Đăng ký Đăng nhập
Trang chủ Luận văn thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân...

Tài liệu Luận văn thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân

.PDF
28
400
52

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN KHOA HỌC VÀ CÔNG NGHỆ MÔI TRƯỜNG ______________________________________________________________ ĐỒ ÁN CHUYÊN NGÀNH ĐỀ TÀI: THIẾT KẾ HỆ THỐNG XỬ LÝ NƯỚC THẢI SINH HOẠT CHO KHU DÂN CƯ 10000 DÂN Sinh viên thực hiện :Nguyễn Văn Vượng Lớp : Kỹ thuật Môi trường Khóa : 53 Giáo viên hướng dẫn : Ths.Vũ Ngọc Thủy HÀ NỘI - 11/2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Trường Đại học Bách khoa Hà Nội Độc lập - Tự do - Hạnh phúc ________________ ______________ NHIỆM VỤ ĐỒ ÁN CHUYÊN NGÀNH Họ và tên: Nguyễn Văn Vượng Số hiệu sinh viên: 20083572 Lớp: Kỹ thuật môi trường Khoá: 53 Viện Khoa học và Công nghệ Môi trường Ngành: Kỹ thuật môi trường 1.Đầu đề thiết kế: Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân. 2. Các số liệu ban đầu: - Tự chọn 3. Nội dung các phần thuyết minh và tính toán: - Phân tích lựa chọn công nghệ xử lý - Tính toán các thiết bị chính 4. Các bản vẽ và đồ thị: - Bản vẽ sơ đồ công nghệ đầy đủ - Bản vẽ bố trí cao trình (A3) - Bản vẽ chi tiết thiết bị chính(A3) 5. Cán bộ hướng dẫn ThS. Vũ Ngọc Thủy 6. Ngày giao nhiệm vụ đồ án chuyên ngành:13/9/2012 7. Ngày hoàn thành đồ án chuyên ngành: Hà Nội, ngày tháng năm CÁN BỘ HƯỚNG DẪN (Ký, ghi rõ họ tên) Nguyễn Văn Vượng Mục lục LỜI NÓI ĐẦU Phần 1.Thông số thiết kế và lựa chọn sơ đồ công nghệ……………………………..4 1. Nước thải sinh hoạt……………………………………………………………….5 a. Đặc trưng nước thải sinh hoạt………………………………………………..5 b. Tác động của nước thải tới môi trường………………………………………6 c. Thông số lựa chọn……………………………………………………………7 2. Phân tích và lựa chọn công nghệ xử lý …………………………………………..9 a. Xử lý nước thải sinh hoạt bằng công nghệ Aeroten………………………....9 b. Xử lý nước thải sinh hoat bằng công nghệ AAO…………………...………11 Phần 2.Thiết kế bể AAO………………………………………………………...…14 1. Thông số đi vào bể…………………………………………...……………..14 2. Tính cụm bể AAO……………………………………………………...…...15 a. Bể aerobic……………………………………...………………………..15 b. Bể anoxic……………………………...………………………………...18 c. Bể anaerobic………………………...…………………………………..19 3. Tổng hợp số liệu 3 bể đã được tính toán……………………...…………….21 4. Tính toán cấp khí cho bể aerobic ...…………………………….. …………22 5. Tính toán khuấy trộn cho anoxic và anaerobic…………...………………..25 Lời cảm ơn Tài liệu tham khảo Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân LỜI NÓI ĐẦU Nước là nguồn tài nguyên vô cùng quý giá của con người. Nước trong tự nhiên bao gồm toàn bộ các đại dương, biển vịnh sông hồ, ao suối, nước ngầm, hơi nước ẩm trong đất và trong khí quyển. Trên trái đất nước ngọt chiếm một tỷ lệ rất nhỏ so với nước mặn. Nước ngọt cần cho mọi sự sống và phát triển, nước giúp cho các tế bào sinh vật trao đổi chất, tham gia vào các phản ứng hoá sinh và tạo nên các tế bào mới. Vì vậy, có thể nói rằng ở đâu có nước là ở đó có sự sống. Nước được dùng cho đời sống, sản xuất nông nghiệp, công nghiệp và dịch vụ. Sau khi sử dụng nước trở thành nước thải, bị ô nhiễm với các mức độ khác nhau. Ngày nay, cùng với sự bùng nổ dân số và tốc độ phát triển cao của công nông nghiệp ... đã để lại nhiều hậu quả phức tạp, đặc biệt là vấn đề ô nhiễm môi trường nước. Vấn đề này đang được nhiều sự quan tâm của mọi người, mọi quốc gia trên thế giới. Ở Việt Nam hiện nay phần lớn nước thải sinh hoạt chưa được xử lý và được thải thằng ra sông, hồ,ao và các nguồn tiếp nhận. Vì vậy, dẫn đến tình trạng các con sông đó bị ô nhiễm bốc mùi khó chịu, làm mất cảnh quan và ảnh hưởng nghiêm trọng tới sức khoẻ của con người. Với sự ô nhiễm nước thải của nước ta hiện nay. Qua những môn em đã học,và sự hướng dẫn nhiệt tình của cô Vũ Ngọc Thủy đã cho em những những kiến thức và kinh nhiệm giúp em có thể hoàn thành đồ án :” Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân ” với công nghệ mới ,hiệu quả xử lý cao làm giảm một phần nước thải nói chung và nước thải sinh hoạt nói riêng. Nguyễn Văn Vượng Phần 1. Thông số thiết kế và lựa chọn sơ đồ công nghệ 1. Nước thải sinh hoạt a. Đặc trưng nước thải sinh hoạt: Nước thải sinh hoạt được sinh ra từ các khu dân cư, khu vực hoạt động thương mại, công sở, trường học và các nơi tương tự khác. Lượng phát sinh nước thải sinh hoạt rất lớn, tùy thuộc vào mức thu nhập, thói quen của dân cư và điều kiện khí hậu. Đối với Việt Nam tiêu chuẩn cấp nước cho các đô thị lớn ở mức 150 – 200 l/người.ngày, vùng nông thôn ở mức 100 l/người.ngày. Có thể ước tính 60 – 90% lượng nước cấp cho sinh hoạt trở thành nước thải sinh hoạt tùy theo vùng và thời tiết. Đặc trưng ô nhiễm của nước thải sinh hoạt chủ yếu là các chất hữu cơ, các chất dinh dưỡng và các chất rắn lơ lửng . Nước thải sinh hoạt nếu không được xử lý trước khi thải ra các nguồn tiếp nhận thì sẽ gây ra những ảnh hưởng nghiêm trọng tới môi trường và sức khỏe. Nước thải sinh hoạt chứa các chất dinh dưỡng (N, P) có thể gây hiện tượng phú dưỡng các thủy vực nước ngọt. Các nguồn tiếp nhận (sông, hồ) bị ô nhiễm tức là suy giảm cả về chất và lượng đối với tài nguyên nước vốn đã rất hạn chế. Ô nhiễm nguồn nước được cho là nguyên nhân gây ra các bệnh như tiêu chảy, lỵ, tả, thương hàn, viêm gan A, giun, sán. Thành phần nước thải sinh hoạt tương đối ổn định và phụ thuộc vào tiêu chuẩn cấp nước, đặc điểm hệ thống thoát nước, điều kiện trang thiết bị vệ sinh,… Nồng các chất ô nhiễm trong nước thải sinh hoạt được nêu trong bảng sau. Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Bảng 1.1 Thành phần nước thải sinh hoạt khu dân cư. Chỉ tiêu Trong khoảng Trung bình 350 – 1200 720 Tổng chất rắn (TS), mg/l - Chất rắn hoà tan (TDS), mg/l 250 – 850 500 - Chất rắn lơ lững (SS), mg/l 100 - 350 220 110 – 400 220 20 – 85 40 BOD5, mg/l Tổng Nitơ, mg/l - Nitơ hữu cơ 8 – 35 15 - Nitơ Amoni 12 – 50 25 - Nitơ Nitrit 0 – 0,1 0,05 - Nitơ Nitrat 0,1 – 0,4 0,2 Clorua, mg/l 30 – 100 50 Độ kiềm, mgCaCO3/l 50 - 200 100 Tổng chất béo, mg/l 50 - 150 100 Tổng Phốt pho, mg/l 8 Nguồn : [1] b. Tác động của nước thải tới môi trường Nước thải sinh hoạt gây ra sự ô mhiễm môi trường do các thành phần ô nhiễm: COD, BOD : Sự khoáng hoá, ổn định chất hữu cơ tiêu thụ một lượng lớn và gây thiếu hụt oxy của nguồn tiếp nhận dẫn đến ảnh hưởng của hệ sinh thái môi trường nước. Nếu ô nhiễm quá mức điều kiện yếm khí có thể hình thành. Trong quá trình phân huỷ yếm khí sinh ra các sản phẩm như H2S, NH3, CH4,… làm cho nước có mùi hôi thối và làm giảm pH của môi trường nước nơi tiếp nhận. SS : Lắng đọng ở nguồn tiếp nhận gây điều kiện yếm khí. Nhiệt độ : Nhiệt độ nước thải sinh hoạt thường không gây ảnh hưởng đến đời sống của thuỷ sinh vật. Vi khuẩn gây bệnh: Gây ra các bệnh lan truyền bằng đường nước như tiêu chảy, ngộ độc thức ăn, vàng da,… N, P : Đây là những nguyên tố dinh dưỡng đa lượng. Nếu nồng độ trong nước quá cao dẫn tới hiện tượng phú dưỡng hoá, đó là sự phát triển bùng phát của các Nguyễn Văn Vượng loại tảo, làm cho nồng độ oxy trong nước rất thấp vào ban đêm gây ngạt thở và gây chết các thuỷ sinh vật, trong khi đó ban ngày nồng độ oxy rất cao do quá trình hô hấp của tảo thải ra. Màu : Màu đục hoặc đen, gây mất mỹ quan. Dầu mỡ : Gây mùi, ngăn cản khuếch tán oxy trên bề mặt. c. Thông số lựa chọn : Nếu giả sử tiêu chuẩn cấp nước ở các khu đô thị lớn ở Việt Nam là 200l/người.ngày đêm và 80% trong đó thải ra ngoài môi trường. Hệ số không điều hòa là 1,5h [7] Thì lưu lượng nước thải ra tính cho 10000 người trong 1 ngày là: Qtb=200.10000.80%=1600000 l/ ngđêm= 1600m3/ ngđêm(Q1) Hay Qtb_h=66,67 m3/ h (Q2) Lưu lượng lớn nhất : Qmax_h=66,67.1,5=100m3/h (Q3) Đặc trưng ô nhiễm của nước thải sinh hoạt chủ yếu là các chất hữu cơ, các chất dinh dưỡng và các chất rắn lơ lửng. WHO (1993)[5] đưa ra tải trọng các chất ô nhiễm tính cho một người dân để xác định nồng độ các chất ô nhiễm đầu vào cho hệ thống xử lý nước thải sinh hoạt như Bảng 1. 3a. Bảng 1. 3a. Tải trọng các chất ô nhiễm trong nước thải sinh hoạt đô thị Chất ô nhiễm BOD5 COD TOC TS SS Dầu mỡ Độ kiềm (CaCO3) Chlorides TN (N) Org – N Ammonia   TP (P) Org – P Inorg – P Tổng Coliform Tải lượng (g/ người.ngày) 45 – 54 (1,6 – 1,9)BOD5 (0,6 – 1,0)BOD5 170 – 220 70 – 145 10 – 30 20 – 30 4–8 6 – 12 0,4TN 0,6TN (0,0 – 0,05)TN 0,6 – 4,5 0,3TP 0,7TP 106 – 109 MNP/100ml Nguồn: [5]. Đối với các đô thị ở Việt Nam thì tải trọng các chất ô nhiễm tính cho một người dân có thể tham khảo theo Bảng 1. 3b. Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Bảng 1. 3b. Tải trọng các chất ô nhiễm tính cho một người dân Việt Nam Chất ô nhiễm SS BOD5  −   − Chất hoạt động bề mặt Dầu mỡ Cl- Tải trọng (g/người.ngày) 60 – 65 30 – 35 8 1,44 3,3 2 – 2,5 10 Nguồn:[7]. Các bảng số liệu trên dùng để tính cho 1 người trên ngày,nhưng không có tính khả thi để tính tải trọng ô nhiễm cho một khu dân cư. Qua tìm hiểu về nước thải sinh hoạt hiện nay, Số liệu đặc trưng ô nhiễm nước thải của các khu đô thị lớn,và dòng ra theo cột A QCVN 14:2008/BTNMT ta được bảng thông sô đầu vào và đầu ra như sau: Bảng 1. 3c. Các thông số đầu vào và đầu ra. Hạng mục Chất lượng nước dòng vào ( yêu cầu thiết kế ) Nhiệt độ 20 – 30oC Chất lượng nước dòng ra theo QCVN 14 :2008 cột A [6] 20 – 30oC pH 6.5 - 8.0 5–9 BOD5 400 mg/l 50 mg/l NH4_N 50 mg/l 5 mg/l Chất rắn lơ lửng (T- SS) 275 mg/l 50 mg/l TKN 60 mg/l - PO4_P 12 mg/l 6 mg/l 30 mg/l 5 mg/l Dầu + Mỡ Tổng Coliform 5 6 10 - 10 MPN/ 100ml 3.000 MPN/100 ml Theo QCVN 14:2008/BTNMT thì cột A là cột quy định giá trị C của các thông số ô nhiễm làm cơ sở tính toán giá trị tối đa cho phép trong nước thải sinh hoạt khi thải vào các nguồn nước được dùng cho mục đích cấp nước sinh hoạt (có chất lượng nước tương đương cột A1 và A2 của Quy chuẩn kỹ thuật quốc gia về chất lượng nước mặt) [7]. Nguyễn Văn Vượng 2. Phân tích và lựa chọn công nghệ xử lý Việc áp dụng các phương pháp xử lý nước thải phụ thuộc vào tính chất nước thải, hàng loạt các yếu tố khác như : kinh phí , diện phí , diện tích dành cho hệ thống xử lý, đặc điểm địa hình , hệ thống thoát nước , mục đích sử dụng của nguồn nước tiếp nhận , … Hệ thống xử lý nước thải thường bao gồm tổng hợp các phương pháp cơ học , hóa học và sinh học. Đặc trưng của nước thải sinh hoạt là BOD5/ COD > 0,5. Dựa trên phương pháp sinh học khử các chất dinh dưỡng , với một sự kết hợp của các bể như: bể kị khí , bể hiếm khí , và bể hiếu khí . Đối với nước thải sinh hoạt về văn bản là để khử Nitơ ( T- N ) và Phốt pho ( T- P ) , Cacbon hữu cơ và Hydro ( BOD ), và SS. Nên để xử lý đạt hiệu quả tốt hơn thì dùng biện pháp xử lý sinh học để xử lý nước thải sinh hoạt kết hợp với phương pháp khác. a. Xử lý nước thải sinh hoạt bằng công nghệ Aeroten Đây là công nghệ mang tính chất truyền thống,xử lý nước thải bằng phương pháp sinh học hiếu khí,trong đó người ta cung cấp oxi và khuấy trộn nước thải với bùn hoạt tính Tiếp nhận: hầm tiếp nhận; Điều hòa: bể điều hòa lưu lượng; Xử lý cơ học: song chắn rác thô thủ công,song chắn rác tinh,bể lắng cát thổi khí Bể lắng đợt một; Xử lý sinh học: bể aeroten, bể lắng đợt 2; Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Xử lý cặn:sân phơi cát,bể nén bùn,máy ép bùn băng tải; Khử trùng: bằng dung dịch NaOCl 10%. Thuyết minh công nghệ: Nước thải sinh hoạt được thu gom bằng hệ thông thoát nước thải sinh hoạt của khu dân cư dẫn về trạm xử lý,vào bể tiếp nhận có song chắn rác thô(khe hở 30mm) cào rác thủ công và hệ thống sục khí nhằm tránh khả năng lắng cặn của nước thải. sau khi nước thải trong bể tiếp nhận đạt đến mức nhất định sẽ dược bơm đến song chắn rác tinh (khe hở 30mm) cào rác cơ giới trước khi đến bể lắng cát thổi khí. Tại bể lắng cát thổi khí,các chất rắn vô cơ,có trọng lượng lớn sẻ bị tách ra khỏi nước và được xả vào sân phơi cát sau một khoảng nhất định do điều kiện vận hành hệ thống thực tế quyết định.sau đó nước thải được dẫn đến bể điều hòa lưu lượng với hệ thống sục khí để chống khả năng lắng cặn tải bể,đồng thời tuần hoàn bùn hoạt tính dư để thực hiện đông tụ sinh học để tăng hiệu quả xử lý của bể lắng bậc hai. Nước thải được bơm từ bể điều hòa đến bể lắng đợt một. Sau khi lắng nước tự chảy đến bể aeroten. Tại bể aeroten nước thải được xử lý bằng quá trình sinh học lơ lững hiếu khí. Quá trình hiếu khí được duy trì bằng hệ thống phân phối khí được bố trí trong máy thổi khí. Nước sau khi ra khỏi bể aeroten được đẫn đến bể lắng đợt hai. Bể lắng đợt hai có nhiệm vụ tác bùn hoạt tính và nước sau khi xử lý sinh học,sau đó tiếp tục nước được khử trùng bằng NaOCl 10%. Dung dịch NaOCl cho vào trên đường ống dẫn nước từ bể lắng đợt hai tới bể chứa, nước tiếp tục quá trình tiếp xúc tại bể chứa nước sau xử lý, nước này đạt chỉ tiêu cột A QCVN 14-2008. Nước sẻ được xả thải vào nguồn tiếp nhận khi được sự đồng ý của cơ quan quản lý môi trường. nước này có thể dùng với mục đích nông nghiệp… Bùn hoạt tính từ bể lắng đợt hai được tuần hoàn trở lại bể aeroten và phần không tuần hoàn cho ra sân phơi bùn,hoặc thực hiện quá trình đông tụ sinh học. Cặn tươi từ bể lắng đợt 1 được dẫn đến bể nén bùn bằng trọng lực để nén làm giảm lượng nước chưa trong bùn,chưa bùn trước khi dẫn vào máy ép bùn. Bùn sau khi ép có độ ẩm khoảng 70%, Rồi vận chuyển đến nơi xử lý chất thải rắn. Ưu nhược điểm Bể Aerotank cũng là một trong những phương pháp xử lý sinh học hiếu khí. Ưu điểm của bể là rất dễ xây dựng và vận hành. Tuy nhiên do phải sử dụng bơm để tuần hoàn bùn ổn định lại nồng độ bùn hoạt tính ở trong bể nên khi vận hành tốn năng lượng. Bể Aerotank có nhiều loại như bể Aerotank truyền thống, bể Aerotank nhiều bậc,... Tuy nhiên bể Aerotank truyền thống sử dụng đơn giản nhất. Yếu tố quan trọng bậc nhất của bể Aerotank là hàm lượng DO cấp vào. Do vậy cũng cần phải tốn thêm năng lượng cho máy thổi khí. Tiếp đến là tỷ lệ BOD:COD > 0,5, BOD:N:P = 100:5:1, cũng không thể không nhắc đến nhiệt độ, pH, và hàm Nguyễn Văn Vượng lượng chất độc,... Bể Aerotank được sử dụng nhiều trong các ngành có hàm lượng chất hữu cơ cao trong nước thải như bia, giấy,... Xu hướng hiện nay của ngành môi trường là xử lý bằng vi sinh vật nên bể Aerotank cũng được quan tâm và nghiên cứu. Nhưng khả năng xử lý N và P còn hạn chế,nên việc áp dụng bể Aerotank trong xử lý nước thải sinh hoạt chưa đạt hiệu quả cao. b. Xử lý nước thải sinh hoạt bằng công nghệ AAO Giới thiệu về công nghệ AAO: Sơ đồ công nghệ AAO mô tả như Hình 2. 2a Hình 2.2a. Sơ đồ công nghệ AAO Công nghệ AAO bao gồm ba vùng liên kết với nhau: anaerobic (yếm khí), anoxic (thiếu khí) và oxic (hiếu khí). Thông thường mỗi vùng được chia làm vài ngăn. Hệ thống các điều kiện môi trường khác nhau như vậy cho phép xử lý đồng thời các chất hữu cơ, N và P. Bùn hoạt tính được tuần hoàn về vùng anaerobic. Hỗn hợp lỏng nội tuần hoàn từ cuối vùng oxic chứa  và  đến vùng anoxic để thực hiện quá trình denitrate hóa. Các thông số thiết kế của công nghệ AAO được cho như trong Bảng 2. 2a Bảng 2.2a. Các thông số thiết kế của công nghệ AAO SRT = 5 – 25 ngày MLSS = 3000 – 4000 mg/l HRT của các vùng: Anaerobic: 0,5 – 1,5 h Anoxic: 0,5 – 1 h Oxic: 4 – 8 h RAS = 25 – 100% dòng nước thải đầu vào Hỗn hợp lỏng nội tuần hoàn = 100 – 400% dòng nước thải đầu vào Tuổi thọ thiết kế > 15 năm Nguồn:[1]. Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Công nghệ AAO thường sử dụng cánh khuấy chìm để khuấy trộn trong các vùng anaerobic và anoxic. Có nhiều kiểu thiết bị thổi khí được sử dụng để đáp ứng DO ở vùng oxic. Công nghệ AAO có thể đạt được chất lượng nước đầu ra đến ≤ 1 mg/l TP và Tuy nhiên NOx – N dòng ra thường giới hạn khoảng 6 – 10 mg/l và phụ thuộc vào dòng vào cũng như hỗn hợp lỏng nội tuần hoàn. . Sơ đồ công nghệ: Hình 2.2b Phương án thiết kế hệ thống xử lý nước thải sinh hoạt bằng công nghệ AAO Thuyết minh công nghệ: Phương án xử lý nước thải sinh hoạt bằng công nghệ AAO được mô tả như trên Hình 2. 2b. Nước thải sinh hoạt đầu vào qua tách rác thô đi vào trạm bơm và được bơm qua bể lắng cát thổi khí, rồi tự chảy qua bể lắng sơ cấp và qua phần xử lý sinh học bằng công nghệ AAO với 3 vùng anaerobic, anoxic và oxic liên kết nhau. Phần xử lý sinh học là công nghệ lõi có nhiệm vụ xử lý chất hữu cơ và đặc biệt là N và P. Tiếp tục nước thải sinh hoạt tự chảy qua bể lắng thứ cấp, qua khử trùng bằng clo trước khi thải ra sông. Rác thô tách được chứa tạm thời ở thùng chứa rồi chuyển đi bãi chôn lấp. Cát từ bể lắng cát thổi khí chuyển đến sân phơi cát để tái sử dụng. Bùn từ bể lắng sơ cấp được đưa đến bể lên men yếm khí, rồi tới bể chứa. Bùn hoạt tính từ bể lắng thứ cấp được trạm bơm bùn hoạt tính bơm một phần tuần hoàn vào bể anaerobic, còn lại được bơm đến bể lắng trọng lực, rồi tới bể methane cho lên men yếm khí thu biogas và Nguyễn Văn Vượng giảm lượng bùn thải. Bùn ở bể methane được chứa tạm thời ở bể chứa rồi được tách nước bằng máy ép bùn băng tải. Bùn khô được xe tải chuyển đi bãi chôn lấp hợp vệ sinh hoặc sản xuất phân compost. Ngoài ra có rất nhiều công nghệ có thể lựa chọn để xử lý nước thải sinh hoạt cho từng trường hợp cụ thể như: SBR, MBR, AO..... Trong số đó công nghệ AAO có khả năng được chấp nhận trong nhiều trường hợp. Công nghệ AAO được xem là tiên tiến so với công nghệ aeroten truyền thống nhờ khả năng xử lý đồng thời chất hữu cơ, N và P, sinh ra ít bùn hơn và bùn lắng tốt, vận hành đơn giản và tiết kiệm năng lượng . Hiện tại ở Việt Nam xử lý nước thải bằng công nghệ AAO đã được triển khai ở một số nơi như Trung tâm Hội nghị quốc gia, Khu đô thị Mỹ Đình 2 (Hà Nội),bệnh viện chợ Rẫy... Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Phần 2 Thiết kế bể AAO cho hệ thống xử lý nước thải sinh hoạt khu dân cư 10000 dân 1. Thông số đi vào bể Nếu giả sử thành phần nước thải trước khi vào bể AAO chỉ thay khi đi qua bể lắng sơ cấp,thông số thay đổi là BOD5 và SS. Với hiệu suất cho bởi τ η  = ,% 0,018 + 0,020τ và η = τ ,% 0,0075 + 0,014τ Hiệu suất xử lý BOD5 và SS của bể lắng sơ cấp ở lưu lượng trung bình: η  = 1,8 = 33,33 % 0,018 + 0,020.1,8 và η = 1,8 = 55,05 % 0,0075 + 0,014.1,8 BOD5 và SS của nước thải sinh hoạt sau khi ra khỏi bể lắng sơ cấp ở lưu lượng trung bình: BOD5 = 400(1 – 0,3333) = 266,68 mg/l SS = 275(1 – 0,5505) = 123,61 mg/l Như kết quả tính toán cho thấy SS của nước thải sau bể lắng sơ cấp < 150 mg/l coi như thích hợp đưa vào xử lý sinh học ở bể AAO. Tổng kết lại thông số cần tính toán khi đưa vào bể AAO: BOD5=266,68 mg/l SS =123,61 mg/l TKN =60 mg/l NH4_N = 50 mg/l PO4_P = 12 mg/l Qtb= 1600m3/ ngđêm=Q1 Qtb_h=66,67 m3/ h =Q2 Lưu lượng lớn nhất : Qmax_h=66,67.1,5=100m3/h =Q3 Nguyễn Văn Vượng 2. Tính cụm bể AAO Trình tự thiết kế: thiết kế bể aerobic và xác định lượng NO3 tạo thành,tính các dòng tuần hoàn vào hai bể còn lại. Thiết kế bể anoxic và anaerobic. a. Bể aerobic Các hằng số động học của quá trình nitrate hóa ở 20oC (Bảng 23 – 14)[1]: μ! "#$ = 0,75 g VSS⁄g VSS. d K !  0,74 g NH N⁄m k/!  0,08 g VSS⁄g VSS. d K 0  0,50 g⁄m Ta lấy nhiệt độ thiết kế bằng 25oC, các hằng số động học của quá trình nitrate hóa ở 25oC: μ! "#$  0,75. 1,0712  1,052 g VSS⁄g VSS. d K !  0,74. 1,05312  0,958 g NH N⁄m k /!  0,08. 1,0412  0,097 g VSS⁄g VSS. d Nguồn :[1] Ước tính 45 theo phương trình 22 – 8. Để không giới hạn quá trình nitrate hóa thì DO phải ≥ 2 mg/l. Tốc độ quá trình nitrate hóa tăng khi DO tăng trong khoảng 3 – 4 mg/l. Tuy nhiên đối với quá trình AAO cần hạn chế DO nội tuần hoàn về bể anoxic. Do đó chọn DO = 2 mg/l. Tốc độ sinh trưởng riêng của quá trình nitrate hóa: μ! = μ! "#$ 6 7NH − N89 DO :6 : − k/! 7NH − N89 + K ! DO + K 0 Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân ở đây 7NH − N89 = 5 mg /l 5 2 :6 : − 0,097 μ! = 1,052 6 5 + 0,958 2 + 0,50 μ! = 0,61d@ Thời gian lưu bùn của bể aerobic: SRT"C! = 1 1 = μ! 0,61 SRT"C! = 1,64 d Ta chọn hệ số an toàn SF = 2,5 Thời gian lưu bùn của bể aerobic: SRT = SF. 7SRT"C! 8 = 2,5.1,64 = 4,1 d Lượng sinh khối hoạt tính được tạo thành trong bể aerobic tính theo phương trình (8 – 15) [1] gồm sinh trưởng của sinh khối dị dưỡng (A), suy giảm nội sinh các tế bào (B) và sinh trưởng của sinh khối nitrate hóa (C): QY7CODC − COD9 810 PF,GC0 = 7A8 1 + k / θL f/ k/ QY7CODC − COD9 8θL 10 + 7B8 1 + k / θL Q. NO$ 10 + 7C8 1 + k /! θL ở đây NOx = nồng độ nitrate được tạo thành trong bể aerobic, mg/l; fd = tỷ lệ phần trơ của tế bào. Các hằng số động học của quá trình sinh trưởng của vi khuẩn dị dưỡng ở 20oC và hệ số hiệu chỉnh ảnh hưởng của nhiệt độ như Bảng 23 – 13 . Do đó, ở 25oC ta có: μ" = 6. 1,0712 = 8,415 g VSS⁄g VSS. d k/ = 0,12. 1,0412 = 0,146 g VSS⁄g VSS. d Nguyễn Văn Vượng Nguồn : [1] Theo Metcalt & Eddy, Inc (2003) [1] thì CODC  1,6BODC  1,6.238,35  426,69 mg/l COD9 chọn xấp xỉ = 2 mg/l Từ đó được: 1600.0,40. 7426,69 28. 10 PF,GC0  1  0,146.4,1 0,15.0,146.1600.0,40. 74261,69 28. 4,1. 10  1  0,146.4,1 1600.0,12. NO$ . 10  1  0,097.4,1  173,75  0,13. NO$ NOx xách định từ phương trình (8 – 18) (Metcalf & Eddy): NO$  TKNC 7NH N89 0,12 PF,GC0 Q PF,GC0 1600  55 7,5. 101 . PF,GC0  60 5 0,12. Theo trên ta được kết quả: PF,GC0  180 kg VSS/d NO$  55 mg/l Khối lượng MLSS tạo thành trong bể aerobic được tính theo phương trình (7 – 55): Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân mPQ  MLSS. ∀#9U0GCL  PF,PQ . SRT  180.4,1  738 kg Theo Metcalt & Eddy (2003) [1] thì đối với công nghệ AAO cần duy trì MLSS ở khoảng 3000 – 4000 mg/l. Trong thiết kế này ta chọn MLSS = 3000 mg/l. Từ đó được: ∀#9U0GCL  mPQ 738   240 m MLSS 3000. 10 Thời gian lưu thủy lực trong bể aerobic: HRT#9U0GCL  Q ∀#9U0GCL  1600  6,6 h 240 Vậy : ∀#9U0GCL  240 m HRT#9U0GCL  6,6 h b. Bể anoxic Bể Anoxic thiết kế qua tốc độ dinitrate hóa riêng Chọn tỷ số tuần hoàn bùn hoạt tính R = 0,5 và tỷ số nội tuần hoàn IR = 1 sao cho đảm bảo NO3 dòng ra đạt yêu cầu ≤ 30 mg/l Xác định nồng độ nitrate dòng ra theo phương trình (8 – 48) [1] W_Y5ZW[\ = = W_Y]^Z_[\ `a + 1 + a 55 = 22 bc/d 1 + 1 + 0,5 Giả thiết NO2-N nước thải dòng vào và các dòng tuần hoàn = 0, NO3 dòng nội tuần hoàn và NO3 bùn hoạt tính tuần hoàn bằng nhau và cũng có NO3 nước thải dòng vào = 0. Như vậy, NO3 vào bể anoxic: mNO = 7IR + R8. Q. $_#!0$CL = 71 + 0,58. 1600.22 = 55200 g⁄d = 55,2 kg/d Lượng DO vào bể anoxic: fg,Y5W = fh . i + fjkl . a. i + fmj . `a. i Ở nhiệt độ nước thải ≥ 20oC có thể lấy DOv = 0,5 mg/l; DONR = DO cuối bể aerobic = 2 mg/l. Trong trường hợp thiếu số liệu, theo WEF (2005) lấy DORAS = 0,5× DO cuối bể aerobic = 1 mg/l. fg,Y5W = 0,5.1600 + 1.0,5.1600 + 2.1.16000 = 4800 c/n Lượng DO tương đương với NO3 vào bể anoxic từ dòng nội tuần hoàn:  h_Y5W = 0,35. fg,Y5W = 0,35.4800 = 1680 c⁄n Nguyễn Văn Vượng Tổng lượng NO3 cần xử lý tại bể anoxic: o hàZ a =  hàZ +  5ộ[ rsầ5 uZà5 = 55200 + 1680 = 56880 c/n Bể anoxic được thiết kế theo cách tiếp cận qua tốc độ denitrate hóa riêng theo phương trình (8 – 41)[1]: NO U# = ∀#!0$CL . SDNR@1 . MLVSS ở đây: NO U# – lượng nitrate khi được xử lý, g/d; ∀#!0$CL – dung tích bể anoxic, m3; SDNR 1 – tốc độ denitrate hóa riêng ở 25oC, g NO3-N/ g MLVSS.d; Do hạn chế việc tính toán tốc độ denitrate hóa riêng Nên theo Lê Văn Cát (2007) [2] dung tích bể anoxic thường bằng 25 – 50% dung tích bể aerobic. Hoặc, giả thiết thời gian lưu thủy lực của bể anoxic theo khuyến cáo của Metcalf & Eddy (2003) [1] HRTanx = 0,5 – 1 h. Nhận thấy khi HRTanx = 0,6 h. Ta có: ∀#!0$CL = HRT#!0$CL Qv_anx Với Qv_anx =Q2(1+IR+R)=3,5Q2=3,5.66,67=233,35 m3/h Vậy ta có kết quả tính anoxic: ∀#!0$CL = 0,6.233,35 = 140m3 HRTanx = 0,6 h c. Bể anaerobic Theo Lê Văn Cát 2007 [2] Theo đồ thị Randall để đáp ứng nồng độ PO4 dòng ra ≤ 6 mg/l thì tỷ lệ TCOD: TP ~ 20. Như vậy hệ nước thải dư chất hữu cơ cần thiết cho quá trình xử lý sinh học P. Tỷ lệ TCOD:TP =444,45:12=37:1 < 40:1 cho nên trong khi vận hành hệ thống AAO có thể cần thiết bổ sung VFAs vào bể anaerobic (phương án lên men sơ bộ) hay áp dụng kết tủa hóa học P. Thiết kế hệ thống xử lý nước thải sinh hoạt cho khu dân cư 10000 dân Vậy ta chọn phương án 1 Thời gian lưu thủy lực của bể anaerobic ước tính theo đồ thị Randall: Trong trường hợp BOD/COD > 0,5 và TCOD/TP < 40 thì thiết kế bể yếm khí với thời gian lưu thủy lực không thấp hơn 90 phút. Vậy lượng P cần xử lý là 6mg/l tương ứng với thời gian lưu thủy lực HRTana= 2h Lưu lượng vào bể: Qana=Q2.(1+R)=66,67.(1+0,5)=100m3/h Dung tích bể anaerobic: ∀Y5Y = aoY5Y . Qana  2.100  200 b
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng