Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Lưỡng ổn định quang của buồng cộng hưởng vòng chứa môi trường trong suốt cảm ứng...

Tài liệu Lưỡng ổn định quang của buồng cộng hưởng vòng chứa môi trường trong suốt cảm ứng điện từ năm mức năng lượng

.PDF
138
643
62

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH ---------- PHAN VĂN THUẬN LƯỠNG ỔN ĐỊNH QUANG CỦA BUỒNG CỘNG HƯỞNG VÒNG CHỨA MÔI TRƯỜNG TRONG SUỐT CẢM ỨNG ĐIỆN TỪ NĂM MỨC NĂNG LƯỢNG LUẬN ÁN TIẾN SĨ VẬT LÍ NGHỆ AN, 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH ---------- PHAN VĂN THUẬN LƯỠNG ỔN ĐỊNH QUANG CỦA BUỒNG CỘNG HƯỞNG VÒNG CHỨA MÔI TRƯỜNG TRONG SUỐT CẢM ỨNG ĐIỆN TỪ NĂM MỨC NĂNG LƯỢNG LUẬN ÁN TIẾN SĨ VẬT LÍ Chuyên ngành: QUANG HỌC Mã số : 62.44.01.09 NGHỆ AN, 2017 LỜI CAM ĐOAN Tôi xin cam đoan nội dung của bản luận án này là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn khoa học của PGS.TS. Nguyễn Huy Bằng và PGS. TS. Nguyễn Văn Phú. Các kết quả trong luận án là trung thực và được công bố trên các ta ̣p chı́ khoa ho ̣c trong nước và quố c tế . Tác giả luận án Phan Văn Thuận i LỜI CẢM ƠN Luâ ̣n án đươ ̣c hoàn thành dưới sự hướng dẫn khoa ho ̣c của PGS.TS. Nguyễn Huy Bằ ng và PGS. TS. Nguyễn Văn Phú. Tôi xin đươ ̣c bày tỏ lòng biế t ơn chân thành nhấ t đế n tập thể thầ y giáo hướng dẫn - những người đã tâ ̣n tı̀nh giúp tôi nâng cao kiế n thức và tác phong làm việc bằng tất cả sự mẫu mực của người thầ y và tinh thầ n trách nhiê ̣m của người làm khoa ho ̣c. Tôi xin chân thành cảm ơn đế n quý thầ y cô giáo của Trường Đa ̣i ho ̣c Vinh về những ý kiế n đóng góp bổ ıć h cho nô ̣i dung luâ ̣n án, ta ̣o điề u kiê ̣n tố t nhấ t trong thời gian tôi ho ̣c tâ ̣p và nghiên cứu. Tôi xin chân thành cảm ơn Ban giám hiê ̣u trường THPT Nguyễn Xuân Ôn đã giúp đỡ và ta ̣o mo ̣i điề u kiê ̣n thuâ ̣n lơ ̣i cho viê ̣c ho ̣c tâ ̣p và nghiên cứu của tôi trong những năm qua. Cuố i cùng, tôi xin gửi lời cảm ơn sâu sắ c đế n gia đı̀nh, người thân và ba ̣n bè đã quan tâm, đô ̣ng viên và giúp đỡ để tôi hoàn thành bản luâ ̣n án này. Xin trân trọng cảm ơn! Tác giả luận án ii MỤC LỤC DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ................................... v DANH MỤC CÁC HÌNH VẼ ....................................................................... ix MỞ ĐẦU .......................................................................................................... 1 Chương 1 TỔNG QUAN VỀ LƯỠNG ỔN ĐỊNH QUANG NGUYÊN TỬ ........................................................................................................................... 8 1.1. Nguyên lý lưỡng ổn định quang............................................................. 8 1.2. Buồng cộng hưởng quang ...................................................................... 9 1.2.1. Buồng cộng hưởng Fabry-Perot......................................................... 10 1.2.2. Buồng cộng hưởng vòng .................................................................... 16 1.3. Vật liệu phi tuyến Kerr ......................................................................... 19 1.4. Nguyên tử hai mức trong buồng cộng hưởng quang ........................... 20 1.5. Lý thuyết trường trung bình ................................................................. 25 1.6. Lưỡng ổn định quang hấp thụ và tán sắc ............................................. 27 1.6.1. Lưỡng ổn định quang hấp thụ ............................................................ 27 1.6.1.1. Mô hình của lưỡng ổn định quang hấp thụ ................................ 27 1.6.1.2. Lý thuyết trường trung bình của lưỡng ổn định quang hấp thụ 30 1.6.2. Lưỡng ổn định quang tán sắc ............................................................. 33 1.6.2.1. Mô hình của lưỡng ổn định quang tán sắc................................. 33 1.6.2.2. Lý thuyết trường trung bình của lưỡng ổn định quang tán sắc . 35 1.7. Lưỡng ổn định quang sử dụng EIT ba mức năng lượng ...................... 36 KẾT LUẬN CHƯƠNG 1 .............................................................................. 41 Chương 2 MÔI TRƯỜNG EIT NĂM MỨC BẬC THANG ..................... 42 2.1. Phương trình ma trâ ̣n mâ ̣t đô ̣................................................................ 42 2.1.1. Ma trâ ̣n mâ ̣t đô.................................................................................... 42 ̣ 2.1.2. Sự tiế n triể n theo thời gian của ma trâ ̣n mật độ................................. 43 2.1.3. Liên hệ giữa độ cảm điện và ma trận mật độ .................................... 46 2.2. Hệ số hấp thụ và tán sắc ....................................................................... 47 2.3. Cấu hình kích thích năm mức bậc thang .............................................. 48 2.4. Phương trı̀nh ma trâ ̣n mâ ̣t đô ̣ cho hệ nguyên tử năm mức ................... 50 2.5. Nghiệm gần đúng của ma trận mật độ ................................................. 56 iii 2.5.1. EIT của hệ nguyên tử năm mức bậc thang ........................................ 60 2.5.1.1. Ảnh hưởng của cường độ laser điề u khiển................................. 61 2.5.1.2. Ảnh hưởng của tầ n số laser điề u khiển ...................................... 63 2.5.2. Điều khiển phi tuyế n Kerr .................................................................. 64 2.5.2.1. Sự tăng cường phi tuyến Kerr..................................................... 65 2.5.2.2. Điều khiển phi tuyến Kerr theo tầ n số laser............................... 66 2.5.2.3. Điều khiển phi tuyến Kerr theo cường độ laser ......................... 68 2.6. Nghiệm chính xác của ma trận mật độ................................................. 69 KẾT LUẬN CHƯƠNG 2 .............................................................................. 75 Chương 3 LƯỠNG ỔN ĐỊNH QUANG CỦA BUỒNG CỘNG HƯỞNG VÒNG CHỨA MÔI TRƯỜNG EIT NĂM MỨC NĂNG LƯỢNG ......... 76 3.1. Phương trình đặc trưng của lưỡng ổn định quang ............................... 76 3.2. Đặc trưng lưỡng ổn định quang ........................................................... 79 3.2.1. Ảnh hưởng của tần số trường laser dò ............................................... 80 3.2.2. Ảnh hưởng của tần số trường laser điều khiển .................................. 83 3.2.3. Ảnh hưởng của cường độ trường laser điều khiển ............................ 85 3.2.4. Ảnh hưởng của tham số liên kết C..................................................... 86 3.2.5. Ngưỡng và độ rộng lưỡng ổn định theo tần số trường laser dò ........ 87 3.2.6. Ngưỡng và độ rộng lưỡng ổn định theo tần số trường laser điều khiển .... 90 3.2.7. Ngưỡng và độ rộng lưỡng ổn định theo cường độ trường laser điều khiển ... 93 3.2.8. Ngưỡng và độ rộng lưỡng ổn định theo tham số liên kết C ............... 96 3.3. Ảnh hưởng của các độ kết hợp............................................................. 98 3.4. Đề xuất mô hình thực nghiệm ............................................................ 104 KẾT LUẬN CHƯƠNG 3 ............................................................................ 107 KẾT LUẬN CHUNG .................................................................................. 109 CÁC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ ................................ 111 CÁC BÁO CÁO TRÌNH BÀY TẠI HỘI NGHỊ, HỘI THẢO................ 111 TÀI LIỆU THAM KHẢO .......................................................................... 113 PHỤ LỤC I .................................................................................................. 118 PHỤ LỤC II ................................................................................................. 121 iv DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiêụ Đơn vi ̣ AOB OB EIT TEM00 F-P ϕ không thứ nguyên không thứ nguyên không thứ nguyên W/m2 W/m2 W/m2 W/m2 không thứ nguyên không thứ nguyên Hz V/m V/m V/m Không thứ nguyên rad L m gij Y V/m anm T R I Is II IT Q Fins FSR E0 ER ET Ni Ý nghıã Atomic Optical Bistability (Lưỡng ổn định quang nguyên tử) Optical Bistability (Lưỡng ổn định quang) Electromagnetically Induced Transparency (Sự trong suốt cảm ứng điện từ) Mode cơ bản Fabry-Perot Cường đô ̣ liên kế t tỷ đố i giữa các dich ̣ chuyể n của nguyên tử Hệ số truyền qua Hệ số phản xạ Cường đô ̣ sáng Cường đô ̣ sáng bão hòa Cường độ ánh sáng vào Cường độ ánh sáng ra Hệ số phẩm chất của buồng cộng hưởng Hệ số Độ mịn của buồng cộng hưởng Khoảng phổ tự do Biên độ sóng tới Biên độ sóng phản xạ Biên độ sóng truyền qua Bậc tự do thứ i Độ lệch pha giữa sóng tới và sóng phản xạ Khoảng cách giữa hai gương cũng là chiều dài buồng mẫu Hằng số liên kết Cường độ đầu vào chuẩn hóa v X c V/m 2,998 × 108 m/s dnm C.m Ec V/m Ep V/m En J H H0 không thứ nguyên J J HI J F kB mRb n n0 n2 N P P(1) P(2) P(3) T α µ0 1,38 × 10-23 J/K 1,44 × 10-25 kg không thứ nguyên không thứ nguyên m2/W nguyên tử/m3 C/m2 C/m2 C/m2 C/m2 K m-1 1,26×10-6 H/m Cường độ đầu ra chuẩn hóa Vâ ̣n tố c ánh sáng trong chân không Mômen lưỡng cực điê ̣n của dich ̣ chuyể n n → m Cường đô ̣ điê ̣n trường chùm laser điề u khiể n Cường đô ̣ điê ̣n trường chùm laser dò Năng lươ ̣ng riêng của tra ̣ng thái n Số lươ ̣ng tử xung lươ ̣ng góc toàn phầ n Hamtilton toàn phầ n Hamilton của nguyên tử tự do Hamilton tương tác giữa hệ nguyên tử và trường ánh sáng Hằ ng số Boltzmann Khố i lươ ̣ng của nguyên tử Rb Chiế t suấ t hiê ̣u du ̣ng Chiế t suấ t tuyế n tı́nh Hê ̣ số phi tuyế n Kerr Mâ ̣t đô ̣ nguyên tử Độ lớn véctơ phân cực điê ̣n (vı ̃ mô) Độ lớn véctơ phân cực tuyế n tı́nh Độ lớn véctơ phân cực phi tuyế n bâ ̣c hai Độ lớn véctơ phân cực phi tuyế n bâ ̣c ba Nhiê ̣t đô ̣ tuyê ̣t đố i Hê ̣ số hấ p thu ̣ tuyế n tı́nh Đô ̣ từ thẩ m của chân không vi ε0 C Ω Ω′ Ωc Ωp 8,85×10-12F/m không thứ nguyên Hz Hz Hz Hz Hz Hz không thứ nguyên không thứ nguyên không thứ nguyên không thứ nguyên không thứ nguyên m/V m2/V2 Hz Hz Hz Hz ∆ Hz ε ωnm ωc ωp Γ γ γvc χ χ′, Re(χ) χ″, Im(χ) χdh χ(1) χ(2) χ(3) ρ ρ(0) ρ(1) ρ(2) ρ(3) Đô ̣ điê ̣n thẩ m của chân không Hằ ng số điê ̣n môi tỷ đố i Tầ n số góc của dich ̣ chuyể n nguyên tử Tầ n số góc của chùm laser điề u khiể n Tầ n số góc của chùm laser dò Tố c đô ̣ phân rã tự phát đô ̣ cư trú nguyên tử Tố c đô ̣ suy giảm tự phát đô ̣ kế t hơ ̣p Tố c đô ̣ suy giảm đô ̣ kế t hơ ̣p do va cha ̣m Đô ̣ cảm điê ̣n của môi trường nguyên tử Phầ n thực của đô ̣ cảm điê ̣n Phầ n ảo của đô ̣ cảm điê ̣n Đô ̣ cảm điê ̣n hiê ̣u du ̣ng Đô ̣ cảm điê ̣n tuyế n tı́nh Đô ̣ cảm điê ̣n phi tuyế n bâ ̣c hai Đô ̣ cảm điê ̣n phi tuyế n bâ ̣c ba Ma trận mâ ̣t đô ̣ Ma trận mâ ̣t đô ̣ trong gần đúng cấp không Ma trận mâ ̣t đô ̣ trong gần đúng cấp một Ma trận mâ ̣t đô ̣ trong gần đúng cấp hai Ma trận mâ ̣t đô ̣ trong gần đúng cấp ba Tham số liên kết Tầ n số Rabi Tầ n số Rabi suy rộng Tầ n số Rabi gây bởi trường laser điề u khiể n Tầ n số Rabi gây bởi trường laser dò Đô ̣ lê ̣ch giữa tầ n số laser với tầ n số dich ̣ chuyể n nguyên tử (viết tắt: độ lệch tần số) vii ∆c Hz ∆p Hz δ Hz Đô ̣ lê ̣ch giữa tầ n số của laser điề u khiể n với tầ n số dich ̣ chuyể n nguyên tử Đô ̣ lê ̣ch giữa tầ n số của laser dò với tầ n số dich ̣ chuyể n nguyên tử Khoảng cách (theo tầ n số ) giữa các mức năng lượng viii DANH MỤC CÁC HÌNH VẼ Hình 1.1. Đường đặc trưng về mối quan hệ vào - ra của hệ OB (a) và sơ đồ nguyên lí một OB (b). ........................................................................... 8 Hình 1.2. Sự phản xạ và truyền qua ở bản mặt song song có bề dày d dẫn đến sự giao thoa [44]. ................................................................................ 11 Hình 1.3. Sự phản xạ và truyền qua mặt phân cách của hai môi trường trong suốt [45]. ..................................................................................................... 12 Hình 1.4. Mô tả sự phản xạ trở lại và truyền qua mặt phân cách giữa hai môi trường tại thời điểm t [45]. .................................................................. 13 Hình 1.5. Cường độ truyền của bản song song buồng cộng hưởng F - P ứng với các giá trị khác nhau của R (hoặc Q) như được đánh dấu trên công tua truyền. Ở đây R lớn ứng với Q lớn. .................................................... 14 Hình 1.6. Buồng cộng hưởng vòng ba gương với môi trường bên trong buồng cộng hưởng [45]. ................................................................................. 18 Hình 1.7. Mối quan hệ giữa P-E. Đường nét đứt biểu diễn quan hệ tuyến tính và đường cong liền biểu diễn quan hệ phi tuyến giữa độ phân cực cảm ứng P và cường độ điện trường E. ...................................................... 19 Hình 1.8. Buồng cộng hưởng vòng một chiều có bốn gương (M1 - M4) và mẫu nguyên tử có chiều dài L. Gương M3 và M4 phản xạ toàn phần (R=1). Trường tới và truyền qua tương ứng là E pI ; E Tp . ................................... 21 Hình 1.9. Trường điện từ trong buồng cộng hưởng F – P với hai gương phẳng [45]. ............................................................................................................. 28 Hình 1.10. OB hấp thụ tại θ = 0 và các giá trị của C [45].................................... 32 Hình 1.11. Chu trình trễ: (a) AOB hấp thụ và (b) AOB tán sắc [45].............. 33 Hình 1.12. Mô hình nguyên tử ba mức năng lượng cấu hình lamda [24]. ..... 37 Hình 1.13. Điều khiển AOB theo cường độ (a) và theo tần số (b) [24]. ........ 39 Hı̀nh 2.1. Sơ đồ năng lượng của nguyên tử năm mức cấu hình bâ ̣c thang. .... 49 Hình 2.2. Công tua hê ̣ số hấp thụ đối với chùm dò như là hàm của độ lệch tần ∆p tại một số trị của cường độ trường điều khiển Ωc (được ghi trên hình) khi ∆c = 0 [57]. ..................................................................................................... 62 Hình 2.3. Công tua hê ̣ số hấ p thu ̣ là hàm của độ lệch tần ∆p, ứng với một vài giá tri ̣của ∆c (được ghi trên hình) khi Ωc = 11 MHz [57]. ................. 64 ix Hı̀nh 2.4. Sự biế n thiên của n2 theo ∆p khi ∆ c =0 và Ωc = 11 MHz (đường liền nét) hoặc Ωc =0 (đường gạch đứt nét); đường chấ m chấ m mô tả sự biế n thiên của hê ̣ hấ p thu ̣ (phổ EIT) khi Ωc =10 MHz [36]. ....................... 66 Hı̀nh 2.5. Sự biến thiên của n2 theo ∆p ta ̣i các giá trị khác nhau của độ lệch tần số của trường laser điề u khiể n ∆ c =−2,5 MHz (đường chấm chấm), ∆ c =0 (đường liền nét) và ∆ c =2,5 MHz (đường gạch đứt nét). Cường độ của trường điều khiển được cố định tại giá trị của tần số Rabi Ωc = 11 MHz [36]. ....................................................................................... 67 Hı̀nh 2.6. Sự biế n thiên của n2 theo ∆c khi cố đinh ̣ đô ̣ lê ̣ch tầ n số của chùm laser dò ta ̣i ∆p = 4,6 MHz và tầ n số Rabi Ωc = 11 MHz [36]. ..................... 68 Hı̀nh 2.7. Sự biế n thiên của n2 theo Ωc khi cố đinh ̣ ∆p = 4,6 MHz và ∆c = 0 MHz [36]. ..................................................................................................... 69 Hình 3.1. Sơ đồ buồng cộng hưởng vòng của OB trong môi trường EIT được tạo bởi trường laser điều khiển Ec. ...................................................... 76 Hình 3.2. Sơ đồ kích thích của các trạng thái 5S1/2; 5P3/2 và 5D5/2 trong 85Rb. ............................................................................................................. 79 Hình 3.3. Sự xuất hiện của lưỡng ổn định tại ba miền phổ EIT tương ứng với dịch chuyển từ các trạng thái (a) |2〉 - |4〉, (b) |2〉 - |3〉 và (c) |2〉 - |5〉. . 81 Hình 3.4. (a) Đồ thị lưỡng ổn định tại một số giá trị của ∆p trong miền phổ ứng với trường hợp hình 3.3b. Các tham số được sử dụng là Ωc = 20γ MHz, ∆c = 0 MHz và C = 1000γ. (b) Sự biến đổi phi tuyến Kerr theo độ lệch tần số trường laser dò. ................................................................................................ 82 Hình 3.5. (a) Sự phụ thuộc của lưỡng ổn định vào tần số laser điều khiển khi Ωc = 20γ MHz, ∆p = -3γ MHz và C = 1000γ. (b) Sự biến đổi phi tuyến Kerr theo độ lệch tần của chùm điều khiển. ....................................... 84 Hình 3.6. Sự phụ thuộc của lưỡng ổn định vào cường độ trường laser điều khiển khi ∆p = 6γ, ∆c = 0 và C = 1000γ......................................................... 85 Hình 3.7. Sự phụ thuộc của đường cong lưỡng ổn định vào tham số liên kết C khi ∆p= -3γ MHz, ∆c= 0 MHz và Ωc = 20γ MHz. ............................... 86 Hình 3.8. (a) Độ lệch tần số trường laser dò ∆p tại đó cường độ đầu vào ngưỡng trên trùng với cường độ đầu vào ngưỡng dưới (Y1 = Y2). (b) Độ lệch tần số trường laser dò tại đó có độ rộng cực tiểu và cực đại. ............. 88 Hình 3.9. (a) Cường độ tỷ đối giữa ngưỡng trên và ngưỡng dưới Y2/Y1. (b) Sự biến đổi của cường độ ngưỡng trên Y2. ............................................. 89 x Hình 3.10. Sự phụ thuộc của độ rộng lưỡng ổn định theo độ lệch tần số trường dò. ............................................................................................................. 90 Hình 3.11. (a) Độ lệch tần số trường laser điều khiển ∆c tại đó cường độ đầu vào ngưỡng trên trùng với cường độ đầu vào ngưỡng dưới (Y1 = Y2). (b) Độ lệch tần số trường laser dò tại đó có độ rộng cực tiểu và cực đại. ............................................................................................................. 91 Hình 3.12. (a) Cường độ tỷ đối giữa ngưỡng trên và ngưỡng dưới Y2/Y1. (b) Sự biến đổi của cường độ ngưỡng trên Y2. ........................................ 92 Hình 3.13. Sự phụ của độ rộng lưỡng ổn định theo độ lệch tần số trường điều khiển. ............................................................................................................. 93 Hình 3.14. (a) Độ lệch tần số trường laser điều khiển ∆c tại đó cường độ đầu vào ngưỡng trên trùng với cường độ đầu vào ngưỡng dưới (Y1 = Y2). (b) Độ lệch tần số trường laser dò tại đó có độ rộng cực tiểu và cực đại. ............................................................................................................. 94 Hình 3.15. (a) Cường độ tỷ đối giữa ngưỡng trên và ngưỡng dưới Y2/Y1. (b) Sự biến đổi của cường độ ngưỡng trên Y2. ........................................ 95 Hình 3.16. Sự phụ của độ rộng lưỡng ổn định theo cường độ trường điều khiển. ............................................................................................................. 96 Hình 3.17. (a) Cường độ tỷ đối Y2/Y1 và (b) cường độ ngưỡng trên biến thiên theo tham số liên kết C........................................................................ 97 Hình 3.18. Sự phụ của độ rộng lưỡng ổn định theo tham số liên kết C.......... 98 Hình 3.19. Sự xuất hiện của lưỡng ổn định tại ba miền phổ EIT tương ứng với dịch chuyển từ các trạng thái (a) |2〉 - |4〉, (b) |2〉 - |3〉 và (c) |2〉 - |5〉. . 99 Hình 3.20. Đồ thị lưỡng ổn định tại một số giá trị của ∆p trong miền phổ ứng với trường hợp hình (b). Các tham số được sử dụng là Ωc = 10γ MHz, ∆c = 0 MHz và C = 1000γ. ................................................................ 100 Hình 3.21. OB khi tính đến (đường nét đoạn) và không tính đến dịch chuyển cấm (đường nét liền) khi ∆p = -3γ MHz, ∆c = 0 MHz, (a) Ωc = 7γ MHz và (b) Ωc = 15γ MHz. ........................................................................ 101 Hình 3.22. (a) Khảo sát OB theo lệch tần số của trường laser điều khiển. (b) Tỷ lệ giữa cường độ vào và cường độ ra của lưỡng ổn định khi biến đổi tần số trường laser điều khiển. ................................................................ 102 Hình 3.23. (a) OB thu được khi thay đổi cường độ trường laser điều khiển. (b) Tỷ lệ cường độ vào - ra khi thay đổi cường độ trường laser điều khiển. ........................................................................................................... 103 xi Hình 3.24. (a) Lưỡng ổn định thu được khi biến đổi tham số C. (b) khảo sát cường độ tỷ đối vào – ra của lưỡng ổn định. .................................... 104 Hình 3.25. Sơ đồ thí nghiệm hệ AOB. .......................................................... 105 xii MỞ ĐẦU 1. Lí do chọn đề tài Lưỡng ổn định quang (OB) là lĩnh vực thu hút nhiều sự quan tâm nghiên cứu của các nhà khoa học bởi nó có nhiều ứng dụng quan trọng như tạo các chuyển mạch quang, máy khuếch đại quang, bộ nhớ quang và xử lý thông tin toàn quang [1]. Đây là những bộ phận cốt lõi cho những thiết bị điện tử và quang tử hiện đại (thiết bị toàn quang), có tốc độ truyền và xử lý tín hiệu cực nhanh. Lý thuyết về OB được đề xuất vào năm 1969 và được kiểm chứng bằng thực nghiệm vào năm 1974 cho môi trường hơi nguyên tử Na [2]. Trong các hệ OB điển hình, hai bộ phận quan trọng quyết định đặc tính của hệ là phản hồi ngược tín hiệu quang và môi trường phi tuyến. Theo đó, phản hồi ngược liên quan đến cấu trúc hình học của buồng cộng hưởng sử dụng làm hệ lưỡng ổn định còn môi trường phi tuyến liên quan đến độ phi tuyến. Thông thường, môi trường phi tuyến được chọn là loại Kerr [3], có chiết suất phụ thuộc vào cường độ của ánh sáng theo hệ thức n = n0 + n2I, (n0 là chiết suất tuyến tính và n2 là hệ số phi tuyến Kerr). Dưới tác động của trường ánh sáng tới có cường độ I lớn thì hàm truyền của thiết bị sẽ thể hiện tính chất phi tuyến, có nghĩa là cường độ ánh sáng truyền qua là một hàm phi tuyến của cường độ ánh sáng tới. Khi đó, độ nhạy và đặc tính của thiết bị lưỡng ổn định sẽ phụ thuộc tương ứng vào độ lớn và dấu của hệ số phi tuyế n Kerr n2. Vì vậy, nếu các thiết bị vật liệu có phi tuyến Kerr lớn và điều khiển được thì ngưỡng lưỡng ổn định không những được giảm xuống mà còn thay đổi đươ ̣c đặc trưng hoạt động của các hệ lưỡng ổn định. Những nghiên cứu ban đầu về thiết bị OB chủ yếu sử dụng các môi trường hoạt động ở xa cộng hưởng có phi tuyến Kerr yếu nên để tăng phi tuyến Kerr 1 và do đó xẩy ra được hiệu ứng OB thì người ta phải sử dụng chùm laser có cường độ rất lớn [3]. Khi đó, nhiệt độ phát sinh gây nên sự bất ổn định cho các hệ OB hoặc phá vỡ cấu trúc của thiết bị quang. Để giảm cường độ ngưỡng thì các nhà khoa học không ngừng tìm kiếm các vật liệu có tính đáp ứng phi tuyến mạnh chẳng hạn như các vật liệu bán dẫn [3]. Điều này cũng đòi hỏi những công nghệ phức tạp và tốn kém. Hơn nữa, do hệ số phi tuyến của những môi trường này thường có giá trị bé hơn 10-12 cm2/W và cố định nên các đặc trưng của OB (như cường độ ngưỡng và độ rộng OB) cũng không điều khiển được, do đó đã hạn chế khả năng làm việc của các thiết bị quang. Đầu những năm 1980, các nhà khoa học đã đề xuất sử dụng ánh sáng trong miền cộng hưởng nguyên tử có phi tuyến Kerr của môi trường mạnh gấp hàng triệu lần so với môi trường truyền thống xa cộng hưởng. Khi đó, OB được gọi là lưỡng ổn định quang nguyên tử (AOB) [2]. Kể từ đó, AOB sử dụng buồng cộng hưởng vòng đã được nghiên cứu rộng rãi vì nó đã loại bỏ được những nhược điểm của OB truyền thống [2]. Tuy vậy, AOB hai mức cũng có một số hạn chế, chẳng hạn như hiệu ứng tự kéo xung [4], sự không ổn định tại nhánh trên của đường cong OB [5]. Đặc biệt, AOB hai mức vẫn chưa giải quyết được nhược điểm là không thể điều khiển được đặc trưng OB từ bên ngoài [4-16]. Mặc dù các thiết bị OB sử dụng môi trường nguyên tử hai mức cộng hưởng có phi tuyến Kerr được tăng lên đáng kể nên đã giảm đáng kể cường độ ngưỡng OB. Tuy nhiên, vì làm việc trong miền cộng hưởng nên sự hấp thụ tăng vọt dẫn đến tín hiệu quang sẽ bị suy hao rất nhanh kèm theo các hiệu ứng nhiệt [17]. Vì vậy, tìm cách loại bỏ hấp thụ trong miền cộng hưởng nguyên tử là phương án “táo bạo” thu hút được nhiều sự quan tâm. Hiện nay, một giải pháp đơn giản để làm giảm hấp thụ là sử dụng hiệu ứng trong suốt cảm ứng điện từ (EIT) [17,18]. Nhờ đưa vào trường laser điều khiển làm cho hệ số hấp thụ của môi trường đối với trường laser dò suy giảm đáng kể thậm chí triệt tiêu, tạo ra một miền phổ 2 trong suốt gọi là cửa sổ EIT [19]. Hiệu ứng EIT về mặt lý thuyết đươ ̣c đề xuất bởi Harris và cộng sự vào năm 1989 [17,19] và sau đó kiểm chứng bằng thực nghiệm vào năm 1991 [19]. Sự khám phá ra hiệu ứng EIT được xem là “chìa khóa vàng” mở ra nhiều ứng dụng thú vị. Trong những năm gần đây, nghiên cứu khả năng tăng cường hệ số phi tuyến Kerr khi có mă ̣t hiệu ứng trong suốt cảm ứng điện từ đã được nhiều nhóm trên thế giới quan tâm [17-23]. Đă ̣c biê ̣t, bằng các phép đo thực nghiệm nhóm của Min Xiao cùng các cô ̣ng sự ở Mỹ đã cho thấy hê ̣ số phi tuyế n Kerr của môi trường nguyên tử Rb không chỉ được tăng lên vài bâ ̣c mà còn điều khiển được biên độ và dấu [20]. Bởi vâ ̣y, môi trường EIT trở nên lý tưởng để đa ̣t đươ ̣c các quá trı̀nh quang phi tuyế n ta ̣i các cường đô ̣ ánh sáng rấ t thấ p hay thâ ̣m chı́ đơn photon [18,21]. Điều này hoàn toàn không có được trong hệ OB nguyên tử hai mức năng lượng [6,16]. Nhờ vậy, sử dụng vật liệu EIT cho hệ OB sẽ có độ nhạy cao gấp hàng triệu lần so với sử dụng vật liệu phi tuyến Kerr truyền thống. Hơn nữa, do phi tuyến Kerr của vật liệu EIT có thể điều khiển thay đổi được cả độ lớn và dấu nên chúng ta có thể điều khiển được đặc trưng lưỡng ổn định quang, hay nói cách khác là ứng dụng này sẽ tạo ra thiết bị OB chủ động. Vı̀ vâ ̣y, các nhà khoa ho ̣c đang kỳ vo ̣ng sẽ có bước đô ̣t phá về công nghê ̣ quang tử sử du ̣ng vâ ̣t liê ̣u EIT trong tương lai rấ t gầ n. Năm 1996, Agarwal đã ứng dụng môi trường EIT để tạo lưỡng ổn định cho hệ nguyên tử ba mức năng lượng cấu hình lamda [24] và sau đó được Min Xiao quan sát thực nghiệm vào năm 2003 [25]. Kết quả cho thấy, bằng cách điều khiển cường độ và độ lệch tần của các chùm ánh sáng thì có thể dễ dàng điều khiển hình dạng và độ rộng đường cong lưỡng ổn định [24,25]. Việc điều khiển đặc trưng lưỡng ổn định bởi trường laser là thành công lớn và yếu tố then chốt cho ứng dụng thực tiễn của nó trong bộ nắn xung quang, cổng logic toàn 3 quang, bộ vi xử lý và chuyển mạch quang, bộ nhớ toàn quang, v.v. Khi đó, cường độ ánh sáng cần thiết để chuyển “mở” và “đóng” các thiết bị như là ngưỡng chuyển mạch sẽ giảm xuống đáng kể - một đặc điểm quan trọng để OB hoạt động với ánh sáng có cường độ rất thấp [6]. Đây là vấn đề được quan tâm nghiên cứu trong lĩnh vực công nghệ quang tử tiên tiến. Mặc dù, môi trường EIT cấu hình ba mức năng lượng có thể sử dụng để chế tạo hệ AOB có độ nhạy rất cao [26] nhưng điểm hạn chế căn bản là chỉ tạo ra một cửa sổ trong suốt nên hệ lưỡng ổn định chỉ có một kênh ở đơn tần số. Vì vậy, tìm giải pháp tăng số cửa sổ trong suốt của vật liệu EIT cho các AOB là rất có ý nghĩa về mặt thực tiễn. Một trong các giải pháp đã được nhiều nhà khoa học đề xuất là sử dụng đồng thời nhiều laser điều khiển nhiều trạng thái siêu tinh tế của nguyên tử [17,19,20,23,27-29]. Theo cách này, gần đây đã có một số công trình nghiên cứu hệ lưỡng ổn định sử dụng môi trường EIT đa cửa sổ, tiêu biểu như: các cấu hình bốn mức năng lượng sử dụng hai trường laser điều khiển [30,31], hệ năm mức cấu hình Kobrak-Rice sử dụng bốn trường laser điều khiển [32] v.v. Tuy nhiên, hạn chế của cách tiếp cận này là phải sử dụng đồng thời nhiều trường laser điều khiển nên cơ cấu sẽ phức tạp. Cùng với giải pháp sử dụng đồng thời nhiều trường laser điều khiển thì một giải pháp khác để mở rô ̣ng miề n phổ EIT theo cách đơn giản hơn đã được đề xuất vào năm 2004 bởi nhóm nghiên cứu của Wang [33]. Theo đó, chỉ cần sử du ̣ng một trường laser mạnh để liên kết đồng thời các mức siêu tinh tế cạnh nhau của nguyên tử (ví dụ như 85Rb) theo cấu hình năm mức năng lươ ̣ng bâ ̣c thang. Theo cách này, nhóm nghiên cứu của Wang đã quan sát được ba cửa sổ EIT tại một vài giá trị cụ thể của cường độ trường laser điều khiển. Đặc trưng rất thú vị này đã gợi ý cho nhóm nghiên cứu chúng tôi xây dựng mô hình giải tích mô tả hiệu ứng EIT trong cấu hình năm mức năng lượng [34]. Một trong những ưu điểm quan trọng của mô hình này là chỉ sử dụng một chùm laser điều 4 khiển nên đơn giản trong bố trí thiết bị [35]. Với cấu hình này sẽ tạo ra ba cửa sổ EIT tương ứng với ba miền phi tuyến Kerr được tăng cường [36]. Khi đó, có thể tạo ra hệ OB hoạt động trên đa miền tần số, tăng số kênh cho hệ lưỡng ổn định tạo điều kiện cho kỹ thuật ghép kênh trong thông tin. Đây là mục tiêu nghiên cứu chính của đề tài này. Ở Việt Nam, mặc dù nghiên cứu sử dụng môi trường phi tuyến xa cộng hưởng vào OB đã được nhiều nhà nghiên cứu quan tâm trong vài thập niên qua [37-39] nhưng việc sử dụng môi trường EIT thì hiện mới chỉ được triển khai bởi nhóm Quang học tại Trường Đại học Vinh. Đặc biệt đã xây dựng thành công phương pháp giải tích cho hệ nguyên tử năm mức các hiệu ứng EIT và các ứng dụng liên quan [35,36]. Cùng với xây dựng mô hình lý thuyết, nhóm nghiên cứu chúng tôi cũng đã quan sát được hiệu ứng EIT của nguyên tử Rb năm mức năng lượng với ba cửa sổ EIT [40]. Đây là thuận lợi lớn và làm cơ sở để chúng tôi lựa chọn đề tài nghiên cứu “Lưỡng ổn định quang của buồng cộng hưởng vòng chứa môi trường trong suốt cảm ứng điện từ năm mức năng lượng”. 2. Mục tiêu và nhiệm vụ nghiên cứu Mục tiêu của đề tài này là xây dựng mô hình giải tích cho OB đa kênh của buồng cộng hưởng vòng sử dụng môi trường EIT đa cửa sổ. Từ đó, vận dụng mô hình vào môi trường khí nguyên tử 85Rb để khảo sát đặc trưng OB theo các tham số điều khiển (của trường laser và của môi trường nguyên tử). Để đạt được các mục tiêu này, luận án đặt ra các nhiệm vụ nghiên cứu sau đây: - Dẫn ra hệ phương trình ma trận mật độ cho hệ lượng tử năm mức năng lượng được kích thích theo cấu hình bậc thang bởi một laser dò và một laser điều khiển; 5 - Giải hệ các phương trình ma trận mật độ để rút ra biểu thức của phần tử ma trận tương ứng với dịch chuyển dò khi không bỏ qua các số hạng gần đúng trường yếu; - Thiết lập phương trình cường độ vào-ra dạng giải tích để mô tả đặc trưng lưỡng ổn định theo các thông số điều khiển và tham số số liên kết C; từ đó nghiên cứu khả năng điều khiển cường độ ngưỡng và độ rộng lưỡng ổn định theo các thông số điều khiển và tham số liên kết C; - Cuối cùng, chúng tôi xây dựng sơ đồ nguyên lý để nghiên cứu thực nghiệm hiệu ứng lưỡng ổn định cho mô hình này. 3. Phương pháp nghiên cứu - Phương pháp lý thuyế t: sử dụng lý thuyết bán cổ điển và hı̀nh thức luâ ̣n ma trận mâ ̣t đô ̣ để dẫn ra các phương trình ma trận mật độ; - Sử dụng các gần đúng: gầ n đúng lưỡng cực điê ̣n, gần đúng sóng quay để tìm nghiệm cho ma trận mật độ; sử dụng hệ các phương trình Maxwell và gần đúng mặt bao biến thiên chậm để dẫn ra phương trình cường độ vào-ra cho lưỡng ổn định; - Sử du ̣ng phương pháp đồ thi ̣ để khảo sát các kế t quả nghiên cứu và so sánh sự tương thı́ch giữa các kết quả giải tích với phương pháp số. 4. Bố cục luận án Ngoài phần mở đầu, phần kết luận chung và phần kiến nghị, nội dung luận án được trình bày trong ba chương. Chương 1. Tổng quan về lưỡng ổn định quang nguyên tử. Trong chương này chúng tôi trình bày các nguyên lý OB dựa trên lý thuyết về buồng cộng hưởng vòng, buồng cộng hưởng Fabry – Perot, lý thuyết về AOB hai mức. 6
- Xem thêm -

Tài liệu liên quan