Tài liệu Luận văn thạc sĩ Phân tích nhiệt của vệ tinh nhỏ theo mô hình hệ nhiều nút

  • Số trang: 96 |
  • Loại file: PDF |
  • Lượt xem: 92 |
  • Lượt tải: 0
tailieuonline

Tham gia: 31/07/2015

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------------- HỌ VÀ TÊN PHẠM NGỌC CHUNG PHÂN TÍCH NHIỆT CỦA VỆ TINH NHỎ THEO MÔ HÌNH HỆ NHIỀU NÚT LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2013 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------------- HỌ VÀ TÊN PHẠM NGỌC CHUNG PHÂN TÍCH NHIỆT CỦA VỆ TINH NHỎ THEO MÔ HÌNH HỆ NHIỀU NÚT Chuyên ngành: Cơ học vật thể rắn Mã số: 60440107 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC GS.TSKH. Nguyễn Đông Anh Hà Nội – Năm 2013 LỜI CẢM ƠN Tác giả xin bày tỏ lòng biết ơn sâu sắc tới GS.TSKH Nguyễn Đông Anh đã tận tình hướng dẫn, tạo mọi điều kiện thuận lợi và thường xuyên động viên để tác giả hoàn thành luận văn này. Tác giả trân trọng cảm ơn tập thể các thầy cô giáo Bộ môn Cơ học, Trường đại học Khoa học Tự nhiên, ĐHQGHN và các thầy cô trong Ban chủ nhiệm Khoa Toán – Cơ – Tin học đã luôn quan tâm, giúp đỡ và tạo mọi điều kiện thuận lợi trong suốt thời gian tác giả học tập và nghiên cứu tại Khoa. Tác giả xin cảm ơn các nhà khoa học, các thầy cô giáo và các bạn đồng nghiệp trong seminar Cơ học vật rắn biến dạng đã có những góp ý quý báu trong quá trình tác giả thực hiện luận văn. Tác giả trân trọng cám ơn các thầy cô giáo, các bạn đồng nghiệp Bộ môn Cơ học lý thuyết và trong khoa Đại học Đại cương, Trường Đại học Mỏ - Địa chất Hà Nội đã luôn quan tâm, giúp đỡ để tác giả hoàn thành luận văn. Tác giả xin chân thành cảm ơn Phòng Cơ học Công trình, Viện cơ học, Viện hàm lâm khoa học Việt Nam đã tạo điều kiện nghiên cứu trong quá trình tác giả thực hiện luận văn này. Tác giả xin cảm ơn tập thể các thầy cô giáo, các cán bộ Phòng Sau đại học, Trường Đại học Khoa học Tự nhiên – ĐHQGHN đã tạo điều kiện thuận lợi trong quá trình nghiên cứu của tác giả. Tác giả xin cảm ơn tới thạc sỹ Nguyễn Như Hiếu, Phòng Cơ học Công trình, Viện cơ học, Viện hàm lâm khoa học Việt Nam đã luôn quan tâm, giúp đỡ tác giả trong quá trình tác giả thực hiện luận văn. Tác giả xin chân thành cảm ơn gia đình và các bạn bè thân thiết của tác giả, những người đã luôn ở bên cạnh động viên và giúp đỡ tác giả hoàn thành luận văn này. Tác giả Phạm Ngọc Chung MỤC LỤC Lời nói đầu ............................................................................................................ i Danh mục các thuật ngữ và chữ viết tắt .......................................................... iv Danh mục các bảng ............................................................................................. v Danh mục các hình vẽ ........................................................................................ vi Danh mục công trình khoa học của tác giả liên quan tới luận văn .............. vii Mở đầu ................................................................................................................. 1 Chƣơng 1: Tổng quan về nhiệt vệ tinh .............................................................. 5 1.1. Môi trường nhiệt trên quỹ đạo vệ tinh ........................................................... 5 1.1.1. Các tác nhân sinh nhiệt ....................................................................... 5 1.1.1.1. Nhiệt bức xạ mặt trời ............................................................. 5 1.1.1.2. Nhiệt bức xạ albedo ................................................................ 6 1.1.1.3. Bức xạ hồng ngoại của trái đất ............................................... 7 1.2. Sự hấp thụ và toả nhiệt của vệ tinh ................................................................ 8 1.2.1. Một số phương pháp tương tác nhiệt .................................................. 8 1.2.1.1. Dẫn nhiệt ................................................................................. 8 1.2.1.2. Bức xạ nhiệt ............................................................................ 9 1.2.1.3. Sự hấp thụ ............................................................................. 10 1.2.2. Năng lượng bức xạ giữa các vật đen ................................................. 11 1.2.2.1. Vật đen .................................................................................. 11 1.2.2.2. Năng lượng bức xạ giữa hai vật đen ..................................... 11 1.2.3. Sự trao đổi nhiệt của vệ tinh trên quỹ đạo ........................................ 12 1.2.3.1. Trao đổi nhiệt mặt trời .......................................................... 13 1.2.3.2. Trao đổi nhiệt albedo ............................................................. 14 1.2.3.3. Trao đổi nhiệt hồng ngoại ..................................................... 14 1.2.3.4. Sự toả nhiệt của vệ tinh ........................................................ 16 1.2.4. Cân bằng nhiệt ................................................................................... 16 1.3. Phân tích nhiệt của vệ tinh ........................................................................... 19 1.3.1. Mô hình toán học .............................................................................. 19 1.3.2. Trao đổi nhiệt bằng truyền nhiệt ........................................................ 19 1.3.3. Trao đổi nhiệt bằng bức xạ ................................................................. 20 1.3.3.1. Hệ số hiển thị ........................................................................ 20 1.3.3.2. Độ phát xạ hiệu quả .............................................................. 21 1.4. Mô hình nhiệt của vệ tinh ............................................................................. 22 1.5. Các phương pháp giải bài toán vệ tinh ......................................................... 22 1.6. Các phương pháp điều khiển nhiệt cho vệ tinh ............................................ 23 1.6.1. Phương pháp điều khiển nhiệt thụ động ............................................ 23 1.6.2. Phương pháp điều khiển nhiệt tích cực .............................................. 23 Chƣơng 2: Phân tích ứng xử nhiệt của vệ tinh nhỏ theo phƣơng pháp tuyến tính hoá của Grande .......................................................................................... 24 2.1. Mô hình nhiệt hai nút ................................................................................... 24 2.2. Phương pháp Runge – Kutta 4 giải bài toán nhiệt hai nút ........................... 27 2.3. Phương pháp tuyến tính hoá Grande giai bài toán nhiệt hai nút .................. 31 2.3.1. Tuyến tính hoá số hạng liên kết nhiệt bức xạ .................................... 31 2.3.2. Nhiệt độ trung bình ............................................................................ 32 2.3.3. Chênh lệch quanh nhiệt độ trung bình ............................................... 35 2.3.4. Đáp ứng với kích động điều hoà ........................................................ 39 2.3.4.1. Nghiệm giải tích theo Grande ............................................... 39 2.3.4.2. Phân tích hàm truyền ............................................................ 43 2.3.4.3. Liên kết nhiệt giữa các nút .................................................... 47 2.3.4.4. Gradient nhiệt ....................................................................... 48 2.4. So sánh nghiệm giải số RK4 và nghiệm giải tích theo Grande ................... 50 2.4.1. Hệ số tuyến tính hoá ........................................................................... 50 2.4.2. So sánh nhiệt độ nút trong, nhiệt độ nút ngoài theo phương pháp giải số RK4 và phương pháp giải tích của Grande .................................................. 51 Chƣơng 3: Giải bài toán nhiệt hai nút của vệ tinh theo phƣơng pháp tuyến tính hoá tƣơng đƣơng và phƣơng pháp cân bằng điều hoà ................................... 54 3.1. Dạng không thứ nguyên của phương trình cân bằng nhiệt hai nút của vệ tinh 54 3.2. Phương pháp tuyến tính hoá ......................................................................... 56 3.2.1. Phương trình chuyển động ................................................................. 56 3.2.2. Phương pháp tuyến tính hoá tương đương ......................................... 56 3.2.3. Phương pháp tuyến tính hoá tương đương giải bài toán nhiệt hai nút của vệ tinh .................................................................................................................. 59 3.2.4. Kết quả số và thảo luận ...................................................................... 64 3.3. Phương pháp cân bằng điều hoà .................................................................. 65 3.3.1. Cơ sở lý thuyết ................................................................................... 65 3.3.2. Phương pháp cân bằng điều hoà giải bài toán nhiệt hai nút của vệ tinh 68 3.4. Kết quả số và thảo luận ............................................................................. 71 Kết luận .............................................................................................................. 75 Những vấn đề phát triển từ luận văn ............................................................... 76 Tài liệu tham khảo ............................................................................................ 77 Phụ lục ................................................................................................................ 79 1. Danh mục các thuật ngữ và chữ viết tắt ris Hệ số bức xạ nhiệt t Thời gian a Albedo T Nhiệt độ A Diện tích s Hệ số hấp thụ Mặt trời C Nhiệt dung  Hệ số phát xạ E Tham số tắt dần  Độ trễ pha Gs Hằng số Mặt trời  Nhiệt độ không thứ nguyên H Tỷ số liên kết nhiệt  Biến đổi Fourier của nhiệt độ không thứ nguyên his , hss Hệ số liên kết nhiệt  Hằng số Stefan Boltzmann kis Hệ số dẫn nhiệt  Thời gian không thứ nguyên P Chu kỳ  Tần số không thứ nguyên Q Tải nhiệt  Hệ số tắt dần không th nguyên 2. Danh mục các bảng Bảng 1: Hằng số mặt trời của hành tinh và giá trị albedo ................................... 13 Bảng 2: Nhiệt độ cân bằng của vệ tinh ở quỹ đạo thấp trong trường hợp đơn giản18 Bảng 3: Giá trị tham số được dùng để tính biến đổi nhiệt trên quỹ đạo ............. 28 3. Danh mục hình vẽ Hình 1.1: Hình 1.2: Hình 1.3: Hình 1.4: Hình 1.5: Mô hình bức xạ nhiệt giữa hai vật đen................................................ 12 Sự trao đổi nhiệt vệ tinh trên quỹ đạo ................................................. 12 Bức xạ albedo vệ tinh.......................................................................... 14 Năng lượng phát xạ phổ cho bức xạ nhiệt từ trái đất .......................... 15 Mô hình hình học giữa hai bề mặt A1 và A2 ...................................... 20 Hình 2.1: Hình 2.2: Hình 2.3: Hình 2.4: Hình 2.5: Hình 2.6: Hình 2.7: Hình 2.8: Hình 2.9: tần số 0 Mô hình hình học ứng với mô hình toán học hai nút .......................... 25 Hình vẽ mô tả diện tích mặt chìa của vệ tinh ...................................... 26 Đồ thị tải nhiệt mặt trời và albedo trong một chu kỳ quỹ đạo ............ 27 Nhiệt độ nút ngoài và nút trong theo thời gian ................................... 28 Sự thay đổi nhiệt độ nút ngoài đối với nhiệt độ nút trong .................. 29 Những điểm đặc trưng trên vòng giới hạn .......................................... 30 Hệ cơ học một bậc tự do tương đương bài toán phân tích nhiệt ......... 44 Hệ số cản là hàm của H với những giá trị khác nhau của C ............... 44 Hàm truyền liên hệ dao động nhiệt nút trong với nguồn nhiệt là hàm của với những giá trị  khác nhau ............................................................ 45 Hình 2.10: Sự trễ pha giữa nhiệt đâuù vào bên ngoài và dao động nhiệt nút trong46 Hình 2.11: Đồ thị hàm truyền phụ thuộc và tần số 0 với những giá trị  khác nhau .............................................................................................................................. 48 Hình 2.12: Sự trễ pha giữa dao động nhiệt hai nút .............................................. 49 Hình 2.13: Hàm truyền liên hệ gradient nhiệt với nhiệt đầu vào là hàm của tần số 0 với những giá trị  khác nhau ....................................................................... 49 Hình 2.14: Nhiệt độ nút trong theo giải số (RK4) và theo phương pháp của Grande .............................................................................................................................. 52 Hình 2.15: Nhiệt độ nút ngoài theo giải số (RK4) và theo phương pháp của Grande .............................................................................................................................. 52 Hình 3.1: Nhiệt độ nút trong nút ngoài theo phương pháp tuyến tính hoá tương đương.................................................................................................................... 64 Hình 3.2: Nhiệt độ nút trong, nút ngoài theo phương pháp cân bằng điều hoà ... 71 Hình 3.3: Mô tả nhiệt độ nút ngoài theo các phương pháp khác nhau ................ 72 Hình 3.4: Hình vẽ phóng to mô tả nhiệt độ nút ngoài theo các phương pháp khác nhau ...................................................................................................................... 72 Hình 3.5: Mô tả nhiệt độ nút trong theo các phương pháp khác nhau ................. 73 Hình 3.6: Hình vẽ phóng to mô tả nhiệt độ nút ngoài theo các phương pháp khác nhau ...................................................................................................................... 73 Hình 3.7: Biên độ nhiệt nút trong với các giá trị tỷ số nhiệt dung C ................... 74 Hình 3.8: Biên độ nhiệt nút ngoài với các giá trị tỷ số nhiệt dung C................... 74 4. Danh mục các công trình liên quan tới luận văn của tác giả [1] Nguyen Dong Anh, Nguyen Nhu Hieu, Pham Ngoc Chung, Analysis of thermal responses for a satellite with two-node model using the equivalent linearization technique, International Conference on Space, Aeronautical, and Navigational Electronics, Vol. 113(335), pp. 109-114 (2013) MỞ ĐẦU Công nghệ vũ trụ là một lĩnh vực công nghệ cao được hình thành nhờ tích hợp nhiều ngành công nghệ khác nhau nhằm tạo ra các phương tiện như vệ tinh, tàu vũ trụ, tên lửa, trạm mặt đất… để khám phá, chinh phục và sử dụng khoảng không vũ trụ phục vụ lợi ích của con người. Khoa học và công nghệ vũ trụ ngày nay đã được ứng dụng hết sức rộng rãi và có hiệu quả thiết thực trong phát triển kinh tế, văn hoá, giáo dục, y tế, an ninh, quốc phòng… của hầu hết các quốc gia tiên tiến trên thế giới, kể cả ở nhiều nước đang phát triển. Từ nửa cuối thế kỷ 20 cho đến nay, nhiều quốc gia đã đầu tư rất lớn vào việc nghiên cứu vũ trụ đặc biệt là công nghệ vệ tinh bởi lẽ càng vươn cao ra ngoài phạm vi không gian, con người càng không ngừng nghiên cứu để tìm hiểu ra nhiều kết quả phục vụ lợi ích và sự phát triển của hành tinh chúng ta. Với xu thế phát triển khoa học công nghệ hiện nay trên thế giới, công nghệ vũ trụ được xác định là một trong những công nghệ ưu tiên cần phát triển trong thế kỷ 21. Vệ tinh nhân tạo được sử dụng cho nhiều mục đích khác nhau, nó có thể sử dụng để quan sát các hành tinh xa xôi, các thiên hà và các vật thể ngoài vũ trụ, có thể được sử dụng cho mục đích viễn thông, có thể sử dụng để quan sát Trái đất hoặc được triển khai cho các ứng dụng quân sự hay tình báo… Thời tiết được dự báo trước một vài ngày, thậm chí cả tuần là nhờ có một hệ thống các vệ tinh khí tượng từ trên cao thường xuyên chụp ảnh, đo đạc gió, áp suất… gửi về các trạm thu ở mặt đất, rồi các trạm này lại nhờ vệ tinh viễn thông gửi số liệu đi khắp nơi để các đài địa phương tính toán, xử lý, dự báo chi tiết cho địa phương. Hàng triệu người trên Trái đất đã có thói quen xem ti vi với ảnh các đám mây và các xoáy bão khi có bão… tất cả đều là do vệ tinh đem lại. Một số tờ báo, tạp chí, đặc biệt là bản tin tài chính phát hành rất nhanh, kịp thời ở nhiều nơi trên thế giới là nhờ từ toà soạn chế bản xong được gửi qua vệ tinh đến những cơ sở ở các địa phương để in và phát hành tại địa phương đó. Chương trình truyền hình của nhiều đài truyền hình trên thế giới được phát lên vệ tinh, truyền hình cáp ở từng địa phương thu các chương trình từ vệ tinh gửi đến và đưa qua cáp truyền hình truyền đến những gia đình đăng ký sử dụng. Sự kiện gì, ở địa phương nào được truyền hình trực tiếp thì khắp nơi trên thế giới có thể trực tiếp theo dõi từ ti vi nhà mình. Nhờ vệ tinh mới có hệ thống định vị toàn cầu GPS, ở đâu, bất cứ giờ nào có máy thu GPS là có thể biết ngay mình đang ở vị trí nào, địa chỉ mình muốn đến ở vị trí nào trên bản đồ, đi đến đó theo đường nào là ngắn, tốt nhất… Có GPS không những theo dõi được máy bay, tàu thuỷ, xe cộ… di chuyển như thế nào, mà còn theo dõi được sự di cư của động vật, điều khiển tên lửa, đầu đạn… đến chính xác mục tiêu mà không bị ảnh hưởng của thời tiết. Máy bay lâm nạn, rơi ở rừng rậm, tàu thuỷ bị sự cố ở giữa đại dương… nhờ tín hiệu cứu nguy khẩn cấp gửi lên vệ tinh, rồi từ vệ tinh thông báo ngay cho các bộ phận cứu nạn kịp thời ứng phó. Người đầu tiên đã nghĩ ra vệ tinh nhân tạo dùng cho truyền thông là nhà viết truyện khoa học giả tưởng Arthur C. Clarke vào năm 1945. Ông đã nghiên cứu về cách phóng các vệ tinh này, quỹ đạo của chúng và nhiều khía cạnh khác cho việc thành lập một hệ thống vệ tinh nhân tạo bao phủ thế giới. Tuy nhiên, vệ tinh nhân tạo đầu tiên là Sputnik 1 được Liên bang Xô viết phóng lên ngày 4 tháng 10 năm 1957. Đó là một quả cầu kim loại đường kính 58 cm, nặng 83 kg và có máy phát vô tuyến ở tần số 27 MHz. Thông qua 4 ăng ten roi ở bên ngoài, Trái đất đã liên lạc được với vệ tinh bằng sóng điện từ, máy thu nghe tiếng bip bip rất rõ. Vệ tinh này bay vòng quanh trái đất, dần dần hạ thấp và sau 92 ngày đã vào khí quyển và bốc cháy. Một tháng sau khi phóng Sputnik 1, Liên Xô phóng Sputnik 2 nặng 500 kg, mang theo sinh vật là chó Laika. Vệ tinh này bay quanh trái đất nhiều vòng và đến năm 1958 mới bay vào khí quyển và bốc cháy. Kể từ khi vệ tinh nhân tạo đầu tiên được phóng lên vũ trụ đến nay đã có nhiều nước thành công trong việc phóng vệ tinh lên vũ trụ như Nga, Mỹ, Pháp, Nhật, Trung Quốc… Tháng 4 năm 2008 Việt Nam đã thuê Pháp phóng thành công vệ tinh VINASAT-1 (mua của Mỹ) lên quỹ đạo địa tĩnh. Việt Nam là nước thứ 93 phóng vệ tinh nhân tạo và là nước thứ sáu tại Đông Nam Á. Gần đây các vệ tinh nhỏ được quan tâm nhiều hơn bởi vì giá thành thấp, thời gian phát triển ngắn và hiệu quả kinh tế cao. Tuy nhiên, những vệ tinh này có một số nhược điểm. Kích thước nhỏ nên diện tích bề mặt nhỏ, vỏ vệ tinh mỏng nên thường biến đổi nhiệt và ràng buộc năng lượng, sự tương tác nhiệt giữa vệ tinh và các trường nhiệt sẽ được tính đến. Một vệ tinh sẽ được sử dụng tốt hơn khi những thành phần của nó được duy trì trong một giới hạn cho phép (thường là ở nhiệt độ khi chúng được lắp ráp). Điều khiển nhiệt là bài toán liên quan đến cả lý thuyết và thực hành, nhiệm vụ của kỹ sư nhiệt là xác định ảnh hưởng của các yếu tố và điều khiển chúng trong những ràng buộc nào đó, chẳng hạn như một hệ thống. Do đó đánh giá thiết kế nhiệt cho vệ tinh là một việc cần thiết, từ các đánh giá thiết kế nhiệt ta có thể thu được phân bố nhiệt của các thành phần của vệ tinh, các phân bố nhiệt này sẽ được sử dụng để kiểm tra nhiệt cho vệ tinh. Để phân tích nhiệt cho vệ tinh người ta có thể sử dụng mô hình liên tục hoặc mô hình rời rạc. Trong luận văn tác giả sẽ phân tích nhiệt cho vệ tinh nhỏ trên quỹ đạo thấp theo mô hình rời rạc. Một vệ tinh có thể được mô hình bởi một nút hoặc nhiều nút, giữa các nút có trao đổi nhiệt với nhau và trao đổi nhiệt với môi trường xung quanh. Trong khuôn khổ luận văn tác giả chỉ giới hạn phân tích nhiệt cho vệ tinh theo mô hình hai nút. Trong nghiên cứu này tác giả sẽ dùng phương pháp tuyến tính hoá tương đương để phân tích đáp ứng nhiệt của vệ tinh. Theo phương pháp này hệ phương trình cân bằng nhiệt phi tuyến của vệ tinh sẽ được giải bằng kỹ thuật tuyến tính hoá tương đương, trong trình bày tác giả có đưa ra một so sánh giữa phương pháp này với ba phương pháp khác là phương pháp cân bằng điều hoà, phương pháp tuyến tính của Grande và phương pháp Runge-Kutta 4 để kiểm tra độ chính xác của phương pháp tuyến tính hoá tương đương. Kết quả chỉ ra rằng có sự sai khác rất ít giữa phương pháp tuyến tính hoá tương đương và các phương pháp khác. Bố cục của luận văn Luận văn gồm phần mở đầu, 3 chương, phần kết luận, danh mục các công trình nghiên cứu của tác giả liên quan đến nội dung luận văn, tài liệu tham khảo và phụ lục. Nội dung chính của các chương bao gồm: - Chương 1 trình bày các khái niệm, tổng quan về nhiệt vệ tinh, các môi trường nhiệt trên quỹ đạo vệ tinh, trao đổi nhiệt của vệ tinh, mô hình nhiệt của vệ tinh, các phương pháp điều khiển nhiệt vệ tinh. - Chương 2 trình bày các kết quả nghiên cứu cho mô hình nhiệt hai nút của vệ tinh theo phương pháp số Runge-Kutta 4 và phương pháp tuyến tính của Grande. - Chương 3 tác giả sử dụng phương pháp tuyến tính hoá tương đương và phương pháp cân bằng điều hoà để phân tích đáp ứng nhiệt của vệ tinh. Trong trình bày tác giả có đưa ra một so sánh giữa hai phương pháp này với hai phương pháp khác là phương pháp tuyến tính của Grande và phương pháp Runge-Kutta 4 để kiểm tra độ chính xác giữa bốn phương pháp. Kết quả chỉ ra rằng có sự sai khác rất ít giữa phương pháp tuyến tính hoá tương đương và các phương pháp khác. Nội dung cụ thể của các chương sẽ được trình bày dưới đây. Chƣơng 1 TỔNG QUAN VỀ NHIỆT VỆ TINH 1.1. Môi trƣờng nhiệt trên quỹ đạo vệ tinh 1.1.1. Các tác nhân sinh nhiệt Khi một vệ tinh chuyển động trên quỹ đạo, nó chịu tác dụng của các dạng môi trường nhiệt chủ yếu là: ánh sáng mặt trời (nhiệt bức xạ mặt trời), ánh sáng phản chiếu của trái đất (nhiệt bức xạ albedo), và năng lượng hồng ngoại phát ra từ trái đất (nhiệt hồng ngoại của trái đất). Trong phần này sẽ trình bày tổng quan về các loại môi trường nhiệt này. 1.1.1.1. Nhiệt bức xạ mặt trời a. Một vài số liệu về mặt trời Mặt Trời là ngôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,86 phần trăm khối lượng của Hệ Mặt Trời [1]. Trái Đất và các thiên thể khác như các hành tinh, tiểu hành tinh, thiên thạch, sao chổi, và bụi quay quanh Mặt Trời. Khoảng cách trung bình giữa Mặt Trời và Trái Đất xấp xỉ 149,6 triệu kilômét (một đơn vị thiên văn AU) nên ánh sáng Mặt Trời cần 8 phút 19 giây mới đến được Trái Đất. Trong một năm, khoảng cách này thay đổi từ 147,1 triệu ki lô mét (0.9833 AU) ở điểm cận nhật (ngày 3 tháng 1) tới xa nhất là 152,1 triệu ki lô mét (1.017 AU) ở điểm viễn nhật (khoảng ngày 4 tháng 7). Thành phần của Mặt Trời gồm hydro (khoảng 74 phần trăm khối lượng, hay 92 phần trăm thể tích), heli (khoảng 24 phần trăm khối lượng, 7 phần trăm thể tích), và lượng nhỏ các nguyên tố khác gồm sắt, niken, oxy, silic, lưu huỳnh, ma giê, các bon, ne on, can xi, crom [2] Mặt Trời có dạng quang phổ G2V. G2 có nghĩa nó có nhiệt độ bề mặt xấp xỉ 5.778 K (5.505 °C) khiến nó có màu trắng, và thường có màu vàng khi nhìn từ bề mặt Trái Đất bởi sự tán xạ khí quyển. Chính sự tán xạ này của ánh sáng ở giới hạn cuối màu xanh của quang phổ khiến bầu trời có màu xanh [3]. Quang phổ Mặt Trời có chứa các vạch ion hoá và kim loại trung tính cũng như các đường hydro rất yếu. V (số 5 La Mã) trong lớp quang phổ thể hiện rằng Mặt Trời, như hầu hết các ngôi sao khác, là một ngôi sao thuộc dãy chính. Điều này có nghĩa nó tạo ra năng lượng bằng tổng hợp hạt nhân của hạt nhân hydro thành heli. Có hơn 100 triệu ngôi sao lớp G2 trong Ngân Hà của chúng ta. Từng bị coi là một ngôi sao nhỏ và khá tầm thường nhưng thực tế theo hiểu biết hiện tại, Mặt Trời sáng hơn 85% các ngôi sao trong Ngân Hà với đa số là các sao lùn đỏ [4,5]. Lõi của Mặt Trời được coi là chiếm khoảng 0,2 tới 0,25 bán kính Mặt Trời [6]. Nó có mật độ lên tới 150g/cm³ [7,8] (150 lần mật độ nước trên Trái Đất) và có nhiệt độ gần 13.600.000 độ K (so với nhiệt độ bề mặt Mặt Trời khoảng 5.800 K) [9]. Lõi là vùng duy nhất trong Mặt Trời tạo ra một lượng đáng kể nhiệt thông qua phản ứng tổng hợp: phần còn lại của ngôi sao được đốt nóng bởi năng lượng truyền ra ngoài từ lõi. Tất cả năng lượng được tạo ra từ phản ứng tổng hợp hạt nhân trong lõi phải đi qua nhiều lớp để tới quang quyển trước khi đi vào không gian dưới dạng ánh sáng Mặt Trời hay động năng của các hạt [10,11] . Trong vùng từ 0,25 tới khoảng 0,7 bán kính Mặt Trời, vật liệu Mặt Trời đủ nóng và đặc đủ để bức xạ nhiệt chuyển được nhiệt độ từ trong lõi ra ngoài [12]. Trong vùng này không có đối lưu nhiệt. b. Bức xạ mặt trời Bức xạ mặt trời là dòng vật chất và năng lượng của Mặt Trời phát ra. Bức xạ mặt trời có tính chất gần giống với các tia bức xạ phát ra từ vật đen tuyệt đối ở nhiệt độ gần 5800K. Trong đó, có khoảng 7% nằm trong khoảng vùng tia cực tím (ultra violet), 46% năng lượng nằm trong vùng các tia bức xạ nhìn thấy và 47% năng lượng nằm trong vùng các tia hồng ngoại (infra-red). 1.1.1.2. Nhiệt bức xạ albedo Suất phản chiếu hay albedo là ánh sáng mặt trời (bức xạ mặt trời) phản chiếu của hành tinh. Suất phản chiếu hành tinh là tỷ số bức xạ tản phát ra từ bề mặt hành tinh với bức xạ chiếu đến nó. Albedo là tỷ số không có đơn vị, nó thường được biểu diễn theo tỉ lệ phần trăm, và giá trị của nó trong đoạn [0, 1] với giá trị 0 thể hiện bề mặt đen tuyệt đối và giá trị 1 thể hiện bề mặt phản xạ hoàn toàn bức xạ chiếu đến. Suất phản chiếu cũng phụ thuộc vào tần số của bức xạ chiếu tới. Khi không nói cụ thể, thường người ta ngầm chỉ ánh sáng khả kiến. Nói chung, suất phản chiếu phụ thuộc vào góc tới của tia bức xạ. Độ phản chiếu trung bình của Trái Đất, hay suất phản chiếu hành tinh được chỉ ra ở Bảng 1.1, chúng chịu ảnh hưởng của mây bao phủ, luôn biến đổi, và phụ thuộc vào điều kiện địa chất, môi trường hay mặt đại dương. + Albedo thay đổi theo mùa và vị trí khảo sát + Abedo của bề mặt có tuyết rất lớn + Albedo của biển rất thấp + Mặc dù phía Bắc bán cầu có nhiều đất hơn phía Nam bán cầu, nhưng trị số trung bình năm của hai bán cầu được xem là như nhau, điều đấy cho thấy tầm quan trọng của mây trong quá trình xác định albedo. 1.1.1.3 Bức xạ hồng ngoại của trái đất Ánh sáng mặt trời chiếu tới trái đất không phải tất cả đều được phản chiếu như bức xạ albedo mà bị trái đất hấp thụ và bức xạ trở lại gọi là năng lượng bức xạ hồng ngoại. Năng lượng bức xạ hồng ngoại trung bình hàng năm của trái đất được duy trì khá ổn định, tuy nhiên cường độ năng lượng hồng ngoại trái đất phát ra ở một thời điểm nào đó từ một điểm cụ thể trên trái đất có thể biến đổi phụ thuộc vào các yếu tố như nhiệt độ bề mặt trái đất và mức độ mây che phủ. Ở khu vực bề mặt nóng sẽ phát ra nhiều bức xạ hơn so với khu vực lạnh. Nói chung, hệ số phát xạ hồng ngoại của trái đất có giá trị lớn nhất ở khu vực nhiệt đới và sa mạc (đây là những vùng trên trái đất nhận nguồn nhiệt mặt trời lớn nhất) và sẽ giảm theo độ cao. Khi mức độ che phủ của mây tăng lên thì năng lượng hồng ngoại trái đất sẽ giảm xuống bởi vì các đám mây thường lạnh và chúng ngăn chặn rất hiệu quả các bức xạ phát ra từ bề mặt nóng ở bên dưới. Năng lượng hồng ngoại phát ra từ trái đất có nhiệt độ trung bình khoảng 18o C , có bước sóng xấp xỉ bước sóng mà vệ tinh phát ra, điều đó có nghĩa là nó có bước sóng dài hơn bước sóng phát ra từ mặt trời ở nhiệt độ 5505 C . Không giống như năng lượng mặt trời với bước sóng ngắn, tải nhiệt hồng ngoại trái đất chiếu tới vệ tinh không bị phản chiếu bởi mặt bức xạ do vệ tinh được phủ những lớp đặc biệt. 1.2. Sự hấp thụ và toả nhiệt của vệ tinh 1.2.1. Một số phƣơng pháp tƣơng tác nhiệt 1.2.1.1. Dẫn nhiệt Dẫn nhiệt là sự truyền nhiệt từ điểm này đến điểm khác của vật liệu. Trên một quy mô nhỏ, dẫn nhiệt xảy ra khi các phân tử, nguyên tử hay các hạt nhỏ hơn (như electron) ở vùng nóng (dao động nhanh) tương tác với các hạt lân cận (ở vùng lạnh hơn, dao động chậm hơn), chuyển giao một số động năng của dao động nhiệt từ hạt dao động nhanh sang những hạt dao động chậm. Nói cách khác, sức nóng được trao đổi giữa các nguyên tử hay phân tử lân cận khi chúng dao động và va chạm với nhau (trong hầu hết vật chất, trao đổi này còn được coi như sự dịch chuyển của dòng proton), hoặc là bởi electron dao động nhanh di chuyển từ một nguyên tử khác (trong kim loại). Trong chất rắn, sự dẫn nhiệt xảy ra mạnh vì mạng lưới các nguyên tử nằm ở vị trí tương đối cố định và gần nhau, giúp việc trao đổi năng lượng giữa chúng thông qua dao động được dễ dàng. Khi mật độ các hạt giảm, tức là khoảng cách giữa các hạt trở nên xa hơn, dẫn nhiệt giảm theo. Điều này là do khoảng cách lớn giữa các nguyên tử gây ra việc có ít va chạm giữa các nguyên tử có nghĩa là chúng ít trao đổi nhiệt hơn. Do đó, chất lỏng và đặc biệt là các loại khí ít dẫn nhiệt. Với các chất khí, khi nhiệt độ hay áp suất tăng, các nguyên tử có xác suất va chạm nhau nhiều hơn, và do đó độ dẫn nhiệt cũng tăng theo. Tính chất dẫn nhiệt trong lòng vật liệu có thể khác với tính dẫn nhiệt ở bề mặt, nơi có thể tiếp xúc với vật liệu khác. Kim loại (ví dụ như đồng, platinum, vàng, ...) thường là các vật liệu dẫn nhiệt tốt. Điều này là do các điện tử tự do có thể chuyển nhiệt năng nhanh chóng trong lòng kim loại. Các "chất lỏng điện tử" của một vật kim loại rắn tiến hành gần như tất cả các dòng nhiệt qua vật rắn này. Proton mang ít hơn 1% năng lượng nhiệt. Điện tử cũng chuyên chở dòng điện chạy qua các chất rắn dẫn điện, dẫn đến độ dẫn nhiệt và độ dẫn điện của hầu hết các kim loại có cùng một tỷ lệ. Một dây dẫn điện tốt, chẳng hạn như đồng, thông thường cũng dẫn nhiệt tốt. Dẫn nhiệt trong một vật rắn tương tự như khuếch tán của các hạt trong chất lỏng, khi không có dòng chảy chất lỏng. Quá trình trình dẫn nhiệt tuân theo định luật Fourier Mật độ dòng nhiệt chảy qua mỗi đơn vị diện tích tỷ lệ thuận và trái dấu với gradient của nhiệt độ theo hướng n vuông góc với tiết diện. T q k  k n trong đó q k là mật độ dòng nhiệt qua mỗi đơn vị diện tích, k (W/mK) là hệ số dẫn nhiệt, dấu "  " chỉ ra rằng dòng nhiệt truyền từ nơi có nhiệt độ cao đến nới có nhiệt độ thấp. Hệ số dẫn nhiệt là tính chất của vật liệu nói chung phụ thuộc vào nhiệt độ và hầu như là hằng số, thường gặp trong các bài toán vệ tinh. 1.2.1.2. Bức xạ nhiệt Bức xạ là hiện tượng mà một vật thể nào đó phát ra các sóng điện từ và sóng điện từ đó lan truyền trong không gian. Quá trình phát và lan truyền sóng điện từ là quá trình lan truyền năng lượng, khi các vật phát sóng điện từ phải chuyển đổi một dạng năng lượng nào đó thành năng lượng sóng. Bức xạ nhiệt là một quá trình mà hệ biến đổi nhiệt năng nhận được từ môi trường thành nội năng của hệ vật, bức xạ nhiệt là dạng bức xạ phổ biến nhất tạo ra do các nguyên tử, phân tử của vật chất bị kích thích bởi tác dụng nhiệt của các nguồn ngoài. Khi các nguyên tử, phân tử của vật chất chuyển từ trạng thái kích thích trở về trạng thái cơ bản ban đầu, nó sẽ phát ra sóng điện từ (có thể dưới dạng ánh sáng). Người ta dùng khái niệm bức xạ nhiệt là để phân biệt với bức xạ điện từ do điện trường và từ trường biến thiên tạo ra. a. Ðặc điểm của sự bức xạ Năng lượng truyền đi bằng bức xạ không cần thông qua một môi trường trung gian, mặc dù bức xạ có thể được chụp lại khi nó đi qua nhiều môi trường khác nhau. Sự khác biệt duy nhất giữa các loại bức xạ là cường độ bức xạ ứng với mỗi tần số hoặc bước sóng khác nhau là khác nhau. Người ta phân loại bức xạ phát ra thông qua vùng bước sóng mà bức xạ đó phát ra. Năng lượng vật chất mất đi trong một đơn vị thời gian do vật bức xạ được gọi là công suất bức xạ. Công suất bức xạ tùy thuộc vào nhiệt độ của vật bức xạ. Nhiệt độ tuyệt đối của vật càng thấp thì công suất bức xạ của vật cũng thấp và ngược lại nhiệt độ càng cao thì công suất bức xạ của vật càng cao. b. Ðịnh lý Stefan-Boltzmann về bức xạ Năm 1879, Josef Stefan qua nhiều thí nghiệm về bức xạ nhiệt, kết hợp với những cơ sở lý thuyết do Ludwig Boltzmann đưa ra sau đó ít lâu, đã tổng kết thành định lý Stefan- Boltzmann: “ Công suất bức xạ nhiệt của một vật thì tỷ lệ với lũy thừa bậc bốn của nhiệt độ tuyệt đối của vật bức xạ và diện tích bề mặt vật bức xạ ”. Ta có công thức: PR   AT 4 (1.1) trong đó PR là công suất bức xạ của vật thể có diện tích bề mặt bức xạ là A, đang ở nhiệt độ là T ( o K ) ,  là hệ số Stefan-Boltzmann,   5.67 108 Wm2 K 4 . Tham số đặc trưng  biểu thị khả năng phát xạ ở mặt ngoài của vật ( 0    1). Thực nghiệm chứng tỏ rằng những vật thể hấp thụ mạnh bức xạ tới cũng là những vật phát xạ tốt (  lớn). Ngược lại, những vật thể phản xạ mạnh những bức xạ tới cũng là những vật phát xạ kém (  nhỏ). Từ công thức (1.1), khi nhiệt độ là 0o K thì vật đó không bức xạ nhiệt. 1.2.1.3. Sự hấp thụ Bên cạnh quá trình bức xạ, vật thể có khả năng thu nhận ngay chính năng lượng của sóng điện từ do một hệ khác truyền qua nó. Quá trình đó gọi là quá trình hấp thụ sóng điện từ mà thường được gọi tắt là hấp thụ. Khi vật phát ra bức xạ thì năng lượng của nó giảm và kéo theo là nhiệt độ của nó cũng giảm. Ngược lại, khi vật hấp thụ bức xạ thì năng lượng của nó tăng và nhiệt độ của nó cũng tăng lên. Độ hấp thụ  của một vật là tỷ số giữa năng lượng vật đó hấp thụ so với năng lượng sóng điện từ truyền đến vật đó trong một giây. Cân bằng nhiệt khi phần năng lượng của vật mất đi do bức xạ được bù lại bằng đúng phần năng lượng vật hấp thụ thì vật ở trạng thái cân bằng nhiệt lúc đó Do mọi vật đều phát ra các bức xạ nhiệt vào môi trường xung quanh cho nên nó cũng đồng thời hấp thụ bức xạ nhiệt từ các vật khác xung quanh nó, thế nên công suất bức xạ nhiệt biến đổi trên một vật đặt trong môi trường sẽ là: PC  PAbs  PR   A( Te4  T 4 ) (1.2) trong đó Te ( o K ) là nhiệt độ của môi trường, T là nhiệt độ của vật. Chú ý rằng, nếu PC  0 vật hấp thụ nhiệt nhiều hơn bức xạ nhiệt, nhiệt độ của vật sẽ tăng lên. Ngược lại, nếu PC  0 vật hấp thụ nhiệt ít hơn bức xạ nhiệt, nhiệt độ của vật sẽ giảm xuống. 1.2.2. Năng lƣợng bức xạ giữa các vật đen 1.2.2.1. Vật đen Vật đen tuyệt đối (hay gọi tắt là vật đen) là vật hấp thụ hoàn toàn tất cả các bức xạ điện từ chiếu đến nó, bất kể bước sóng nào. Điều này có nghĩa là sẽ không có hiện tượng phản xạ hay tán xạ trên vật đó, cũng như không có dòng bức xạ điện từ nào đi xuyên qua vật. Ý nghĩa vật lý về khả năng hấp thụ 100% bức xạ điện từ chiếu vào mang đến cái tên "đen" cho vật thể. Tuy nhiên, các vật thể này không đen, mà chúng luôn bức xạ trở lại môi trường xung quanh các bức xạ điện từ, tạo nên quang phổ đặc trưng cho nhiệt độ của vật, gọi là bức xạ vật đen. Quang phổ của vật đen là quang phổ liên tục và chỉ phụ thuộc vào nhiệt độ của vật đen. Vật đen định nghĩa như trên là một vật lý tưởng, không tồn tại trong thực tế, có đặc tính biến tất cả năng lượng nhận được thành năng lượng bức xạ đặc trưng cho nhiệt độ của vật, với bất kỳ trị số nào của bước sóng. Mô hình vật đen là một mô hình lý tưởng trong vật lý, nhưng có thể áp dụng gần đúng cho nhiều vật thể thực tế. Các vật thể thực đôi khi được mô tả chính xác hơn bởi khái niệm vật xám. Vật thể trên thực tế gần đúng với khái niệm vật đen nhất là lỗ đen, là vật có lực hấp dẫn mạnh đến nỗi hút gần như tất cả các vật chất (hạt, sóng bức xạ) nào ở gần nó. 1.2.2.2. Năng lƣợng bức xạ giữa hai vật đen Hình 1.1 thể hiện mô hình bức xạ nhiệt giữa vật đen A có nhiệt độ tuyệt đối Ti , diện tích bề mặt là Ai với vật đen B có nhiệt độ tuyệt đối T j , diện tích bề mặt Aj . Năng lượng bức xạ của vật đen A sang vật đen B: Qij  Ai Fij Ti 4  T j4  (1.3) với Fij là hệ số hiển thị của mặt j khi nhìn từ mặt i. Khi Fij  1 thì: Qij  Ai Ti 4  T j4  (1.4) Qij dAj Ti Tj dAi Ai Aj Hình 1.1. Mô hình bức xạ giữa hai vật đen
- Xem thêm -