Đăng ký Đăng nhập
Trang chủ Luận văn thạc sỹ Vật lý Nghiên cứu vi cấu trúc của các ôxit bằng phương pháp si...

Tài liệu Luận văn thạc sỹ Vật lý Nghiên cứu vi cấu trúc của các ôxit bằng phương pháp simplex

.PDF
60
404
57

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRUỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------ NGUYÔN THANH HOA NGHI£N CøU VI CÊU TróC CñA C¸C «XIT B»NG PH¦¥NG PH¸P SIMPLEX Chuyªn ngµnh: VËt lý lý thuyÕt vµ vËt lý to¸n M· sè : 60.44.01 LUẬN VĂN THẠC SĨ KHOA HỌC Ng-êi h-íng dÉn khoa häc PGS.TSKH. Ph¹m kh¾c hïng Hµ néi- 2011 Nguyễn Thanh Hoa Cao học Vật lý 2009 MỤC LỤC Trang MỤC LỤC……………………………………………………………………….1 DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU ……………………………3 DANH MỤC CÁC BẢNG BIỂU……………………………………………….4 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ……………………………………5 MỞ ĐẦU…………………………………………………………………………6 1.Lí do chọn đề tài .............................................................................................. 6 2. Mục đích đối tƣợng và phạm vi nghiên cứu ................................................... 7 3. Phƣơng pháp nghiên cứu ................................................................................ 7 4. Ý nghĩa khoa học và thực tiễn của đề tài........................................................ 7 5. Những đóng góp mới của luận văn................................................................. 7 6. Cấu trúc của luận văn ..................................................................................... 8 CHƢƠNG I. TỔNG QUAN…………………………………………………….9 1.1 SiO2 ............................................................................................................... 9 1.2. Mô phỏng SiO2 .........................................................................................12 Kết luận chƣơng 1……………………………………………………………..19 CHƢƠNG II. PHƢƠNG PHÁP MÔ PHỎNG………………………………20 2.1. Phƣơng pháp động lực học phân tử trong mô phỏng vật liệu ôxit ............20 2.1.1 Thuật toán độn lực học phân tử……………………………………..18 2.1.1.1 tích phân phƣơng trình chuyển độn...………………………….18 2.1.1.2 Thuật toán Verlet…….…………………………………….......21 2.1.1.3 Gần đúng Ewald-Hansen…………….………………………...23 2.1.2. Xây dựng mô hình SiO2......................................................................29 2.2. Xác định đặc trƣng vi cấu trúc...................................................................31 2.2.1. Hàm phân bố xuyên tâm……………………………………............32 2.2.2. Xác định số phối trí…………………………………………………32 1 Nguyễn Thanh Hoa Cao học Vật lý 2009 2.2.3. Xác định phân bố góc……………………………………………….32 2.2.4. Xác định Simplex……………………………………………………33 CHƢƠNG III KẾT QUẢ VÀ THẢO LUẬN…………………………………35 3.1 Đặc trƣng vi cấu trúc……………………………………………………..35 3.2 Phân bố góc………………………………………………………………37 3.3. Simplex ......................................................................................................48 3.4. Kết luận chƣơng 3……………………………………………………….50 TÀI LIỆU THAM KHẢO…………………………………………………….51 2 Nguyễn Thanh Hoa Cao học Vật lý 2009 DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU NLBĐ Nguyên lý ban đầu ĐLHPT Động lực học phân tử MĐT Mật độ thấp MĐC Mật độ cao TN Thực nghiệm VĐH Vô định hình HPBXT Hàm phân bố xuyên tâm SPT Số phối trí TKHP Thống kê hồi phục 3 Nguyễn Thanh Hoa Cao học Vật lý 2009 DANH MỤC CÁC BẢNG BIỂU Trang Bảng 1.1. Năng lƣợng của hệ SiO2 ở các mô hình có kích thƣớc khác nhau, TLTK viết tắt của cụm từ “tài liệu tham khảo”. ................................................16 Bảng 1.2 Số liệu tính toán và thực nghiệm của các mô hình SiO2 ....................17 Bảng 1.3 Phân bố số phối trí của Si4+ ................................................................17 Bảng 2.1. Mô hình tính toán gần đúng Ewald – Hassen trong không gian 2 chiều, mạng tuần hoàn 3x3 đƣợc dựng nên từ ô cơ sở có tâm n(0,0) ...........................23 Bảng 2.2. Các thông số của thế BKS đối với hệ SiO2 ......................................31 Bảng 3.1. Đặc tính của SiO2 rắn; rij, gij là vị trí và độ cao của đỉnh thứ nhất của các hàm phân bố xuyên tâm thành phần; Zij số phối trí cặp trung bình.ở đây 1-1 cặp Si-Si; 1-2 là cặp Si-O; 2-2 cặp O-O.............................................................39 Bảng 3.2. Đặc trƣng cấu trúc của silica; rxy là vị trí thứ nhất của HPBXT thành phần; Zxy- số phối trí cặp trung bình, Sx Oy tỷ lệ số lƣợng các đơn vị cấu trúc SiOx và OSiy tƣơng ứng……………………………………………………….38 4 Nguyễn Thanh Hoa Cao học Vật lý 2009 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 3.1. Sự phụ thuộc của tỷ lệ các đơn vị cấu trúc SiO4, SiO5 và SiO6 vào áp suất của hệ SiO2 ở nhiệt độ T=300K………………………………………….37 Hình 3.2. Phân bố góc liên kết O-Si-O trong các đơn vị cấu trúc SiO4(a), SiO5(b), SiO6(c)…………………………………………………………….....39 Hình 3.3. Phân bố góc O-Si-O tổng thể ở các áp suất khác nhau……………..41 Hình 3.4. Phân bố góc liên kết Si-O-Si trong các đơn vị cấu trúc OSi2(a), OSi3(b)……...…………………………………………………………………42 Hình 3.5. Phân bố góc Si-O-Si tổng thể ở các áp suất khác nhau......................44 Hình 3.6. Phân bố số lƣợng simplex có bốn nguyên tử oxy chứa một nguyên tử silic theo bán kính ở mật độ thấp……………………………………………...45 Hình 3.7. Phân bố số lƣợng simplex 7(a), simplex 8(b) theo bán kính ở mật độ thấp…………………………………………………………………………….46 Hình 3.8. Phân bố số lƣợng simplex có 4 nguyên tử oxy chứa một nguyên tử silic theo bán kính các mật độ cao…………………………………………….47 Hình 3.9 phân bố số lƣợng simplex 7(a), simplex 8(b) theo bán kính ở mật độ cao………………………………………………………………………………48 5 Nguyễn Thanh Hoa Cao học Vật lý 2009 MỞ ĐẦU 1. Lí do chọn đề tài Vật liệu ôxit đƣợc biết đến là vật liệu có cấu trúc mạng đƣợc tạo bởi các đơn vị cấu trúc cơ bản liên kết với nhau và SiO 2 là một trong những ôxit điển hình thể hiện rõ đặc điểm đó. SiO2 (silica) đã và đang đƣợc công nghệ vật liệu quan tâm nhiều trong ngành vật lí chất rắn, khoa học vật liệu và địa chất. Ở áp suất thƣờng silica có cấu trúc đặc trƣng bởi các tứ diện SiO 4. Khi nén mô hình silica lại có sự biến đổi trong cấu trúc mạng chẳng hạn nhƣ khi nén mô hình với với áp suất thay đổi từ 10 GPa đến 25GPa thì có sự chuyển dần số phối trí của Si từ 4 đến 6 và mật độ tăng lên 20 % so với mật độ ban đầu của mô hình [42]. Đã có nhiều công trình cả thực nghiệm lẫn mô phỏng nghiên cứu quá trình nén của SiO2 ở các áp suất khác nhau với các đặc trƣng cấu trúc nhƣ khoảng cách liên kết, phân bố góc giữa các đơn vị cấu trúc …[3, 8, 21, 28, 33, 36, 42], Cấu trúc của silica đƣợc đặc trƣng bởi phân bố góc O-Si-O và Si-O-Si. Một số thông tin về phân bố góc đã đƣợc đƣa ra bằng thực nghiệm. Nghiên cứu sự chuyển pha cấu trúc trong trạng thái lỏng và thủy tinh bằng phƣơng pháp động lực học phân tử để xây dựng mô hình nhận thấy điểm đặc trƣng của nghiên cứu chuyển pha thù hình là sự chuyển từ pha mật độ thấp (có cấu trúc tứ diện) sang pha mật độ cao (có cấu trúc bát diện). Khi nghiên cứu trong vật liệu điển hình SiO2 đã thấy có sự xuất hiện đơn vị cấu trúc SiO5 khi số đơn vị cấu trúc SiO4 giảm xuống. Đơn vị cấu trúc SiO5 đƣợc xem nhƣ là một loại đơn vị cấu trúc trung gian khi chuyển pha thù hình từ cấu trúc tứ diện (SiO4) sang cấu trúc bát diện (SiO6). Phân bố góc O-Si-O và Si-O-Si cũng có sự biến đổi rộng khi nén mô hình ở các áp suất khác nhau. Từ những mô phỏng đó cho ta thấy đƣợc mối quan hệ giữa phân bố góc O-Si-O, Si-O-Si và phân bố số phối trí để từ đó ta có thể xác định tỷ lệ các đơn vị cấu trúc trên cơ sở phân bố góc O-Si-O, Si-O-Si đo bằng thực nghiệm và nó cũng chính là nội dung đƣợc nghiên cứu trong luận văn. 6 Nguyễn Thanh Hoa Cao học Vật lý 2009 Nghiên cứu về sự thay đổi mật độ khi nén áp suất của mô hình mô phỏng đã có nhiều cách giải thích khác nhau nhƣ mất lỗ trống, phá vỡ cấu trúc…trong luận văn này một phƣơng thức mới đƣợc đề cập tới: giải thích độ đậm đặc của vật liệu (SiO2) trong quá trình nén qua việc khảo sát phân bố số lƣợng các loại simplex theo bán kính ở các mật độ khác nhau. 2. Mục đích đối tƣợng và phạm vi nghiên cứu Đối tƣợng nghiên cứu của luận văn là ôxit SiO2 có T=300 K ở các áp suất khác nhau. Luận văn tập trung nghiên cứu các vấn đề sau: a. Nghiên cứu vi cấu trúc của SiO2 theo áp suất: hàm phân bố xuyên tâm, số phối trí cặp trung bình, phân bố các đơn vị cấu trúc SiOx (x=4, 5, 6) theo áp suất. b. Thiết lập mối quan hệ giữu phân bố góc O-Si-O, Si-O-Si và phân bố số phối trí. c. Phân tích sự thay đổi số lƣợng các loại simplex theo bán kính ở các mật độ (áp suât) khác nhau. 3. Phƣơng pháp nghiên cứu Luận văn sử dụng phƣơng pháp mô phỏng động lực học phân tử (ĐLHPT) và phƣơng pháp phân tích cấu trúc vi mô. 4. Ý nghĩa khoa học và thực tiễn của đề tài Luận văn cung cấp giúp chúng ta một phƣơng pháp mới để xác định tỷ lệ các đơn vị cấu trúc trên cơ sở phân bố góc O-Si-O và Si-O-Si đo đƣợc từ thực nghiệm thông qua hàm thiết lập mối quan hệ giữa phân bố góc và phân bố số phối trí. Phân bố số lƣợng simplex trong SiO2 theo bán kính ở các mật độ khác nhau cho chúng ta một cơ sở mới giải thích cho mức độ đậm đặc của mô hình vật liệu khi áp suất thay đổi. 5. Những đóng góp mới của luận văn Luận văn giúp chúng ta xác định tỷ lệ các đơn vị cấu trúc bằng lí thuyết thông qua mối quan hệ giữa phân bố góc và phân bố sổ phối trí điều mà trƣớc đây ta chỉ có thể biết đƣợc qua mô phỏng. 7 Nguyễn Thanh Hoa Cao học Vật lý 2009 Luận văn còn đƣa ra một cơ sở giải thích mới về việc tăng mật độ của mô hình vật liệu trong quá trình nén. 6. Cấu trúc của luận văn Luận văn gồm 3 chƣơng. Chƣơng 1: Trình bày tổng quan về hệ SiO2, các kết quả nghiên cứu, các công trình mô phỏng của vật liệu này về những đặc trƣng động lực học và vi câu trúc. Chƣơng 2: Trình bày nội dung phƣơng pháp mô phỏng động lực học phân tử và thế tƣơng tác sử dụng cho xây dựng các mô hình SiO2. Phƣơng pháp xác định thông số vật lý đặc trƣng của mô hình động lực học phân tử. Chƣơng 3: Tình bày kết quả của mô phỏng hệ SiO2 Các công trình khoa học đã đƣợc công bố: có 02 bài báo đã đƣợc công bố Báo cáo tại hội nghị Vật lí lí thuyết toàn quốc lần thứ 36 tại thành phố Quy Nhơn tháng 8/2011 với tên bài báo: “Molecular Dynamic Simulation of Amorphous SiO2 under Pressure” Huy N.V., Nhan N.T., Hung P.K Và báo cáo tại hội nghị Việt Hàn tổ chức tại Đại học Bách Khoa Hà Nội tháng 11/2011 với tên bài báo: “Polymorphism and the relation between coordination distribution and bond angle in liquid silica and alumina” N.V.Hong, N.V.Huy, N.T.Hoa and P.K.Hung 8 Nguyễn Thanh Hoa Cao học Vật lý 2009 CHƢƠNG I. TỔNG QUAN Ngày nay với sự phát triển mạnh mẽ của ngành công nghệ thông tin đã đem lại nhiều lợi ích trong việc nghiên cứu cấu trúc cũng nhƣ đặc trƣng của vật liệu. Dựa trên phƣơng pháp mô phỏng vi mô các mô hình nguyên tử đƣợc mô tả từ đó cung cấp cho chúng ta nhiều thông tin, các tính chất vật lý về vật liệu cho các quá trình công nghệ.Với thời gian thực hiện ngắn, kinh phí rẻ hàng loạt các công trình mô phỏng đã và đang đƣợc thực hiện mở ra nhiều vấn đề cần phải đƣa ra thảo luận và nghiên cứu tiếp. Gần đây một vấn đề đang đƣợc nhiều ngƣời quan tâm là sự tồn tại của nhiều dạng cấu trúc bên trong trạng thái rắn và lỏng trong hệ ôxit. Trong quá trình tiến hành nghiên cứu mạng cấu trúc oxit các đặc trƣng liên quan nhƣ hàm phân bố xuyên tâm, các đơn vị cấu trúc cơ bản, thành phần hóa học, số phối trí, phân bố góc, simplex lần lƣợt đƣợc làm sáng tỏ. Trong chƣơng này chúng tôi trình bày tổng quan về SiO2 các phƣơng pháp mô phỏng hệ cũng nhƣ các kết quả nghiên cứu vi mô về cấu trúc và các đặc trƣng vật lí SiO2 ở nhiệt độ T = 300K với các áp suất khác nhau 1.1. SiO2 Hiện nay SiO2 chủ yếu đƣợc ứng dụng trong các lĩnh vực công nghệ cao nhƣ điện tử, y học, quang học, siêu dẫn, hàng không, cơ khí và các thiết bị phân tích [27, 38]. Việc hiểu biết về cấu trúc của SiO2 ở các điều kiện đặc biệt (nhiệt độ cao, áp suất cao) đã trở nên rất quan trọng. Vì vậy các vấn đề liên quan đến cấu trúc địa phƣơng, chuyển pha cấu trúc, và đặc tính động lực học của vật liệu đều đƣợc quan tâm cả dƣới góc độ nghiên cứu ứug dụng và nghiên cứu cơ bản. Silicđiôxit (SiO2) hay còn gọi là silica, là ôxit đƣợc cấu tạo từ một nguyên tử Si kết hợp với hai nguyên tử O, ở trạng thái tự nhiên Silica có thể tồn tại ở dạng tinh thể, không tan trong nƣớc, nóng chảy ở 17130 nhƣng khi đi sâu vào tìm hiểu và nghiên cứu ta nhận thấy đƣợc nhiều đặc tính quan trọng của nó. Silica (SiO2) có thể tồn tại dƣới nhiều dạng thù hình khác nhau. Ở nhiệt độ và áp suất 9 Nguyễn Thanh Hoa Cao học Vật lý 2009 thƣờng, cấu trúc và trạng thái cơ bản của silica là α-quartz (q-SiO2). Cấu trúc qSiO2 sẽ chuyển sang cấu trúc coseite (c-SiO2) ở áp suất lớn hơn 2 GPa. Trong coseite nguyên tử Si có số phối trí là 4, nguyên tử O có số phối trí là 2 với cấu trúc là sự xếp chặt của các tứ diện SiO4- các tứ diện này liên kết với nhau thông qua các đỉnh của tứ diện. Ở áp suất trên 8GPa cấu trúc SiO2 chuyển sang cấu trúc stishovite (s-SiO2) với nguyên tử Si có số phối trí là 6, nguyên tử O có số phối trí là 3, có cấu trúc đặc trƣng bởi các khối tám mặt. SiO6 liên kết với nhau thông qua cạnh chung. Tuy nhiên, silica có thể duy trì ở cấu trúc quartz ở trạng thái giả bền tới áp suất khoảng 15 GPa. Áp suất trên 15 GPa cấu trúc quartz sẽ chuyển thành cấu trúc VĐH. Ở áp suất thƣờng, đơn vị cấu trúc cơ bản của silica ở pha lỏng và VĐH chủ yếu là các khối tứ diện SiO4 còn ở điều kiện áp suất cao thì đơn vị cấu trúc cơ bản chủ yếu là các khối bát diện SiO6. Sự chuyển pha từ cấu trúc mạng tứ diện (pha mật độ thấp) sang cấu trúc bát diện (pha mật độ cao) của SiO2 VĐH xảy ra trong khoảng rộng của mật độ từ 3,60g/cm3 đến 4,65 g/cm3. Quá trình này diễn ra với sự tăng phân bố phối trí trung bình của tất cả các cặp và sự giảm khoảng cách liên kết giữa cặp nguyên tử [5]. Phân tích cấu trúc vi mô của hệ ta thấy đƣợc sự chuyển pha thù hình trong ôxit có cấu trúc mạng ngẫu nhiên (cấu trúc framework) thƣờng xảy ra dƣới tác động của áp suất hoặc nhiệt độ. Quá trình chuyển pha lỏng-lỏng hoặc VĐHVĐH thƣờng liên quan đến sự tăng số phối trí cặp, sự thay đổi khoảng cách tƣơng tác giữa các cặp nguyên tử, sự thay đổi phân bố góc liên kết giữa các nguyên tử trong cùng một đơn vị cấu trúc cơ bản và góc liên kết giữa các nguyên tử ở các đơn vị cấu trúc khác nhau. Nói cách khác trong quá trình chuyển pha thù hình của SiO2 cả cấu trúc trật tự gần (short-range order) và cấu trúc trật tự khoảng trung (immediate-range order) đều có liên quan. Theo Hazan và Finger trong [14] các vật liệu ôxit phản ứng lại sự thay đổi nhiệt độ hoặc áp suất chủ yếu bằng cách thay đổi góc liên kết ở vị trí kết nối các khối đa diện và silica đƣợc xem nhƣ vật liệu điển hình thể hiện tính chất này. 10 Nguyễn Thanh Hoa Cao học Vật lý 2009 Silica có một giản đồ pha rất đa dạng trong không gian P-T. Cấu trúc của nó ở dạng bình thƣờng là pha α-quartz, đƣợc tạo thành bởi sự kết nối của các tứ diện SiO4 liên kết với nhau theo kiểu xoắn ốc. Cấu trúc của α-quartz đƣợc đặc trƣng bởi các vòng chập bốn của các tứ diện nối với nhau thành chuỗi. Và nó có thể dễ dàng biến đổi thành cấu trúc coesite khi áp suất tăng. Coesite có thể tồn tại ở áp suất thƣờng bằng cách giảm nhanh áp suất tới khí quyển. Cả hai cấu trúc này đều có góc Si-O-Si lí tƣởng nằm trong khoảng 1430-1440. Sự chuyển pha ở đây đƣợc đặc trƣng bởi sự sắp xếp lại của các khối tứ diện. Trong đó, sự sắp xếp của các khối tứ diện trong coesite chặt hơn trong α-quartz. Điều này có thể đƣợc thấy rõ bằng cách xem xét các lân cận của nguyên tử oxy. Trong α-quartz mỗi nguyên tử oxy có ba nguyên tử oxy khác ở lân cận với khoảng cách 2.6 Å. Đây là các nguyên tử oxy ở trong cùng một tứ diện. Các nguyên tử oxy gần nhất từ bất cứ tứ diện nào khác đƣợc tìm thấy ở khoảng cách cỡ 3.5Å. Mặt khác, trong coseite, mỗi nguyên tử oxy cũng có ba nguyên tử oxy lân cận ở khoảng cách cỡ 2.6 Å. Điều này cho thấy pha coseite cũng đƣợc tạo thành từ những khối tứ diện SiO4. Các lân cận kế tiếp gần nhất trong coesite đƣợc quan sát ở khoảng cách từ 3.0 Å đến 3.2 Å (ở áp suất khí quyển). Dƣới tác dụng của áp suất, cả hai cấu trúc trên đều có góc liên kết Si-O-Si giảm, trong khi đó độ dài liên kết Si-O gần nhƣ không thay đổi. Sự nén trong khoảng ổn định của hệ quartz sẽ nhận đƣợc sự uốn của cấu trúc thông qua quá trình quay các khối tứ diện dẫn tới sự giảm góc liên kết Si-O-Si từ 1440 xuống 1250. Nếu tiếp tục nén khi đã đến giới hạn ổn định thì sẽ nhận đƣợc một cấu trúc mới trong đó các khối tứ diện đƣợc xắp xếp chặt hơn. Cấu trúc mới này đƣợc hình thành thông qua quá trình xây dựng lại khung cấu trúc (framework) [24]. Ngoài ra, nếu tiếp tục nén với áp suất lớn hơn nữa sẽ dẫn tới sự tăng số phối trí. Do đó việc nén α-quartz (nén ở nhiệt độ thƣờng) sẽ dẫn đến sự VĐH hóa, liên quan đến cả sự phá vỡ cấu trúc và sự tăng số phối trí [32,39]. Sự VĐH hóa dƣới tác dụng của áp suất dƣờng nhƣ là một đặc điểm chung của nhiều cấu trúc framework (cấu trúc tạo thành do sự xắp xếp tuần 11 Nguyễn Thanh Hoa Cao học Vật lý 2009 hoàn của các khối đa diện), tạo ra sự giảm thể tích bằng cách phá vỡ sự xắp xếp tuần hoàn của các khối tứ diện. Quá trình tự khuếch tán cũng nhƣ quá trình khuếch tán của các nguyên tử tạp SiO2 ở trạng thái tinh thể, trạng thái VĐH và trạng thái lỏng đã đƣợc báo cáo ở công trình [15]. Kết quả cho thấy, quá trình tự khuếch tán của Si trong thủy tinh silica là rất chậm, enthanlpy hoạt hóa của Si là 6 eV, gần bằng năng lƣợng cần thiết để phá vỡ các liên kết trong tứ diện SiO4 là 5.8 eV. Rào cản chính cản trở sự chuyển động của các nguyên tử Si là năng lƣợng liên kết Si-O. Vì quá trình tự khuếch tán của O cũng bị cản trở bởi năng lƣợng liên kết Si-O, enthanlpy hoạt hoá của O sẽ có giá trị khoảng bằng một nửa enthalpy hoạt hóa của Si. Điều này phù hợp với kết quả thực nghiệm khoảng 2.43 eV, của một nhóm nghiên cứu đƣợc báo cáo trong [15]. Tuy nhiên kết quả của một nhóm nghiên cứu khác nhau cũng đƣợc tổng kết trong [15] cho thấy enthanlpy hoạt hóa của O mà các nhóm nghiên cứu báo cáo là rất khác nhau: 2.43eV, 0.85eV và 3.08eV tƣơng ứng với ba nhóm nghiên cứu khác nhau. Nguyên nhân này có thể là do cấu trúc mẫu thủy tinh silica của các nhóm nghiên cứu là khác nhau vì thế cơ chế khuếch tán sẽ khác nhau dẫn đến sự khác nhau của enthalpy hoạt hóa. 1.2. Mô phỏng SiO2 Thực tế cho thấy vật liệu oxit nói chung và SiO2 nói riêng có vai trò quan trọng, đã đƣợc ứng dụng rộng rãi. Nhiều công trình nghiên cứu cấu trúc và tính chất của các hệ oxit đã đƣợc thực hiện bằng phƣơng pháp mô hình hóa trên máy tính nhƣ phƣơng pháp Động lực học phân tử, Thống kê hồi phục, Monte Carlo và Mote Carlo đảo, v.v. Tổng quan về phƣơng pháp mô phỏng đã đƣợc trình bày chi tiết ở một số công trình lớn [11, 12, 16, 19] Phƣơng pháp phân tích vi cấu trúc dựa trên ảnh nhiễu xạ tia X, nơtron, hiển vi điện tử … là phƣơng pháp truyền thống đƣợc áp dụng và đã cung cấp nhiều thông tin có giá trị về nhóm vật liệu cần nghiên cứu. Hầu hết các đặc trƣng vật lý của vật liệu liên quan trực tiếp đến các thành phần trong chuỗi Fourier. Các hệ số 12 Nguyễn Thanh Hoa Cao học Vật lý 2009 khai triển đƣợc xác định từ độ lớn tán xạ tia X (hoặc nơtron) nên gần nhƣ tất cả các bài toán về cấu trúc đƣợc giải quyết trong không gian mạng đảo (không gian Fourier) là "ảnh" của không gian thực. Các đặc thù của mẫu vật liệu trong không gian thực đƣợc phản ánh trong không gian mạng đảo. Thông số quan trọng mô tả cấu trúc của vật liệu là thừa số cấu trúc S(q). S(q) nhận đƣợc ở đƣờng cong nhiễu xạ tia X (hoặc nơtron) nó cho phép xác định số lƣợng trung bình các nguyên tử ở khoảng cách bất kì tính từ nguyên tử đang xét [22]. Khai triển Fourier thừa số cấu trúc ta xác định đƣợc hàm phân bố xuyên tâm (HPBXT), g(r) - đặc trƣng cho trật tự gần. Tuy nhiên nhiều vấn đề về vi cấu trúc chỉ có thể giải quyết với sự trợ giúp của mô hình hóa - một phƣơng pháp đã và đang đƣợc sử dụng nghiên cứu tại hầu hết các cơ sở nghiên cứu vật liệu VĐH nói riêng và vật liệu nói chung. Có rất nhiều phƣơng pháp mô hình hóa và mỗi phƣơng pháp mô hình hóa chỉ diễn tả một đặc trƣng nào đó của cấu trúc vật liệu. Ví dụ phƣơng pháp liên kết chặt là phƣơng pháp đặc biệt phù hợp với việc miêu tả các trạng thái điện tử của hệ phi kim loại. Nó có thể mô phỏng hệ kích thƣớc lớn nhƣng lại kém chính xác. Mô phỏng Monte-Carlo thì dựa trên việc sử dụng các số ngẫu nhiên và xác suất thống kê để khảo sát các vấn đề của bài toán. Phƣơng pháp này đƣợc sử dụng khi mô hình phức tạp, không tuyến tính, hoặc bao gồm nhiều hơn một cặp các thông số không chắc chắn chẳng hạn nghiên cứu các tính chất từ, tính chất cấu trúc của vật liệu. Khi nghiên cứu các tính chất liên quan đến mật độ và phân bố điện tử phƣơng pháp nguyên lí ban đầu ab initio NLBĐ hay đƣợc sử dụng và chỉ mô phỏng tốt đối với hệ có kích thƣớc nhỏ từ vài chục đến vài trăm nguyên tử. Khi nghiên cứu các tính chất cấu trúc vi mô, tính chất nhiệt động học của vật liệu VĐH ngƣời ta thƣờng sử dụng phƣơng pháp động lực học phân tử (ĐLHPT) [7, 12, 29, 41]. Ƣu điểm của phƣơng pháp này là có thể xây dựng mô hình có kích thƣớc lớn cỡ vài ngàn đến vài chục ngàn nguyên tử, thời gian hồi phục nhanh. Kết quả thu đƣợc so sánh với dữ liệu thực nghiệm nhiễu xạ tia X và nơtron là phù hợp khá tốt. Mô phỏng ĐLHPT đƣợc sử dụng cho các nghiên cứu 13 Nguyễn Thanh Hoa Cao học Vật lý 2009 về vi cấu trúc và chuyển pha thù hình ở trạng thái lỏng và rắn VĐH trong vật liệu SiO2 trong nhiều năm. Các kết quả nghiên cứu đều chỉ ra rằng sự liên kết của các đơn vị cấu trúc cơ bản tạo thành mạng cấu trúc vật liệu ôxit. Sự thay đổi tỷ lệ các đơn vị cấu trúc, khoảng cách liên kết, phân bố góc tạo ra các thù hình khác nhau ở cùng một trạng thái. Các đặc trƣng cấu trúc nhƣ mật độ, thừa số cấu trúc, phân bố lỗ trống, khả năng hòa tan các nguyên tử khí trong các nghiên cứu mô phỏng cấu trúc vật liệu ôxit cũng đƣợc đề cập. Đặc biệt phƣơng pháp ĐLHPT còn đƣợc sử dụng trong mô phỏng nhiệt độ nóng chảy của SiO2. Mô hình đầu tiên của SiO2 đƣợc xây dựng năm 1976 bằng thế tƣơng tác cặp Born-Mayer [4] với điện tích của Si và O lần lƣợt là +4 và -2. Mô hình đƣợc thiết lập là một hình lập phƣơng có chứa 162 ion với điều kiện biên tuần hoàn. Phƣơng pháp ĐLHPT, gần đúng Eward cho việc tính tƣơng tác Coulomb (Culông) đã đƣợc áp dụng. Đầu tiên, nung vật liệu đến nhiệt độ 6000K để tăng sự khuếch tán của các hạt. Sau khi hồi phục ngƣời ta tiến hành làm lạnh xuống nhiệt độ 300 K và thu đƣợc hệ SiO2 cần nghiên cứu. Phân tích số liệu nhận đƣợc từ hàm phân bố xuyên tâm nhận thấy, vị trí đỉnh thứ nhất là 162pm ( picomet ), phù hợp với số liệu thực nghiệm. Đáng chú ý là năng lƣợng của mô hình (-12240 kJ/mol), lên quan đến khoảng cách các ion, rất gần với giá trị thực (-13300kJ/mol). Chứng tỏ mô hình ion này mô tả tốt vật liệu thực. Để mô phỏng sự phụ thuộc vào áp suất của hệ số khuếch tán của Si và O trong SiO2 lỏng James R.Rustad và David A.Yuen sử dụng thế TTAM [21] ở mô hình ĐLHPT trong công trình [18]. Các mô hình đƣợc mô phỏng có số nguyên tử khác nhau (252, 498, 864 và 1371 nguyên tử) và ở các áp suất khác nhau 0 GPa, 7 GPa, 12 GPa và 20 GPa với nhiệt độ 4000 K. Kết quả mô phỏng chỉ ra rằng ở áp suất cao hệ 252 hạt không đạt tới trạng thái cân bằng vì thế sẽ không xác định đƣợc hệ số khuếch tán. Nguyên nhân là do độ dịch chuyển bình phƣơng trung bình theo thời gian của Si và của O trong mô hình không hội tụ với một đƣờng thẳng có hệ số góc xác định. Kết quả mô phỏng các mô hình có kích 14 Nguyễn Thanh Hoa Cao học Vật lý 2009 thƣớc khác nhau cho thấy rằng, ở áp suất thấp, các tính chất của hệ ít bị ảnh hƣởng bởi kích thƣớc mô hình. Với kích thƣớc mô hình SiO2 lỏng thì mô hình từ 864 nguyên tử trở lên là đủ để xác định hệ số tự khuếch tán Dƣới tác dụng của áp suất đối với mô hình 864 hạt, hệ số tự khuếch tán đạt giá trị cực đại ở áp suất khoảng từ 12 đến 15 GPa. Các mô hình có số nguyên tử nhò hơn, cực đại của hệ số tự khuếch tán có xu hƣớng dịch chuyển về phía áp suất nhỏ. Khi tăng áp suất thì số nguyên tử Si có số phối trí là 5 và 6 tăng, kết quả này phù hợp với kết quả mô phỏng ĐLHPT trƣớc đây cũng nhƣ kết quả thực nghiệm cộng hƣởng từ hạt nhân [17, 43]. Theo tác giả thì sự giảm của giá trị cực đại của hệ số khuếch tán đối với hệ có số hạt lớn không liên quan đến sự thay đổi thống kê số phối trí mà có thể liên quan đến các đặc trƣng cấu trúc khác quan trọng hơn. Các mô hình chứa 375 và 3000 ion trong một khối lập phƣơng đã đƣợc xây dựng [35, 37]. Ban đầu, SiO2 lỏng đƣợc phục hồi ở nhiệt độ 3000 – 7000 K theo mô phỏng bằng phƣơng pháp ĐHPT. Sau đó mẫu vật liệu đƣợc giảm xuống nhiệt độ 1500 K kết quả cho thấy cấu trúc thủy tinh có dạng cấu trúc tứ diện, tính toán HPBXT thành phần phù hợp tốt với số liệu thực nghiệm nhiễu xạ tia X ở vị trí các đỉnh. Phân bố góc O-Si-O đƣợc xác định có đỉnh ở 109.5±100 và góc Si-O-Si ở 151±180. nghiên cứu còn cho thấy SiO2 có cấu trúc xốp và có nhiều lỗ trống với bán kính trung bình 93 pm. Ở nhiệt độ 1500 K có sự chuyển pha thủy tinh bằng chứng là có sự tăng đột biến của nhiệt dung, áp suất và hệ số khuếch tán. Để nghiên cứu ảnh hƣởng cuả kích thƣớc, các mô hình SiO2 VĐH lớn với số hạt 648, 5184 và 41472 có cùng mật độ 2.2 g/cm3 đã đƣợc xây dựng bằng phƣơng pháp ĐLHPT [1]. Thừa số cấu trúc của mô hình tính toán đƣợc phù hợp với số liệu tán xạ notron. Sự phù hợp của HPBXT cũng tốt. Kết quả này chứng tỏ kích thƣớc của hệ không ảnh hƣởng đến hình dạng HPBXT thành phần của mô hình, mặc dù thừa số cấu trúc có khác nhau chút ít ở khoảng giá trị của vectơ tán xạ K=15nm-1. Độ cao của các đỉnh trong đƣờng cong thừa số cấu trúc ở vị trí 15 Nguyễn Thanh Hoa Cao học Vật lý 2009 K=15 nm-1 tăng ít khi kích thƣớc cuả hệ tăng (từ 1.25 đến 1.48) và hệ N=41472 cho kết quả đặc biệt phù hợp với giá trị thực nghiệm. Mật độ các trạng thái dao động của SiO2 đã đƣợc tính toán [1] Hàm tƣơng quan vận tốc và mật độ các trạng thái dao động đã đƣợc tính toán cho SiO2 VĐH [35]. Tuy nhiên, kết quả nghiên cứu chƣa phù hợp với số liệu nhiễu xạ nơtrôn. Thống kê của phân bố lỗ trống và đặc trƣng sắp xếp thành các lỗ trống lớn hơn (“hình cây”) trong SiO2 đƣợc nghiên cứu trên mô hình chứa 648 nguyên tử [38]. Bán kính lỗ trống xác định đƣợc nằm trong khoảng 18-183 pm. Nhiều lỗ trống giao nhau đƣợc xem nhƣ một cây. Kết quả khảo sát chứng tỏ số lƣợng cây giảm nhanh khi số lỗ trống trong mỗi cây tăng. Sự có mặt của lỗ trống trong cấu trúc SiO2 có vai trò quan trọng. Sự chiếm lỗ trống này của các ion có thể làm tăng kích thƣớc và ảnh hƣởng đến sự tăng mật độ của mô hình. Sự xuất hiện đỉnh nhỏ đầu tiên trên đƣờng cong thừa số cấu trúc của SiO 2 ở vecto tán xạ K ~15nm đƣợc giải thích bằng sự xuất hiện của các lỗ trống. Mô hình SiO2 VĐH chứa 246 ion đã đƣợc xây dựng bằng phƣơng pháp thống kê hồi phục (TKHP) [10]. Sau đó, mô hình lỏng và VĐH SiO2 chứa 498 ion trong một hình lập phƣơng đƣợc xây dựng. Thế tƣơng tác Born-Mayer đƣợc sử dụng. Tƣơng tác Coulomb đƣợc tính toán bằng gần đúng Ewald-Hansen. Ban đầu, hệ đƣợc nung nóng đến nhiệt độ 6000-9000K cho đến khi đạt tới trạng thái cân bằng đƣợc hạ xuống 2000 K. Gía trị tổng năng lƣợng (E) của các hệ SiO2 có số hạt (n) khác nhau ở nhiệt độ T=0 K nhận đƣợc từ các công trình khác nhau đƣợc so sánh trong bảng dƣới đây Bảng 1.1. Năng lượng của hệ SiO2 ở các mô hình có kích thước khác nhau, TLTK viết tắt của cụm từ “tài liệu tham khảo”. -E(kJ/mol) N TLTK 12245 162 [46] 12487 246 [10] 12414 498 [9] 16 Nguyễn Thanh Hoa Cao học Vật lý 2009 Đối với hai mô hình cuối, năng lƣợng sai khác chỉ chiếm 0.58 % sai số này thuộc vào phạm vi sai số tính toán. Trong công trình [46], năng lƣợng cao hơn khoảng 200 kJ/mol, nghĩa là mô hình kém ổn định. Sự khác nhau này có thể không chỉ do khác nhau về số hạt trong mỗi mô hình mà còn do sự khác nhau ở cách nhận đƣợc trạng thái cân bằng của mỗi hệ. Bảng 1.2 Số liệu tính toán và thực nghiệm của các mô hình SiO2 Thông số Mô phỏng 2000 K 0K Thực nghiệm [22,31] R1(Si-Si),pm 319 317 312 r1(Si-O),pm 161 162 162 r1(O-O),pm 257 259 265 θ(O-Si-O),độ 109.2±12.9 109.1±12.9 109.5 θ(Si-O-Si),độ 154.8±14.7 152.7±14.5 147.0±16.0 ρ1 0.892 0.882 - S 1.59 1.39 - Bảng 1.2 trình bày các đặc tính của SiO2 đƣợc tính toán ở nhiệt độ 0 K và 2000 K cùng với số liệu thực nghiệm đo đạc ở nhiệt độ 300 K. Rõ ràng, số liệu cho thấy mô hình SiO2 với thế tƣơng tác Born- Mayer phù hợp với kết quả thực nghiệm. Số phối trí của Si4+ có phân bố đƣợc cho trong bảng 1.3 Bảng 1.3 Phân bố số phối trí của Si4+ Z(Si-O) 3 4 5 Số lƣợng ion Si4+ 7 152 7 Nhƣ vậy, khoảng 8.4 % nguyên tử Si có SPT 3 hoặc 5, còn lại hầu hết các nguyên tử Si đƣợc bao quanh bởi 4 nguyên tử O. Trong SiO 2 phi tinh thể, thực tế số lƣợng khuyết tật của các ion Si nhỏ hơn nhiều. Số phối trí 4 và 2 đƣợc Della Valle và Andersen [30] xác định. Giá trị trung bình của góc O-Si-O 17 Nguyễn Thanh Hoa Cao học Vật lý 2009 trong các mô hình gần với góc của tứ diện (109.50). Vì vậy, cấu trúc của SiO 2 là cấu trúc mạng tứ diện Mô hình SiO2 lỏng ở nhiệt độ 2100 K và 6000 K và mật độ 2.2-4.0 g/cm3 đã đƣợc xây dựng [45]. Tƣơng tác Culong đƣợc tính theo gần đúng EwaldHansen. Quan hệ p-V đẳng nhiệt, các đặc trƣng cấu trúc, các hệ số khuếch tán, mật độ trạng thái dao động và phổ hấp thụ hồng ngoại đã đƣợc tính toán. Nghiên cứu cấu trúc SiO2 ở 6000 K và áp suất 35 GPa bằng phƣơng pháp ĐLHPT cho thấy trật tự cấu trúc, số phối trí tăng theo áp suất [6]. Kết quả chứng tỏ có thay đổi đáng kể thống kê vòng ở quá trình nén mẫu vật liệu SiO2 pha thủy tinh. Để giải thích cho nguyên nhân gây ra độ đậm đặc (tăng mật độ) khi ta nén mô hình vật liệu, mô hình SiO2 lỏng ở nhiệt độ 3200K chứa 1998 ion đã đƣợc xây dựng theo phƣơng pháp ĐLHPT. Sử dụng gần đúng Eward-Hansen để tính tƣơng tác Culong và thế BKS đƣợc dùng để mô phỏng các dạng thù hình cũng nhƣ tính chất của SiO2. Kết quả cho thấy có sự phù hợp tốt HPBXT với thực nghiệm. cấu trúc mạng SiO2 đƣợc tạo thành từ các khối đa diện SiOx (x=4, 5, 6) . Hai khối đa diện có thể liên kết với nhau thông qua một hoặc ba nguyên tử cầu O. phân bố góc liên kết O-Si-O và phân bố khoảng cách Si-O không thay đổi theo áp suất cho thấy cấu trúc của các khối đa diện SiO x trong SiO2 lỏng ở trạng thái khác nhau là giống nhau. Sự giảm thể tích của các mô hình khi áp suất thay đổi dẫn đến sự tăng mật độ chủ yếu là do sự giảm thể tích của lỗ trống [26, 47]. 18 Nguyễn Thanh Hoa Cao học Vật lý 2009 Kết luận chƣơng 1 Tổng quan về SiO2 và các công trình mô phỏng các đặc trƣng vi cấu trúc, các dạng thù hình cũng nhƣ tính chất của SiO2 đã đƣợc tổng kết chi tiết. Một số kết quả nghiên cứu về phân bố góc O-Si-O và Si-O-Si trong cấu trúc mạng SiO2 bằng thực nghiệm và mô phỏng đã đƣợc tổng kết từ nhiều công trình khác nhau. Theo các công trình này ta biết rằng phân bố góc O-Si-O trong các đơn vị cấu trúc SiOx và phân bố góc Si-O-Si giữa các đơn vị cấu trúc hầu nhƣ không phụ thuộc vào mật độ (áp suất nén) [26, 47]. Ở nhiệt độ thấp hơn 800K hầu hết các phân bố góc không thay đổi với nhiệt độ vì cấu trúc của SiO 2 rất ổn định [26]. Từ những mô phỏng đó cũng cho ta thấy đƣợc mối liên hệ giữa phân bố góc và phân bố số phối trí. Vấn đề đặt ra là liệu ta có thể xác định đƣợc số lƣợng đơn vị cấu trúc dựa trên phân bố góc? Do đó mục đích của luận văn này là phân tích phân bố góc để tìm ra mối quan hệ giữa nó và phân bố số phối trí trong thủy tinh silica. Trong luận văn, một vấn đề nữa cũng đƣợc đề cập tới đó là sự đậm đặc của mô hình là do yếu tố nào gây ra hay nói cách khác là giải thích nguyên nhân nào gây ra sự tăng mật độ khi ta nén mô hình dƣới các áp suât khác nhau thông qua việc khảo sát số lƣợng simplex của mô hình. Để làm rõ những vấn đề đó chúng tôi đã tiến hành mô phỏng mô hình SiO2 chứa 1998 ion bằng phƣơng pháp ĐLHPT với thế tƣơng tác đƣợc sử dụng là thế BKS. Tƣơng tác Culông đƣợc tính theo gần đúng Eward-Hasen. 19
- Xem thêm -

Tài liệu liên quan