Đăng ký Đăng nhập
Trang chủ Méo tín hiệu trong truyền dẫn vô tuyến số dung lượng lớn và các biện pháp khắc p...

Tài liệu Méo tín hiệu trong truyền dẫn vô tuyến số dung lượng lớn và các biện pháp khắc phục

.PDF
84
525
115

Mô tả:

4 ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHIỆP THÁI NGUYÊN ------------------------------------------------NGUYỄN THỊ THUYÊN MÉO TÍN HIỆU TRONG TRUYỀN DẪN VÔ TUYẾN SỐ DUNG LƢỢNG LỚN VÀ CÁC BIỆN PHÁP KHẮC PHỤC Chuyên ngành: Kỹ thuật điện tử Mã số: ................. LUẬN VĂN THẠC SĨ KỸ THUẬT Thái Nguyên – 2013. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 5 MỤC LỤC Nội dung Trang Thuyết minh luận văn thạc sỹ kỹ thuật i Lời cam đoan Lời cảm ơn ii iii Danh mục các hình vẽ và bảng biểu iv Các thuật ngữ viết tắt vii Mục lục ix 1 4 Lời nói đầu CHƢƠNG 1 TỔNG QUAN HỆ THỐNG TRUYỀN DẪN VÔ TUYẾN SỐ DUNG LƢỢNG LỚN 1.1 GIỚI THIỆU CHUNG VỀ HỆ THỐNG THÔNG TIN VÔ TUYẾN 1.1.1 Hệ thống thông tin vô tuyến 4 4 1.1.2 Phân loại các hệ thống thông tin vô tuyến 1.2 SƠ ĐỒ KHỐI HỆ THỐNG VÔ TUYẾN SỐ DUNG LƢỢNG LỚN 1.2.1 Sơ đồ khối tiêu biểu hệ thống vô tuyến số dung lƣợng lớn 1.2.2 Các sơ đồ điều chế cơ bản 1.3 CÁC YẾU TỐ CƠ BẢN TÁC ĐỘNG TỚI CHẤT LƢỢNG HỆ THỐNG 1.3.1 ISI và điều kiện truyền không méo tín hiệu 1.3.2 Các yếu tố tác động tới chất lƣợng hệ thống 1.3.3 Mô hình kênh liên tục truyền dẫn tín hiệu số 1.4 GIỚI THIỆU PHẦN MỀM MÔ PHỎNG ASTRAS Kết luận chƣơng 1 CHƢƠNG 2 MÉO TUYẾN TÍNH VÀ CÁC BIỆN PHÁP KHẮC 5 8 8 11 17 17 20 21 23 25 26 PHỤC 2.1 CÁC NGUYÊN NHÂN GÂY MÉO TUYẾN TÍNH 2.1.1 Méo tuyến tính do các bộ lọc chế tạo không hoàn hảo 2.1.2 Méo tuyến tính gây bởi kênh vô tuyến 26 26 27 2.2 CÁC TÁC ĐỘNG CỦA MÉO TUYẾN TÍNH 2.2.1 Tác động của méo tuyến tính do chế tạo lọc không hoàn hảo 2.2.2 Tác động của trải trễ trong các hệ thống vô tuyến di động tế bào 38 39 40 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6 2.2.3 Tác động của pha-đinh đa đƣờng chọn lọc 2.3 CÁC BIỆN PHÁP KHẮC PHỤC MÉO TUYẾN TÍNH 2.3.1 San bằng kênh (Equalization) 2.3.2 Các biện pháp đối phó với đặc tính truyền đa đƣờng của kênh 2.3.3 Các biện pháp khắc phục băng rộng Kết luận chƣơng 2 41 49 50 54 57 60 CHƢƠNG 3 MÉO PHI TUYẾN VÀ CÁC BIỆN PHÁP KHẮC PHỤC 3.1 CÁC NGUYÊN NHÂN GÂY MÉO PHI TUYẾN 3.1.1 Các bộ phận gây méo phi tuyến trong hệ thống 3.1.2 Đặc tuyến công tác của HPA 3.2 CÁC TÁC ĐỘNG CỦA MÉO PHI TUYẾN GÂY BỞI HPA 3.2.1 Méo do HPA trong các hệ thống vô tuyến chuyển tiếp số MQAM 3.2.2 Méo phi tuyến gây bởi HPA trong các hệ thống OFDM 3.3 CÁC BIỆN PHÁP KHẮC PHỤC MÉO PHI TUYẾN CHỦ YÊU 3.3.1 Sử dụng BO tối ƣu 3.3.2 Sử dụng méo trƣớc 3.3.3 Quay pha phụ tối ƣu sóng mang thu 3.3.4 Các biện pháp khắc phục PAPR lớn trong các hệ thống OFDM Kết luận chƣơng 3 61 61 61 63 64 64 66 69 70 72 75 77 80 Kết luận 81 Tài liệu tham khảo 82 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7 Chƣơng 1 TỔNG QUAN HỆ THỐNG TRUYỀN DẪN VÔ TUYẾN SỐ DUNG LƢỢNG LỚN 1.1 GIỚI THIỆU CHUNG VỀ HỆ THỐNG THÔNG TIN VÔ TUYẾN 1.1.1 Hệ thống thông tin vô tuyến Các hệ thống thông tin vô tuyến là các hệ thống truyền tin bằng sóng điện từ có môi trƣờng truyền lan tín hiệu – môi trƣờng truyền dẫn – là khoảng không gian giữa máy phát Tx (Transmitter) và máy thu Rx (Receiver). Sơ đồ khối đơn giản của một hệ thống thông tin vô tuyến đƣợc cho trên hình 1.1. Thông tin Tx Rx Thông tin Hình 1.1 Sơ đồ khối đơn giản hệ thống thông tin vô tuyến Thông thƣờng, thông tin cần truyền đƣợc đƣa vào máy phát thực hiện điều chế bằng sóng mang trung tần IF (Intermediate Frequency), sau đó đƣợc trộn tần lên tần số cao RF (Radio Frequency), khuếch đại tín hiệu đủ lớn, lọc nhằm chia sẻ băng thông rồi đƣợc bức xạ ra khoảng không vô tuyến qua hệ thống ăng-ten/phi-đơ. Ở đầu thu, thông qua hệ thống ăng-ten thu, tín hiệu vô tuyến đƣợc thu nhận (nhờ nguyên lý cảm ứng điện từ) và qua hệ thống phi-đơ đƣa vào máy thu. Ở đây, tín hiệu đƣợc lọc nhằm chọn lọc tín hiệu hữu ích và loại bỏ nhiễu trên đƣờng truyền đến mức tối đa, khuếch đại, trộn tần từ tần số vô tuyến RF xuống trung tần IF và giải điều chế để khôi phục lại thông tin ban đầu đã đƣợc phát đi từ phần phát. Do môi trƣờng truyền là không có dây dẫn, bầu khí quyển đóng một vai trò then chốt trong truyền sóng. Mặc dầu khí quyển cả thảy có 5 lớp (tầng) khác nhau song tầng đối lƣu và tầng ion là các tầng khí quyển gần nhất đối với bề mặt trái đất. Do vậy chúng có ảnh hƣởng tới quá trình truyền sóng. Hình vẽ 1.2 thể hiện hai tầng khí quyển này cũng nhƣ khoảng cách xấp xỉ giữa chúng và bề mặt trái đất. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 8 Một sóng vô tuyến đƣợc truyền đi lan truyền theo hai phƣơng thức:  Sóng đất;  Sóng trời. Dựa trên đặc tính truyền sóng của hai loại sóng này mà ngƣời ta phân chia phổ tần số. Nhƣ các tên gọi, sóng đất truyền lan theo bề mặt của trái đất còn sóng trời truyền lan trong khoảng không song có thể quay trở lại trái đất do phản xạ hoặc trong tầng đối lƣu hoặc trong tầng ion. Các bƣớc sóng khác nhau thì phản xạ theo những chừng mực khác nhau trong các tầng đối lƣu và ion hoặc có thể đâm xuyên qua khi tần số đủ lớn. Tầng ion 40400 km Tầng đối lƣu Mặt đất 10 km Hình 1.2 Các tầng khí quyển có ảnh hƣởng tới truyền sóng vô tuyến 1.1.2 Phân loại các hệ thống thông tin vô tuyến Các hệ thống thông tin vô tuyến có thể đƣợc phân loại theo nhiều quan điểm khác nhau. a) Phân loại theo dạng tín hiệu + Hệ thống thông tin vô tuyến tƣơng tự: Tín hiệu truyền đi là tín hiệu tƣơng tự (analog); + Hệ thống vô tuyến số: Tín hiệu dùng để truyền tin là tín hiệu số (digital) có các đặc trƣng cơ bản là có số trạng thái tín hiệu hữu hạn M và có thời gian tồn tại hữu hạn TS (Symbol Time interval). b) Theo dải tần (dải sóng) công tác Việc phân loại phổ tần vô tuyến dựa trên các tính chất truyền sóng và các khía cạnh về hệ thống (kiểu ăng-ten). Phổ tần vô tuyến đƣợc phân chia nhƣ sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9 1. Tần số cực thấp ELF (Extremly Low Frequency): f = 300  3000 Hz ( = 1000  100 km); và tần số rất thấp VLF (Very Low Frequency): f = 3  30 kHz ( = 100  10 km). Các dải này còn đƣợc gọi là dải sóng cực dài. Các đặc tính truyền sóng: Sóng truyền lan giữa bề mặt của trái đất và tầng đối lƣu và cũng có thể xuyên sâu đƣợc vào lòng đất và nƣớc. Do kích thƣớc ăng-ten phụ thuộc vào bƣớc sóng, các sóng này đòi hỏi các ăng-ten có kích thƣớc rất lớn. Các ứng dụng: Liên lạc dƣới nƣớc (cho các tàu ngầm), trong các mỏ, cho các sonar thủy âm... 2. Tần số thấp LF (Low Frequency) hay sóng dài LW (Long Wavelength): f = 30 kHz  300 kHz ( = 10  1 km). Các đặc tính truyền sóng: Sóng trời có thể phân tách với sóng đất đối với các tần số trên 100 kHz. Sóng đất có tổn hao truyền dẫn lớn hơn. Các ứng dụng: Phát thanh, vô tuyến hàng hải, truyền tin cự ly dài với các tàu biển. 3. Tần số trung bình MF (Medium Frequency) hay sóng trung MW (Medium Wavelength): f = 300 kHz  3 MHz ( = 1000  100 m). Các đặc tính truyền sóng: Sóng trời tách khỏi sóng đất. Sóng đất cho phép truyền tin khả dụng lên tới 100 km tính từ máy phát. Các ứng dụng: Phát thanh điều biên (550  1600 kHz). 4. Tần số cao HF (High Frequency) hay sóng ngắn SW (Short Wavelenght): f = 3  30 MHz ( = 100  10 m). Các đặc tính truyền sóng: Sóng trời là phƣơng thức truyền lan chủ yếu tại tần số cao (HF). Sóng đất đƣợc sử dụng để truyền tin trên các khoảng cách ngắn hơn so với sóng trời. Khi tần số tăng, tổn hao do truyền lan sóng tăng và do đó cần phải có các trạm phát chuyển tiếp (các trạm phát lặp). Các ứng dụng: Phát thanh trên các vùng rộng, các máy vô tuyến nghiệp dƣ, các máy vô tuyến dân sự. 5. Tần số rất cao VHF (Very High Frequency): f = 30  300 MHz ( = 10  1 m). Các đặc tính truyền sóng: Sự nhiễu xạ (uốn cong tia sóng do cản trở của khí quyển) và sự phản xạ dẫn đến việc truyền lan sóng vƣợt quá đƣờng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 10 chân trời. Cự ly truyền sóng vào khoảng vài ngàn km. Sự lan truyền sóng trong các toà nhà cũng xảy ra rất tốt. Các ứng dụng: Các ứng dụng phát thanh-truyền hình: TV, vô tuyến điều tần (FM radio) băng tần 88  108 MHz; điều khiển không lƣu vô tuyến (cũng còn gọi là hệ dẫn đƣờng vô tuyến). 6. Tần số cực cao UHF (Ultra High Frequency) hay dải sóng cm: 3003000 MHz ( = 1m  10 cm). Các đặc tính truyền sóng: Các phản xạ từ các tầng khí quyển xảy ra, các tổn hao tiêu biểu là do các chƣớng ngại lớn hơn trong các băng VHF, tác động của mƣa và hơi ẩm trong không khí có thể bỏ qua đƣợc. Các ứng dụng: Phát thanh-truyền hình: Truyền hình vệ tinh; vô tuyến di động mặt đất (điện thoại không dây, điện thoại vô tuyến tế bào), các dịch vụ thông tin cá nhân tƣơng lai (nhƣ thể hệ thống vô tuyến di động thế hệ thứ ba: băng ~2 GHz), điều khiển không lƣu vô tuyến. 7. Tần số siêu cao SHF (Super High Frequency): f = 3  30 GHz ( = 10  1 cm). Các đặc tính truyền sóng: Hấp thụ do mƣa, mây, hơi ẩm (sƣơng mù) là rất lớn dẫn đến tiêu hao và do đó hạn chế truyền lan sóng. Các ứng dụng: Các dịch vụ thông tin vệ tinh cố định cho điện thoại và truyền hình, các dịch vụ di động trong tƣơng lai nhƣ mạng máy tính cục bộ vô tuyến (WLAN: Wireless Local Area Network). 8. Tần số cực kỳ cao EHF (Extremly High Frequency): f = 30  300 GHz ( = 10  1 mm), còn gọi là dải vô tuyến sóng mm. Các đặc tính truyền sóng: Các tổn hao rất cao do hơi nƣớc và oxy trong khí quyển. Các ứng dụng: Thông tin với các khoảng cách ngắn (bên trong tầm nhìn thẳng). Các vệ tinh truyền thông có thể sử dụng các tần số trong dải này để truyền truyền hình độ phân giải cao (HDTV: High Definition TeleVision) do tại các độ cao nhƣ thế thì các tổn hao sẽ thấp hơn. Các dải tần số (dải sóng) từ 6 đến 8 nói trên còn đƣợc gọi chung là dải sóng vi ba (microwave), đặc tính truyền nói chung là trong tầm nhìn thẳng LOS (Line-Of-Sight). Nói chung, tần số công tác càng cao thì kích thƣớc ăngten càng nhỏ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 11 c) Theo đặc trưng kênh truyền + Hệ thống thông tin vi ba: Còn gọi là các hệ thống vô tuyến chuyển tiếp, trong đó tín hiệu đƣợc chuyển tiếp bởi các trạm trung gian qua từng chặng có cự ly lên tới vài chục km, đôi khi lên tới ~100 km. + Hệ thống thông tin vệ tinh: Trong đó trạm chuyển tiếp đƣợc đặt trên vệ tinh, thƣờng là vệ tinh địa tĩnh có khoảng cách từ quỹ đạo nằm trên mặt phẳng xích đạo tới mặt đất là 36000 km. + Hệ thống thông tin di động: Đặc điểm cơ bản là các máy thu và phát vô tuyến có thể di động so với nhau. d) Theo dung lượng của hệ thống Các kênh vô tuyến có thể đặc trƣng đƣợc một cách sơ bộ bởi độ rộng băng kết hợp (coherence bandwidth) Bc của kênh, là khoảng tần số mà trong đó hàm truyền của kênh có thể xem là bằng phẳng (flat). Một hệ thống vô tuyến số sẽ đƣợc xem nhƣ băng rộng nếu nhƣ độ rộng băng tín hiệu W của nó (tỷ lệ thuận với tốc độ dữ liệu) vƣợt quá độ rộng băng kết hợp của kênh vô tuyến giữa đầu phát và đầu thu. Thí dụ, đối với các hệ thống vi ba số, dung lƣợng C ≥ 70 Mbps (thƣờng sử dụng điều chế M-QAM) với độ rộng băng tín hiệu W vào quãng 20 MHz trở lên mới có thể đƣợc xem là lớn [8]. Trong khi đó, do đặc tính truyền đa đƣờng (multipathpropagation) rất mạnh, các hệ thống vô tuyến di động với tốc độ bít chừng vài Mbps trở lên đã có thể xem là hệ thống băng rộng, chẳng hạn nhƣ các hệ thống từ thế hệ 3 trở đi. 1.2 SƠ ĐỒ KHỐI HỆ THỐNG VÔ TUYẾN SỐ DUNG LƢỢNG LỚN 1.2.1 Sơ đồ khối tiêu biểu hệ thống vô tuyến số dung lƣợng lớn a) Các hệ thống vô tuyến số Các hệ thống vô tuyến số là các hệ thống vô tuyến sử dụng tín hiệu số để truyền tin. Về nguyên tắc, các hệ thống thông tin vô tuyến đều có thể truyền tin bằng tín hiệu số đƣợc, tuy nhiên do các giới hạn về công nghệ, các hệ thống vô tuyến băng rất rộng mới chỉ thực hiện đƣợc với độ rộng băng tín hiệu nhiều nhất là vào khoảng 1% tần số sóng mang fc (carrier frequency). Mặt khác, tốc độ truyền symbol RS = 1/TS (số symbol truyền đƣợc trên 1 đơn vị thời gian) lại có quan hệ mật thiết với độ rộng băng tín hiệu với độ rộng băng không-không (null-to-null bandwidth) của phổ tín hiệu W0-0: W0-0 ≥ RS. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 12 Nghĩa là, tốc độ truyền tin của hệ thống vô tuyến số sẽ phụ thuộc vào tần số sóng mang của hệ thống, theo đó các hệ thống từ HF trở xuống (có tần số sóng mang từ dải sóng HF trở xuống tới dải ELF nhƣ phân loại ở phần trƣớc) có tốc độ truyền tin bằng tín hiệu số khá thấp, ít có ý nghĩa với các dịch vụ thông thƣờng hiện nay nhƣ thoại, data cao tốc (tải file, video…). Các hệ thống vô tuyến số dung lƣợng cao đƣợc xem xét tới trong luận văn này do tầm quan trọng của chúng trong các hệ thống đƣờng trục cũng nhƣ truy nhập vô tuyến di động hiện đại. Tùy theo các đặc tính kênh (cố định hay di động), các tốc độ truyền tin đƣợc xem là cao: V ≥ 70 Mbps với các hệ thống đƣờng trục và V ~ vài Mbps đối với các hệ thống thông tin di động tế bào. Dải tần số công tác của các hệ thống nhƣ thế có thể từ vài trăm MHz đến hàng chục GHz, trong dải sóng vi ba (microwave), và do vậy, về đăc tính truyền sóng thì phƣơng thức truyền sóng là truyền trong tầm nhìn thẳng. Độ rộng băng tín hiệu đối với các hệ thống xem là lớn hay nhỏ cũng lại còn tùy thuộc vào kiểu điều chế đƣợc áp dụng. Luồng tín hiệu số tốc độ cao đƣợc truyền trong các hệ thống vô tuyến số băng rộng thƣờng là luồng bít đƣợc ghép kênh theo thời gian từ các luồng tín hiệu số cấp thấp hơn, hoặc là luồng bít của một ngƣời dùng sử dụng các dịch vụ tốc độ lớn (video, tải file…). Các hệ thống vô tuyến số dung lƣợng lớn, băng rộng, có vai trò rất quan trọng trong mạng viễn thông do khả năng cơ động hoặc di động cũng nhƣ thời gian triển khai khá nhanh của chúng, cái mà các hệ thống thông tin quang – mặc dù có dung lƣợng rất lớn – lại khá hạn chế. b) Sơ đồ khối tiêu biểu của hệ thống vô tuyến số dung lượng lớn Các hệ thống vô tuyến số dung lƣợng lớn là các hệ thống thông dải có tần số sóng mang có thể từ lớn đến rất lớn, lên tới vài chục GHz. Đối với các hệ thống nhƣ vậy, việc xem xét hệ thống gặp khá nhiều khó khăn, đặc biệt trong mô phỏng máy tính do vấn đề lấy mẫu các tín hiệu thực tế có tần số rất cao sẽ đòi hỏi tần số lấy mẫu rất cao nhằm thỏa mãn định lý lấy mẫu và do vậy sẽ đòi hỏi máy tính cần có tốc độ xử lý rất lớn, đến mức thƣờng là không thực tế. Để giải quyết trở ngại này, ngƣời ta thƣờng xem xét và phân tích hệ thống thực thông qua các hệ thống thông thấp tƣơng đƣơng với các tín hiệu băng gốc tƣơng đƣơng [3]. Điều này có thể giải thích đƣợc dƣới đây. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 13 Tín hiệu số điều chế tổng quát (cả điều chế biên độ lẫn điều chế góc) có thể biểu diễn đƣợc ở dạng: x(t )  A(t )  cos[2 fct   (t )] (1.1) trong đó A(t) và φ(t) là các hàm mang thông tin cần truyền, fc là tần số sóng mang. Biểu thức (1.1) có thể viết lại theo: x(t )  Re{ A(t )  e j[2 fct  (t )]}  Re{ A(t )  e j (t )  e j 2 fct } (1.2) trong đó Re{.} là ký hiệu phần thực. Có thể nhận thấy rằng, trong vế phải của (1.2) chỉ có thành phần A(t)ejφ(t) mang thông tin cần truyền, còn ej2πfct chỉ biểu thị một sóng mang cao tần không mang thông tin. Do vậy, chỉ cần quan tâm tới tín hiệu: x (t )  A(t )  e j (t ) (1.3) Tín hiệu biểu diễn theo (1.3) là tín hiệu băng gốc do không chứa thành phần sóng mang cao tần, đƣợc gọi là tín hiệu băng gốc tƣơng đƣơng (equivalent baseband signal) của tín hiệu thực tế x(t). Là một hàm phức và có vai trò đƣờng bao đối với sóng mang cao tần nên tín hiệu ấy còn đƣợc gọi là đƣờng bao phức (complex envelope) của tín hiệu thực tế x(t). Khi xét hệ thống với tín hiệu băng gốc tƣơng đƣơng, các phần tử dải thông của hệ thống thực tế có thể đƣa về biểu diễn bằng các phần tử thông thấp tƣơng đƣơng nhờ biến đổi Hilbert [3]. Sơ đồ khối tiêu biểu của một hệ thống vô tuyến số dung lƣợng lớn đƣợc thể hiện trên hình 1.3 [1]. Tạp âm Nguồn Ck Bộ symbol điều chế Bộ lọc phát KĐCS M.trƣờng truyền Bộ lọc thu Nhiễu Ĉ k Chú giải: KPĐH = Khôi phục đồng hồ; KPSM = Khôi phục sóng mang; KĐCS = Khuếch đại công suất Bộ san bằng Thiết bị qu. định Bộ giải điều chế KPĐH KPSM Hình 1.3 Sơ đồ khối tƣơng đƣơng băng gốc một hệ thống vô tuyến số dung lƣợng lớn [1] Trên sơ đồ hình 1.3, luồng bít tốc độ cao ghép kênh theo thời gian từ nhiều kênh bậc thấp, sau khi đƣợc mã hóa kênh sẽ đƣợc ghép thành các cụm từng m bít và đƣợc ánh xạ một cách thích hợp thành các symbol Ck ở lối vào bộ điều chế (thí dụ nhƣ sử dụng ánh xạ Gray sao cho các symbol lân cận nhau Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 14 chỉ khác nhau 1 bít nhằm giảm thiểu BER của hệ thống [2]). Bộ điều chế có nhiệm vụ ánh xạ 1-1 các symbol ở đầu vào thành các dạng sóng số có M = 2m trạng thái (điều chế M mức). Sau khi lọc hạn chế phổ tín hiệu số (có phổ rộng vô hạn do các tín hiệu số chỉ tồn tại trong thời gian hữu hạn TS) nhằm chia sẻ băng tần, tín hiệu đƣợc khuếch đại công suất đủ lớn nhằm bù đắp tổn hao gây bởi môi trƣờng truyền rồi đƣợc bức xạ ra môi trƣờng truyền. Môi trƣờng truyền có thể gây một số tác động nhƣ làm méo dạng tín hiệu, gây tổn hao, nhiễu và tạp âm cộng trắng chuẩn AWGN (Additive White Gaussian Noise) của máy thu đƣợc quy ra đầu vào máy thu. Bộ lọc thu thực hiện chọn lọc tín hiệu và loại bỏ tối đa tạp âm, thực hiện vai trò bộ lọc phối hợp (matched filter) của máy thu tối ƣu. Mạch san bằng có nhiệm vụ cân bằng đặc tuyến của kênh nhằm giảm méo gây bởi kênh truyền. Bộ giải điều chế trên sơ đồ hình 1.3 trong thực tế có nhiệm vụ loại bỏ sóng mang cao tần bằng cách nhân tín hiệu đầu vào của nó với sóng mang nội, đồng bộ với sóng mang phần phát nhờ mạch khôi phục sóng mang. Mạch quyết định lấy mẫu tín hiệu bằng tín hiệu đồng hồ, đƣợc đồng bộ với đồng hồ phần phát nhờ mạch khôi phục tín hiệu đồng hồ, sau đó so ngƣỡng để ra quyết định về symbol đã đƣợc phát đi ở phần phát. Do tác động của kênh, việc quyết định này có thể bị sai. Các symbol thu đƣợc Ĉ k có thể bị sai này sẽ đƣợc ánh xạ ngƣợc thành các cụm m bít, chuỗi bít thu đƣợc sẽ đƣợc giải mã kênh nhằm sửa lỗi rồi phân kênh. 1.2.2 Các sơ đồ điều chế cơ bản Các hệ thống vô tuyến số có dung lƣợng lớn thì có độ rộng băng chiếm khá lớn, tỷ lệ với tốc độ truyền tin. Phổ tần số vô tuyến, tuy vậy, là một tài nguyên hạn chế và khan hiếm. Điều này một mặt là do với tần số rất lớn – hàng chục đến hàng trăm GHz – công nghệ đối với phần RF của hệ thống trở nên rất phức tạp. Mặt khác, tần số càng cao, tổn hao đƣờng truyền càng lớn, hạn chế cự ly liên lạc hoặc yêu cầu công suất phát rất cao đến mức không thực tế. Vì vậy, cần áp dụng các kỹ thuật nhằm tận dụng phổ tần số sẵn có khá hạn chế, nói cách khác là nhằm nâng cao hiệu quả sử dụng phổ (frequency efficiency) η của hệ thống, đƣợc định nghĩa là tỷ số giữa tốc độ bít Rb truyền đƣợc trên kênh và độ rộng băng chiếm W của tín hiệu. Các sơ đồ điều chế nhiều mức (M mức) thƣờng đƣợc áp dụng nhằm tăng hiệu quả sử dụng phổ của hệ thống. Các sơ đồ điều chế số nhiều mức cơ bản thƣờng đƣợc sử dụng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 15 trong các hệ thống vô tuyến số dung lƣợng lớn bao gồm các sơ đồ điều chế tín hiệu 2 chiều: Khóa dịch pha M trạng thái M-PSK (M-ary Phase Shift Keying) và Điều chế biên độ vuông góc M-QAM (M-ary Quadrature Amplitude Modulation) hoặc các dạng phái sinh của chúng [2]. a) Điều chế M-PSK Tín hiệu điều chế M-PSK có thể biểu diễn theo: 2 ), i  0, 1, 2,...,( M  1) (1.4) M Sơ đồ thông dụng điều chế và giải điều chế M-PSK với M = 4, còn gọi si (t )  A cos(2 f ct  i là QPSK (Quarternary Phase Shift Keying), đƣợc thể hiện trên hình 1.4 [1]. LPF data từng 2 bít cos2πfct ~ S/P Tín hiệu QPSK Σ 90o Tới tuyến RF sin2πfct LPF a) cos2πfct Tín hiệu QPSK + tạp âm ~ Từ bộ trộn xuống 90o A/D LPF data P/S (từng 2 bít) sin2πfct A/D LPF t=kTs b) Hình 1.4 Sơ đồ điều chế và giải điều chế QPSK Đối với sơ đồ điều chế QPSK (hình 1.4a), luồng dữ liệu nhị phân lối vào đƣợc chia thành các cặp bít, qua bộ biến đổi nối tiếp-song song S/P (Serial/Parallel) đƣợc chia làm hai nhánh, mỗi nhánh một bán symbol gồm 1 bít với độ rộng đƣợc mở rộng thành Ts = 2Tb. Các bít (bán symbol) của từng nhánh này, sau khi qua các bộ lọc thông thấp LPF (Low-Pass Filter) hạn băng và tạo dạng xung (pulse shaping) dạng căn bậc hai cosine nâng mắc nối tiếp với một mạch sửa x/sinx, đƣợc nhân với các thành phần đồng pha cos2πfct hoặc vuông pha sin2πfct của sóng mang trung tần IF. Tín trên hai nhánh sau Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 16 đó đƣợc cộng với nhau, tạo nên tín hiệu QPSK ở trung tần. Tín hiệu này sau đó sẽ đƣợc đƣa tới tuyến RF để trộn lên tần số vô tuyến cao tần, khuếch đại và truyền đi. Chòm sao tín hiệu QPSK (biểu diễn vector tín hiệu) đƣợc thể hiện trên hình 1.5 gồm M điểm chia đều vòng tròn tâm ở gốc tọa độ, bán kính Es , trong đó Es là năng lƣợng của một symbol. Hiệu quả sử dụng phổ của QPSK là [2]: ηQPSK = 2/(1+α) [b/s/Hz] (1.5) ở đây α là hệ số uốn (roll-off factor) của bộ lọc căn bậc hai cosine nâng. Tổng quát, hiệu quả phổ của kiểu điều chế M-PSK là [2]: ηM-PSK = m/(1+α) [b/s/Hz] = (log2M)/(1+α) [b/s/Hz] (1.6) M=4 • • 0 Q d P  EsPSK sin( / M ) dP • I EsPSK • Hình 1.5 Chòm sao tín hiệu M-PSK Đối với sơ đồ giải điều chế 4-PSK (hình 1.1b), tín hiệu nhận đƣợc (bao gồm cả tín hiệu hữu ích và tạp âm) sau khi đƣợc trộn xuống IF từ mạch trộn tần xuống (down converter) sẽ đƣợc đƣa song song tới 2 nhánh của bộ giải điều chế. Tại các nhánh này, tín hiệu sẽ đƣợc nhân với các thành phần đồng pha hoặc vuông pha của sóng mang trung tần nhằm loại bỏ thành phần tần số cao. Các bộ lọc thông thấp (cũng thƣờng là các mạch lọc căn bậc hai cosine nâng), mạch lấy mẫu tại các thời điểm t = kTs (k là chỉ số khe thời gian của các symbol hay cặp bít) và các mạch biến đổi A/D (thực chất là các mạch lấy mẫu và so ngƣỡng nhằm quyết định giá trị bít trên các nhánh là 1 hay 0) hình thành nên máy thu tối ƣu tín hiệu số, cho tỷ số tín/tạp SNR (Signal-to-Noise Ratio) lớn nhất (và do đó, tỷ lệ thu lỗi nhỏ nhất). Các bít nhận đƣợc trên 2 nhánh sẽ đƣợc ghép trở lại thành cặp bít ban đầu qua bộ biến đổi song songnối tiếp P/S. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 17 b) Điều chế M-QAM Tín hiệu điều chế M-QAM có dạng: s(t )  Ak cos2 fct  Bk sin 2 fct (1.7) trong đó, Akcos2πfct và Bksin2πfct là các thành phần đồng pha I (Inphase) và vuông pha Q (Quadrature), Ak, Bk = ±1, ±3,…, ±( M – 1), k là chỉ số khe thời gian của symbol cần truyền Ck. Ck = Ak + jBk. Điều chế biên độ vuông góc (M-QAM) là phƣơng pháp điều chế kết hợp giữa điều chế biên độ và điều chế pha. Tên gọi điều chế biên độ vuông góc là do tín hiệu M-QAM đƣợc tạo ra bằng cách cộng hai tín hiệu điều chế biên độ có L = M mức trên các sóng mang trực giao (cùng tần số và vuông pha với nhau). Cũng nhƣ M-PSK, điều chế M-QAM là một phƣơng pháp điều chế tín hiệu hai chiều tuyến tính, cho phép nâng cao hiệu quả phổ. Điều chế và giải điều chế M-QAM có sơ đồ khối trên hình 1.6 [1]. Với điều chế M-QAM (hình 1.6a), bộ biến đổi nối tiếp-song song S/P (Serial/Parallel) thực hiện biến đổi từng symbol gồm m = log2M bít từ chuỗi bít dữ liệu nối tiếp lối vào thành hai bán symbol, mỗi bán symbol gồm m/2 bít. Các khối đổi mức 2/L thực hiện biến từng cụm m/2 bít nhị phân đó thành các tín hiệu không về không NRZ (Non Return to Zero) nhiều mức Ak và Bk (với k là chỉ số khe thời gian của symbol đƣợc truyền), có thể nhận L = M trị biên độ, tùy thuộc vào mẫu các bít của cụm bít lối vào. Dạng phổ tín hiệu đầu ra đƣợc hình thành nhờ các bộ lọc thông thấp phía trƣớc mạch nhân, mà trong thực tế thiết kế chúng thƣờng là nhƣ nhau và là mạch lọc căn bậc hai cosine nâng (square-root raised cosine filter) mắc nối tiếp với một mạch sửa dạng xung x/sinx. Các mạch nhân đƣợc sử dụng sau mỗi mạch lọc nhằm thực hiện điều chế biên độ tuyến tính, với các sóng mang IF cùng tần số song trực giao (các sóng mang cos2πfct và sin2πfct). Các tín hiệu lối ra các mạch nhân đƣợc cộng với nhau tạo nên tín hiệu M-QAM. Bộ điều chế M-QAM nhƣ vậy đƣợc tạo ra từ hai bộ điều chế biên độ trực giao nhau với sóng mang bị triệt. Tín hiệu điều chế M-QAM ở trung tần này sau khi trộn lên RF, khuếch đại, tín hiệu sẽ đƣợc phát đi qua hệ thống ăng-ten, phi-đơ ra môi trƣờng vô tuyến. Các tín hiệu số truyền symbol Ck có thể biểu diễn đƣợc ở dạng vector (Ak, Bk) trong không gian tín hiệu (là một không gian Hilbert 2 chiều), nhƣ chòm sao tín hiệu (constellation) thể hiện trên hình vẽ 1.7. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 18 m/2 §æi møc 2/L bit m bit Läc th«ng thÊp Ak AkaT(t)cos2fct  cos2fct  LO  S/P §æi møc 2/L m/2 Läc th«ng thÊp Bk tÝn hiÖu M-QAM 90o sin2fct  BkbT(t)sin2fct bit a)  LPF sin2fct 900 tín hiệu lối vào đồng hồ  t=kTS   cos2fct  LPF A/D 1 & giải mã dãy bít lối ra m/2 A/D 1 & giải mã P/S m/2 b) Hình 1.6 Sơ đồ điều chế a) và giải điều chế b) tín hiệu M-QAM [] I M = 16   3   2dQ  EsQAM  -3 -1 1  1    -1     -3   dQ  EsQAM 2( M  1) 3Q Hình 1.7 Chòm sao tín hiệu 16-QAM Hiệu quả sử dụng phổ của điều chế M-QAM cũng đƣợc tính theo (1.6). Chòm sao tín hiệu điều chế M-QAM có nhiều dạng khác nhau, ngoài các dạng chòm sao hình tròn sử dụng cho truyền dữ liệu trên kênh thoại trong các Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 19 modem tốc độ thấp hay dạng chữ thập trong các hệ thống điều chế mã lƣới TCM (Trellis Coded Modulation), sơ đồ điều chế M-QAM với chòm sao tín hiệu hình vuông (square constellation) là sơ đồ thông dụng nhất trong các hệ thống vô tuyến số mặt đất hiện nay. Chòm sao tín hiệu M-QAM dạng hình vuông đƣợc thể hiện trên hình 1.7, thí dụ cho trƣờng hợp M = 16. Sơ đồ bộ giải điều chế M-QAM đƣợc trình bày trên hình 1.6b. Tín hiệu lối vào bộ giải điều chế trong khe thời gian của symbol thứ k đƣợc nhân với các sóng mang trực giao và loại bỏ sản phẩm bậc hai sau nhân nhờ các mạch lọc thông thấp. Các bộ lọc thông thấp, thƣờng cũng là các bộ lọc căn bậc hai cosine nâng, mạch lấy mẫu và biến đổi A/D hình thành nên máy thu tối ƣu nhằm cực đại hóa SNR. Các tín hiệu sau lọc (có cả tạp âm) đƣợc lấy mẫu theo nhịp symbol tại các thời điểm t = kTS và đƣợc biến đổi tại các bộ biến đổi tƣơng tự/số (A/D) thành các tín hiệu Âk và B̂ k với L trị biên độ có thể có rồi đƣợc giải mã thành các tổ hợp có m/2 bít. Hai nhánh tín hiệu đƣợc đƣa tới bộ biến đổi song song-nối tiếp (P/S) để trả thành cụm m bít lối ra. c) So sánh M-PSK và M-QAM, phạm vi ứng dụng Việc so sánh giữa hai kiểu điều chế nhiều mức M-PSK và M-QAM đƣợc thực hiện dựa trên nguyên tắc cho chúng có cùng hiệu quả sử dụng phổ, cùng tỷ lệ lỗi thu symbol, kiểu điều chế nào đòi hỏi năng lƣợng cao hơn thì tồi hơn. Theo (1.6), hiệu quả phổ của cả M-PSK và M-QAM nhƣ nhau với cùng giá trị M và hệ số uốn lọc α. Về lý thuyết, tỷ lệ lỗi phụ thuộc khoảng cách từ điểm tín hiệu tới biên quyết định gần nhất dP và dQ (hình 1.5 và 1.7), cùng tỷ lệ lỗi symbol có nghĩa là dP = dQ, theo các hình 1.5 và 1.7 thì điều kiện này là: EsPSK sin( / M )  EsQAM (1.8) 2( M  1) Để so sánh hai loại điều chế này, có thể xét tỷ số sau: A( M )  EsQAM EsPSK  2( M  1)2 sin 2 ( / M ) (1.9) Với M = 4, A(4) = 1, cả 4-QAM và QPSK đều yêu cầu năng lƣợng nhƣ nhau khi có cùng hiệu quả phổ và cùng tỷ lệ lỗi, do đó chúng hoàn toàn tƣơng đƣơng nhau, các sơ đồ điều chế và giải điều chế là nhƣ nhau. Với 4 < M ≤ 8, A(M) > 1, có nghĩa là M-PSK tốt hơn M-QAM. Khi M > 8, A(M) < 1, MSố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 20 QAM tốt hơn M-PSK, điều này lý giải thực tế là hầu nhƣ không gặp các sơ đồ điều chế M-PSK với M > 8. Trong thực tế, khi dung lƣợng hệ thống từ thấp tới trung bình (chẳng hạn với các hệ thống đƣờng trục thì tốc độ ≤ 70 Mbps), hiệu quả phổ đòi hỏi không cao lắm (m chỉ cần không lớn), ngƣời ta thƣờng sử dụng điều chế MPSK với M = 2, 4 hoặc 8. Với các hệ thống vô tuyến số dung lƣợng từ trung bình đến lớn, sơ đồ điều chế thƣờng áp dụng là M-QAM với M = 16, 64 hay 256. Từ các xem xét trên, trong luận văn này ta sẽ giới hạn chỉ xem xét chủ yếu với các hệ thống sử dụng điều chế M-QAM. Trong sơ đồ khối tƣơng đƣơng băng gốc của hệ thống vô tuyến số hình 1.3, bộ điều chế chủ yếu là bộ điều chế M-QAM. 1.3 CÁC YẾU TỐ CƠ BẢN TÁC ĐỘNG TỚI CHẤT LƢỢNG HỆ THỐNG 1.3.1 ISI và điều kiện truyền không méo tín hiệu a) ISI và điều kiện truyền không có ISI + Nhiễu giữa các symbol ISI (InterSymbol Interference): Trong các hệ thống truyền dẫn số, các tín hiệu số đƣợc truyền liên tiếp nhau từng symbol một. Mỗi một symbol đƣợc hình thành từ m bít và có thời gian tồn tại bằng m lần thời gian tồn tại của một bít, do vậy các dạng sóng điều chế dùng để truyền chúng cũng có độ dài hữu hạn bằng độ dài của m bít: TS = mTb, trong đó TS và Tb lần lƣợt là độ dài của một symbol và của một bít. Do các dạng sóng có độ dài hữu hạn, phổ của chúng (nhận đƣợc thông qua biến đổi Fourrier) sẽ trải ra vô hạn trên miền tần số. Sẽ không có vấn đề gì nảy sinh trong việc truyền các tín hiệu dạng sóng có phổ rộng vô hạn nhƣ thế trên kênh liên tục nếu độ rộng băng tần truyền dẫn của hệ thống không bị hạn chế, đặc tính biên độ-tần số của hệ thống thì bằng phẳng còn đặc tính pha-tần thì tuyến tính. Trong thực tế, băng tần truyền dẫn không phải là vô hạn do con ngƣời chƣa tận dụng đƣợc hết trục tần số để truyền tín hiệu sóng điện từ. Băng tần truyền dẫn do vậy là một tài nguyên quý và hiếm hoi, buộc phải chia sẻ cho nhiều đối tƣợng cùng sử dụng. Để hạn chế phổ tần nhằm tăng số hệ thống có thể cùng công tác trên một băng sóng cho trƣớc, ngƣời ta sử dụng các mạch lọc. Do vậy, hàm truyền tổng cộng của một hệ thống truyền dẫn vô tuyến số sẽ có đặc tính nhƣ của một mạch lọc. Ở đầu ra, phổ tín hiệu thu đƣợc bị hạn chế bởi đặc tính lọc của hệ thống nên tín hiệu thu đƣợc của một symbol Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 21 (chƣa kể đến tạp âm) sẽ trải ra vô hạn về thời gian. Điều đó dẫn đến việc tại đầu thu các symbol đƣợc truyền kế tiếp nhau sẽ chồng lấn lên nhau về thời gian và gây nhiễu lẫn nhau, hiện tƣợng này trong truyền dẫn tín hiệu số đƣợc gọi là nhiễu giữa các symbol (ISI: InterSymbol Interference), gây méo dạng tín hiệu thu đƣợc. Có thể thấy rõ ràng đƣợc sự hình thành ISI trong truyền dẫn tín hiệu số qua phân tích toán học nhƣ sau. Xét một hệ thống truyền dẫn số đơn giản hóa có sơ đồ khối tƣơng đƣơng băng gốc nhƣ trên hình vẽ 1.8. Hệ thống nhƣ thế là một hệ thống truyền dẫn đã lý tƣởng hóa môi trƣờng truyền: không nhiễu, không gây méo tín hiệu, còn tổn hao đƣợc bù đắp hoàn toàn nhờ HPA hoàn toàn tuyến tính. Tín hiệu số truyền qua hệ thống nhƣ vậy, ngoài việc chịu tác động của tạp âm, chỉ chịu tác động hạn chế băng thông của các mạch lọc phát và thu. n(t) AWGN data MOD s(t) Tx Filter + Rx Filter w(t) tk=kTS Qu. định data Hình 1.8 Sơ đồ khối đơn giản hệ thống truyền dẫn tín hiệu số Không mất đi tính tổng quát, giả sử tín hiệu phát s(t) có dạng điều biên xung M trạng thái (M-ary Pulse Amplitude Modulation):  s(t )   k  Ak (t  kTS ) (1.10) trong đó Ak mang thông tin cần truyền, Ak nhận các giá trị ±1, ±3,…, ±(M – 1). Gọi hàm truyền của các mạch lọc phát và thu (Tx Filter và Rx Filter) lần lƣợt là HT(f) và HR(f). Khi đó, hàm truyền tổng cộng của cả hệ thống là H(f) = HT(f)HR(f) và đáp ứng xung tổng cộng của cả hệ thống h(t) = F-1[H(f)], với F-1[.] là biến đổi ngƣợc Fourier. Tín hiệu đầu ra w(t) khi chƣa xét đến tạp âm sẽ là: w(t )  s(t )  h(t )  [   k  Ak (t  kTS )]  h(t) =   k  Ak h(t  kTS ) (1.11) Xét với symbol thứ 0 (k = 0), tại thời điểm lấy mẫu và quyết định đối với symbol này t = t0 = 0, tín hiệu đầu ra mạch lấy mẫu trên hình 1.8 là: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 22  w(0) =  k  Ak h(kTS )  A0h(0)    k  k 0 Ak h(kTS ) (1.12) Số hạng thứ hai bên vế phải (1.12) là ảnh hƣởng của các symbol trƣớc và sau tới symbol thứ 0 đang xét, đƣợc gọi là nhiễu giữa các symbol ISI (InterSymbol Interference). Thêm vào đó, tín hiệu nhận đƣợc A0 bị suy giảm với hệ số h(0). ISI là một biến ngẫu nhiên do thông tin cần truyền đi là ngẫu nhiên (các giá trị Ak ngẫu nhiên) và do là một tổng vô hạn các số hạng nên nó có thể nhận giá trị rất lớn, có khả năng làm cho symbol đang xét (trong xem xét của ta ở đây là symbol thứ 0) bị méo rất mạnh và do đó có thể làm suy giảm chất lƣợng liên lạc trầm trọng tới mức không thể chấp nhận đƣợc. + Điều kiện truyền không có ISI: Có thể thấy từ (1.12) rằng tín hiệu số truyền đƣợc không bị méo nếu h(0) = 1 và ISI ≡ 0. Trong trƣờng hợp nhƣ thế, chƣa tính đến tạp âm, tín hiệu nhận đƣợc đối với symbol thứ 0 sẽ đúng là A0. Điều này đạt đƣợc khi và chỉ khi đáp ứng xung tổng cộng của cả hệ thống thỏa mãn:  1, khi t  0 h(t )    0,  t  kTS , k  0 (1.13) Điều kiện (1.13) đƣợc gọi là tiêu chuẩn Nyquist thứ nhất [2]. b) Thiết kế thực tế nhằm truyền tin không có ISI Tiêu chuẩn Nyquist thứ nhất có nghĩa là để truyền tín hiệu số qua kênh có băng thông hạn chế thì đáp ứng xung tổng cộng của hệ thống phải bằng 1 khi t = 0 và cắt không tại những điểm t = kTS. Trong thực tế, yêu cầu trên thƣờng đƣợc đáp ứng bằng thiết kế tiêu chuẩn để hàm truyền tổng cộng của cả hệ thống tƣơng đƣơng băng gốc có dạng hàm truyền của bộ lọc cosine nâng (raised cosine filter) [2] nhƣ trên hình vẽ 1.9a. Đáp ứng xung của bộ lọc cosine nâng có dạng [2]: hRC (t )  sin( t / TS ) cos( t / TS )  ( t / TS ) 1  4 2t 2 / TS2 (1.14) trong đó α là hệ số uốn của bộ lọc (roll-off factor) xác định theo:    / f N ,  [0, 1] (1.15) với fN = 1/2TS, đƣợc gọi là tần số Nyquist. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 23 Hàm truyền của bộ lọc cosine nâng có dạng [2]: (1   )  1 ; 0  f   2TS   1   T 1   (1   ) (1   ) | H RC ( f ) |   1  sin  S ( f  )  ;  f  2TS   2TS 2TS    2   (1   ) 0 ; f  2TS  (1.16) |HRC (f)| Δ 1 f -fN 0 fN a) b) Hình 1.9 Hàm truyền và đáp ứng xung bộ lọc cosine nâng Đáp ứng xung của một bộ lọc cosine nâng với α = 0.35 tính bằng phần mềm ASTRAS đƣợc thể hiện trên hình 1.9b. Trong thực tế, α thƣờng nhận các giá trị trong khoảng [0.2, 0.7]. Các mạch lọc phát và thu thƣờng đƣợc thiết kế là các bộ lọc căn bậc hai cosine nâng (square-root raised cosine filter) có mô-đun hàm truyền là căn bậc hai của mô-đun hàm truyền cosine nâng, nhằm tạo dạng xung (pulse shape) đối với bộ lọc phát và lọc phối hợp đối với bộ lọc thu. 1.3.2 Các yếu tố tác động tới chất lƣợng hệ thống Các yếu tố cơ bản tác động tới chất lƣợng của hệ thống vô tuyến số dung lƣợng lớn có thể kể ra nhƣ sau [2]: + Các loại méo tín hiệu, bao gồm méo tuyến tinh và méo phi tuyến. Méo tuyến tính gây bởi môi trƣờng truyền và đặc tính lọc của hệ thống, trong khi đó méo phi tuyến gây bởi các phần tử phi tuyến trong hệ thống nhƣ các mạch trộn tần, mạch hạn biên nhằm loại bỏ điều biên ký sinh do pha-đinh trong các hệ thống sử dụng điều chế góc (thí dụ nhƣ M-PSK) và đặc biệt là do bộ khuếch đại công suất HPA (High Power Amplifier) phi tuyến. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
- Xem thêm -

Tài liệu liên quan