không cần thiết phải loại bỏ chúng khỏi tập dữ liệu nhƣng các đối tƣợng này phải đƣợc xác định hay nhận dạng .Draper và Smith nhận xét rằng một phần tử ngoại lai có thể “ cung cấp thông tin mà đối tƣợng khác không thể bởi vì nó xuất hiện từ sự kết hợp bất bình thƣờng của một số trƣờng hợp rất có ý nghĩa”[13]. Nếu một phần tử ngoại lai không phải là một đối tƣợng hợp lệ ( có thể là do nó đƣợc đánh giá và đƣa vào không đúng ) thì nó có thể đƣợc phát hiện, 15 khắc phục và đánh giá bởi các chuyên gia. Do đó, phụ thuộc vào từng ngữ cảnh các phần tử ngoại lai có thể đƣợc loại bỏ từ tập dữ liệu để làm tăng tính thuần nhất của dữ liệu còn lại. Nói tóm lại, các phần tử ngoại lai là những đối tƣợng đủ khác với hầu hết các điểm khác. Tuy nhiên, không có một định nghĩa về phần tử ngoại lai nào đƣợc chấp nhận rộng rãi. Các phần tử ngoại lai thƣờng đƣợc xem là các điểm không thỏa mãn mô hình dữ liệu đang xét. Việc phần tử ngoại lai có bị loại bỏ hay không còn tùy thuộc vào từng chƣơng trình ứng dụng và quyết định bởi chuyên gia. Một cách hình thức ngƣời ta có thể định nghĩa phần tử ngoại lai của một tập dữ liệu các phần tử mà theo một cách nhìn nào đó có các đặc tính không giống với tập hợp đa số còn lại của tập dữ liệu. Chẳng hạn, hình dƣới cho thấy một phần tử ngoại lai theo vị trí hình học. 16 Các khái niệm về ngoại lai đầu tiên có nguồn gốc từ lĩnh vực thống kê. Barnett và Lewis định nghĩa: một phần tử ngoại lai là một quan trắc hoặc một tập con các quan trắc mà sự xuất hiện của chúng trái ngƣợc với những quan trắc còn lại. Phần tử ngoại lai cũng có thể đƣợc hiểu nhƣ một quan trắc mà giá trị của nó khác biệt quá nhiều so với những quan trắc khác gây cho ngƣời ta nghi ngờ rằng nó đã đƣợc thực hiện bằng một kỹ thuật khác. Nói một cách khác, những quan trắc không tuân theo cùng mô hình thống kê nhƣ các quan trắc còn lại đƣợc coi là các phần tử ngoại lai. Có nhiều cách định nghĩa và hiểu khác nhau về phần tử ngoại lại. Tuy nhiên chúng có điểm chung là: một phần tử ngoại lai là những quan trắc mà có sự khác biệt đáng kể đối với những quan trắc còn lại. Có nhiều công trình nghiên cứu về phát hiện phần tử ngoại lai. Các phƣơng pháp chính để xác định phần tử ngoại lai bao gồm: - Xác định phần tử ngoại lai theo khoảng cách (Distance-Based): Theo hƣớng tiếp cận này cần phải xác định một hàm đo khoảng cách (metric) giữa các phần tử trong tập dữ liệu. Các phần tử ngoại lai là những phần tử nằm khá xa với tập các phần tử còn lại. Điển hình cho hƣớng tiếp cận này là E. Knorr. - Xác định theo thống kê (Statistical-Based): Hƣớng nghiên cứu này dựa trên việc xác định các mô hình phân phối thống kê mà các phần tử phải tuân theo (phân phối chuẩn, phân phối X2 ...). Phần tử ngoại lai là những phần tử không tuân theo các luật này. Điển hình cho hƣớng tiếp cận này là các tác giả Barnett, Lewis. - Xác định theo độ khác biệt (Deviation-Based): 17 Hƣớng nghiên cứu này dựa trên việc xác định những đặc trƣng cơ bản của các phần tử trong một tập các phần tử. Các phần tử có những đặc trƣng khác biệt quá lớn so với các phần tử còn lại thì là các phần tử ngoại lai. Điển hình cho hƣớng tiếp cận này là các tác giả Arning, Agrawal, Raghavan. Các phƣơng pháp nghiên cứu trên hiệu quả khi áp dụng trong lĩnh vực Data mining ( nghiên cứu phát hiện các tri thức, các luật trong một tập các phần tử dữ liệu). Tuy nhiên chúng khó áp dụng, hoặc không hiệu quả trong các trƣờng hợp đối với các dữ liệu của cơ sở dữ liệu dạng quan hệ trong đó có nhiều thuộc tính vừa là số vừa là định danh, hoặc trong trƣờng hợp khi chúng ta quan tâm nhiều đến sự vi phạm của các phần tử dữ liệu đối với một tập các ràng buộc, quy tắc (luật) đƣợc cho trƣớc. Ở đây chúng tôi đề xuất việc phát hiện các phần tử ngoại lai trong CSDL quan hệ dựa theo các luật (Rule-Base). Hƣớng tiếp cận này giúp khắc phục đƣợc những hạn chế của các hƣớng nghiên cứu trƣớc đồng thời có thể mang lại hiệu quả hơn trong việc phát hiện những phần tử ngoại lai trong CSDL quan hệ. 1.4 Mối quan hệ giữa các phần tử ngoại lai và khai thác dữ liệu. Trƣớc khi các kỹ thuật khai thác dữ liệu ra đời, thông tin hữu ích chỉ đƣợc khai thác hiệu quả trên các tập dữ liệu với cỡ và số chiều dữ liệu là nhỏ. Do đó, để có thể khai thác dữ liệu một cách hiệu quả với khối lƣợng thông tin lớn thì cần thiết phải có các công cụ khai thác dữ liệu tốt, các thuật toán khai thác dữ liệu tự động, thời gian thực hiện nhanh. Trong thực tế các chƣơng trình ứng dụng khai thác dữ liệu thƣờng phải khai thác dữ liệu trên các tập lớn dữ liệu rất lớn không phù hợp với bộ nhớ chính. Dữ liệu đó đƣợc gọi là dữ liệu nằm trong bộ nhớ ngoài(Disk-resident Data ). 18 Một vấn đề đƣợc quan tâm trong luận văn này là tìm hiểu các thuật toán khai thác, tìm kiếm các phần tử ngoại lai trong các tập dữ liệu lớn, nhiều chiều. Hiện nay, một số các kỹ thuật phát hiện phần tử ngoại lai nhằm các mục đích sau: a) Cung cấp một số giải thích hoặc mô tả về không gian dữ liệu mà trong đó xuất hiện phần tử ngoại lai. b) Cung cấp một số thông tin về mối quan hệ giữa các phần tử ngoại lai ( ví dụ đối với cƣờng độ của hai phần tử ngoại lai). Một vấn đề khác cần quan tâm liên quan tới “ ý nghĩa” của các phần tử ngoại lai. Cho đến nay, chƣa có một định nghĩa nào định nghĩa một cách đầy đủ và chính xác về phần tử ngoại lại. Việc xác định các phần tử ngoại lai trong mỗi lĩnh vực là khác nhau. Bởi vì “ý nghĩa” ngoại lai của các phần tử ngoại lai mang tính chất và đặc trƣng của từng lĩnh vực áp dụng, nên rất khó để đƣa ra đƣợc một định nghĩa hoàn chỉnh về phần tử ngoại lai. 1.5 Ứng dụng của các phần tử ngoại lai. Đối với một số ứng dụng khám phá tri thức, các sự kiện hiếm có thƣờng đƣợc quan tâm hơn các sự kiện thông thƣờng, chẳng hạn việc phát hiện các thẻ tín dụng giả, theo dõi các hoạt động tội phạm trong thƣơng mại điện tử. Sau sự tấn công các trang Web năm 2000 và đặc biệt sự kiên khủng bố tấn công nƣớc Mỹ ngày 11/9/2001, ngƣời ta quan tâm nhiều đến việc bảo mật máy tính, bao gồm cả phần cứng, phần mềm và cả hệ thống mạng ( ví dụ: phát hiện sự sâm nhập). Bảo mật hệ thống mạng bao gồm tần suất của các tấn công dịch vụ mà một sự kiện bên ngoài đƣợc phát hiện trong gói dữ liệu hệ thống mạng ( ví dụ: Số lƣợng lớn không bình thƣờng các gói dữ liệu từ một nguồn lạc danh). Công cụ thống kê có thể đƣợc dùng để tìm ra một thói quen 19 là ngoại lệ tƣơng ứng với một lịch sử đã biết ( ví dụ: Những thói quen điển hình theo đăng nhập, sử dụng CPU và truy xuất dữ liệu ). Đối với các hệ thống thanh toán điện tử bao gồm các ứng dụng thẻ tín dụng, thẻ điện thoại và thẻ thông minh, chúng ta quan tâm tới việc phát hiện thẻ giả. Một ứng dụng nữa của việc phát hiện phần tử ngoại lai là nghiên cứu cổ phiếu. Các công ty và các cá nhân đã từng thử dự đoán giá trị các cổ phiếu đƣợc niêm yết. Giả sử phần lớn giá các cổ phiếu ở một ngành. 20
- Xem thêm -