Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Sư phạm (luận văn thạc sĩ) cải tiến thuật toán định tuyến cho trạm thu phát di động tron...

Tài liệu (luận văn thạc sĩ) cải tiến thuật toán định tuyến cho trạm thu phát di động trong mạng cảm biến không dây

.PDF
75
38
139

Mô tả:

"IMPROVING ROUTING ALGORITHM FOR MOBILE SINK IN WSN" ABSTRACT In WSN, to collect and process data, the network uses sensors. Sensors work based on battery power. However, it is not easy to reload. Therefore, energy is always a matter of concern for scientists and researchers . Besides, WSN is applied a lot in life . To extend the life of the network and less energy consumed , in this paper, propose a routing algorithm between Leach _C and ACO (Ant Colony Optimize). Using a mobile sink to collect data from the base station (BS) to the cluster headers (CHS), the direction of the sink is determined by the ACO algorithm. Results, compared to LEACH, LEACH-C, LEACH-CD. From there, save energy and improve network life time. “CẢI TIẾN THUẬT TOÁN ĐỊNH TUYẾN CHO MOBILE SINK TRONG WSN” TÓM TẮT Trong WSN, để thu thập và xử lý dữ liệu, mạng sử dụng các sensors. Các sensors hoạt động được là nhờ năng lượng pin. Tuy nhiên, nó không dễ dàng để nạp lại. Vì vậy, năng lượng luôn là vấn đề quan tâm của các nhà khoa học và nghiên cứu. Bên cạnh đó, WSN được ứng dụng rất nhiều trong cuộc sống. Để kéo dài tuổi thọ của mạng và năng lượng ít bị tiêu hao, trong bài báo này, đề xuất một thuật toán định tuyến kết hợp giữa LEACH_C và ACO. Sử dụng một sink di động đi thu thập dữ liệu từ trạm gốc đến các trưởng cụm, hướng đi của sink được quyết định bởi thuật toán ACO. Kết quả, được so sánh với LEACH, LEACH-C, LEACH-CD. Từ đó, tiết kiệm được năng lượng và cải thiện thời gian sống của mạng. i LỜI CAM ĐOAN Tôi cam đoan rằng luận văn “Cải tiến thuật toán định tuyến cho trạm thu phát di động trong mạng cảm biến không dây” là bài nghiên cứu của chính tôi. Ngoại trừ những tài liệu tham khảo đƣợc trích dẫn trong luận văn này, tôi cam đoan rằng toàn phần hay những phần nhỏ của luận văn này chƣa từng đƣợc công bố hoặc đƣợc sử dụng để nhận bằng cấp ở những nơi khác. Luận văn này chƣa bao giờ đƣợc nộp để nhận bất kỳ bằng cấp nào tại các trƣờng đại học hoặc cơ sở đào tạo khác. TP.HCM, ngày … tháng … năm 2019 Học viên thực hiện luận văn Tạ Chí Qui Nhơn ii LỜI CẢM ƠN Trong suốt quá trình học tập, nghiên cứu và hoàn thành luận văn thạc sĩ, ngoài những cố gắng nỗ lực của bản thân, tôi đã nhận đƣợc sự hƣớng dẫn, giúp đỡ rất nhiệt tình của quý thầy cô, cùng với sự động viên khích lệ và ủng hộ của gia đình, bạn bè và đồng nghiệp; với lòng kính trọng và biết ơn sâu sắc tôi xin đƣợc gửi lời cảm ơn chân thành đến: Ban lãnh đạo và tất cả cán bộ, công chức, viên chức đang công tác tại Trƣờng Cao đẳng Công nghệ thông tin Thành phố Hồ Chí Minh đã tạo điều kiện để tôi hoàn thành việc học cao học tại trƣờng Đại học Mở Tp. HCM. Xin gửi lời cảm ơn trân trọng nhất đến PGS.TS Trần Công Hùng, ngƣời đã trực tiếp hƣớng dẫn, chỉ bảo, chia sẻ kiến thức, tài liệu, tạo mọi điều kiện thuận lợi và định hƣớng cho em trong suốt quá trình thực hiện luận văn. Bên cạnh đó, tôi cũng đã nhận đƣợc rất nhiều sự hỗ trợ, góp ý từ NCS. Phan Thị Thể, Ths. Nguyễn Ngọc Thắng và các bạn bè; xin gửi lời tri ân đến tất cả quý thầy, cô và các anh chị. Do thời gian có hạn, bản thân đã cố gắng và nỗ lực hết sức mình nhƣng chắc rằng luận văn khó tránh khỏi thiếu sót; tôi rất mong nhận đƣợc sự thông cảm và chỉ bảo tận tình của quý thầy cô và các anh chị. Xin chân thành cảm ơn! TP.HCM, ngày … tháng … năm 2019 Học viên thực hiện luận văn Tạ Chí Qui Nhơn iii MỤC LỤC Trang LỜI CAM ĐOAN ........................................................................................................ i LỜI CẢM ƠN .............................................................................................................ii MỤC LỤC................................................................................................................. iii DANH MỤC HÌNH VẼ............................................................................................. vi DANH MỤC BẢNG.................................................................................................vii DANH MỤC TỪ VIẾT TẮT ................................................................................. viii MỞ ĐẦU..................................................................................................................... 1 CHƢƠNG 1: TỔNG QUAN VỀ MẠNG CẢM BIẾN KHÔNG DÂY ..................... 5 1.1.Giới thiệu..............................................................................................................5 1.2.Cấu trúc mạng cảm biến không dây..................................................................6 1.2.1. Cấu trúc một nút mạng WSN ..............................................................6 1.2.2. Cấu trúc mạng cảm biến không dây ...................................................7 1.2.3. Kiến trúc giao thức mạng WSN ..........................................................9 1.3.Một số vấn đề thiết kế mạng cảm biến không dây .........................................12 1.3.1. Khả năng chịu lỗi (fault tolerance) ...................................................12 1.3.2. Khả năng mở rộng (scalability) .........................................................12 1.3.3. Chi phí sản xuất (production costs) ..................................................12 1.3.4. Hạn chế của phần cứng (hardware constraints) ..............................13 1.3.5. Cấu hình mạng cảm biến (network topology) ..................................13 1.3.6. Sink di động .........................................................................................13 1.3.7. Tiêu thụ năng lượng ...........................................................................13 1.3.8. Độ tin cậy .............................................................................................14 1.3.9. Độ trễ....................................................................................................14 1.4.Ứng dụng của mạng cảm biến không dây .......................................................14 1.4.1. Quân sự ................................................................................................14 1.4.2. Công nghiệp .........................................................................................15 1.4.3. Nông nghiệp .........................................................................................16 iv 1.4.4. Giám sát môi trường ..........................................................................18 1.4.5. Gia đình ...............................................................................................19 1.4.6. Sức khỏe ...............................................................................................20 1.4.7. Giao thông: ..........................................................................................20 1.5.Kết luận ..............................................................................................................21 CHƢƠNG 2: CÁC CÔNG TRÌNH LIÊN QUAN.................................................... 22 2.1.Định tuyến trong WSN .....................................................................................22 2.2.Một số giao thức định tuyến trong WSN ........................................................23 2.2.1. LEACH ................................................................................................23 2.2.2. LEACH_C ...........................................................................................27 2.2.3. Logic mờ ..............................................................................................28 2.2.4. Giao thức CHEF Fuzzy (Cluster Head Election mechanism using Fuzzy logic) .......................................................................................................30 2.3.Mô hình trạm thu phát di động: gồm 03 dạng ...............................................32 2.4.Một số giải thuật định tuyến có trạm thu phát di động .................................33 2.4.1. Thuật toán MSA (Mobile Sink Assisted Energy Efficient Routing Algorithm) .........................................................................................................33 2.4.2. Thuật toán MECA (Mobile sink based Energy-efficient Clustering Algorithm) .........................................................................................................34 2.4.3. LEACH kết hợp mobile sink theo quỹ đạo cố định .........................38 2.4.4. LEACH_C có mobile sink ..................................................................39 2.4.5. Định tuyến động trên lưới ảo (Virtual Grid based Dynamic Route Adjustment - VGDRA) ....................................................................................41 2.4.6. Đề xuất giảm sự tiêu hao năng lượng trong WSN bằng phương pháp tìm đường đi ngắn nhất ..........................................................................43 2.4.7. Đề xuất hướng di chuyển để tiết kiệm năng lượng cho sink mobility trong mạng cảm biến không dây .....................................................................46 2.4.8. Thuật toán tìm đường đi ngắn nhất ACO ........................................48 2.5.Kết luận ..............................................................................................................51 CHƢƠNG 3: GIẢI PHÁP ĐỀ XUẤT ...................................................................... 52 3.1.Giới thiệu: ..........................................................................................................52 v 3.2.Đề xuất: ..............................................................................................................52 3.2.1. Mô hình tiêu thụ năng lượng .............................................................53 3.2.2. Hướng di chuyển của mobile sink: ....................................................54 3.2.3. Lưu đồ hoạt động của thuật toán đề xuất ........................................54 3.3.Kết luận ..............................................................................................................56 CHƢƠNG 4: MÔ PHỎNG VÀ ĐÁNH GIÁ HIỆU SUẤT CỦA GIẢI PHÁP ĐỀ XUẤT ........................................................................................................................57 4.1.Cài đặt mô phỏng: .............................................................................................57 4.2.Các tiêu chí đánh giá hiệu suất ........................................................................57 4.3.Kết quả mô phỏng .............................................................................................58 4.4.Kết luận ..............................................................................................................61 KẾT LUẬN VÀ HƢỚNG PHÁT TRIỂN ................................................................ 62 TÀI LIỆU THAM KHẢO ........................................................................................ 63 vi DANH MỤC HÌNH VẼ Hình 1. 1: Các thành phần của nút cảm biến ..............................................................7 Hình 1. 2: Cấu trúc mạng cảm biến không dây ........................................................9 Hình 1. 3: Kiến trúc giao thức của mạng cảm biến.....................................................9 Hình 1. 4: Ứng dụng trong quân sự...........................................................................15 Hình 1. 5: Ứng dụng trong công nghiệp ...................................................................15 Hình 1. 6: Ứng dụng ở cảng ......................................................................................16 Hình 1. 9: Mạng WSN cảnh báo cháy rừng ..............................................................18 Hình 1. 10: Ứng dụng nhà thông minh .....................................................................19 Hình 1. 11: Ứng dụng trong y tế ...............................................................................20 Hình 1. 12: Ứng dụng trong giao thông ....................................................................21 Hình 2. 1: Mô hình định tuyến đơn hop và đa hop ...................................................22 Hình 2. 2: Hai pha trong một vòng của giao thức Leach ..........................................25 Hình 2. 3: Cấu trúc hệ thống suy luận mờ ................................................................29 Hình 2. 4: Mô hình mạng cảm biến trong thuật toán MECA ...................................35 Hình 2. 5: Mô hình di chuyển của sink sau khoảng thời gian ..............................35 Hình 2. 6: Tổng tiêu thụ năng lƣợng của MECA và LEACH...................................38 Hình 2. 7: Sink di chuyển theo quỹ đạo tròn cố định................................................39 Hình 2. 8: Lƣợc đồ Leach-CM ..................................................................................41 Hình 2. 9: Lƣợc đồ LEACH-CM ..............................................................................43 Hình 2. 10: Chia các nút cảm biến thành các cụm ....................................................44 Hình 2. 11: So sánh mức tiêu thụ năng lƣợng giữa LEACH và thuật toán mới .......46 Hình 2. 12: Mô phỏng so sánh số nút còn sống giữa đề xuất LEACH-CD với LEACH, LEACH C ..................................................................................................47 Hình 3. 1: Hƣớng di chuyển của mobile sink trong đề xuất .....................................54 Hình 3. 2: Lƣu đồ hoạt động của thuật toán đề xuất .................................................55 Hình 4. 1: Mô phỏng so sánh nút mạng còn sống giữa giao thức đề xuất LEACHCACO và giao thức LEACH, LEACH-C, LEACH-CD ..........................................59 Hình 4. 2: Mô phỏng quá trình tiêu thụ năng lƣợng giữa giao thức đề xuất LEACHCACO và giao thức LEACH, LEACH-C, LEACH-CD ..........................................60 vii DANH MỤC BẢNG Bảng 2. 1: Chín quy tắc mờ if - then của thuật toán CHEF ......................................31 Bảng 4. 1: Bảng tham số mô phỏng .........................................................................57 Bảng 4. 2: So sánh tuổi thọ mạng giữa giao thức đề xuất LEACH-CACO và giao thức LEACH, LEACH-C, LEACH-CD ....................................................................58 Bảng 4. 3: So sánh sự tiêu thụ năng lƣợng giữa giao thức đề xuất LEACH-CACO và giao thức LEACH, LEACH-C, LEACH-CD .......................................................60 viii DANH MỤC TỪ VIẾT TẮT TỪ VIẾT TIẾNG ANH TẮT TIẾNG VIỆT WSN Wireless Sensor Network Mạng cảm biến không dây ACO Ant Colony Optimize Tối ƣu hóa đàn kiến BS Base Station Trạm gốc (trạm thu phát) MS Mobile Sink Trạm thu phát di động CH Cluster Head Trƣởng cụm Low Energy Adaptive Phân cụm thích ứng năng lƣợng Clustering Hierarchy thấp LEACH Cluster Head Election CHEF mechanism using Fuzzy logic FIS Fuzzy Inference System COG Center of Gravity VGDRA MECA Virtual Grid based Dynamic Route Adjustment Cơ chế lựa chọn trƣởng cụm sử dụng logic mờ Hệ thống suy luận mờ Định tuyến động trên lƣới ảo Mobile sink based Energy Thuật toán phân cụm hiệu quả efficient Clustering năng lƣợng dựa trên trạm thu phát Algorithm di động 1 MỞ ĐẦU Ngày nay, mạng cảm biến không dây (Wireless Sensor Network: WSN) đã và đang là lĩnh vực thu hút rất nhiều sự quan tâm vì những tiềm năng và lợi ích to lớn mà chúng có thể cung cấp cho các lĩnh vực về kinh tế - xã hội, nông nghiệp và công nghiệp, môi trƣờng, giáo dục, y tế, quốc phòng… WSN là một tập hợp gồm các thiết bị cảm biến sử dụng các liên kết không dây (vô tuyến, hồng ngoại hoặc quang học) phối hợp nhau để thực hiện việc thu thập thông tin dữ liệu phân tán với qui mô lớn trong bất kỳ điều kiện và ở trong bất kỳ địa hình nào. Đặc điểm của mạng cảm biến không dây là năng lƣợng bị giới hạn vì cảm biến đƣợc cung cấp từ pin có nguồn năng lƣợng hạn chế. Nguồn năng lƣợng này không dễ dàng để thay thế hay nạp lại khi các nút cảm biến đƣợc triển khai trong một vùng rộng lớn, những nơi nguy hiểm, hoặc có địa hình phức tạp. Trong WSN việc tiêu hao năng lƣợng chủ yếu do thu thập dữ liệu từ môi trƣờng xung quanh, và mỗi cảm biến cũng cần có năng lƣợng để xử lý, tổng hợp và truyền tải dữ liệu thƣờng xuyên, liên tục về nút trung tâm mạng. Vậy điều cần thiết là phải làm sao để giảm mức tiêu thụ năng lƣợng đến mức tối đa. Điều này đƣợc thực hiện bằng cách giới hạn số nút liên lạc trực tiếp với trạm gốc (BS – Base Station) hay trạm thu phát (Sink) đây là nơi tập hợp, lƣu trữ dữ liệu ứng dụng và cũng là nơi xử lý, ra quyết định trong WSN. Trên thế giới, đã có nhiều thuật toán phát triển cho việc giảm thiểu số nút giao tiếp với trạm gốc bằng cách nhóm các nút trong mạng thành các khu vực hoặc các cụm. Mỗi cụm đƣợc điều khiển bởi một nút trƣởng cụm (CH – Cluster Head), các nút khác trong cụm trở thành nút thành viên của cụm đó. Các nút thành viên chỉ liên lạc với nút trƣởng cụm trong phạm vi của cụm đó. Nút trƣởng cụm sẽ liên lạc trực tiếp với trạm gốc nên hạn chế mức tiêu thụ năng lƣợng của các nút cảm biến trong WSN. Tuy nhiên, để đạt đƣợc kết quả cao hơn nữa trong việc tiết kiệm năng lƣợng trong WSN, một số nhà nghiên cứu đã triển khai các trạm thu phát di động (MS - mobile 2 sink) để thu thập dữ liệu từ các nút cảm biến. Tính di động của trạm thu phát nhằm tăng thời gian sống cho mạng cảm biến là vấn đề chính đƣợc xét đến trong luận văn này. Mục tiêu của luận văn Mục tiêu của luận văn là xác định đƣờng đi cho sự di chuyển của mobile sink (sử dụng một mobile sink) để tối ƣu năng lƣợng tiêu thụ cho WSN và kéo dài thời gian sống của mạng WSN. Do đó, sẽ tìm hiểu về giao thức phân cụm Leach, logic mờ, mobile sink, thuật toán tìm đƣờng đi ngắn nhất cho mobile sink từ trạm gốc BS đến các trƣởng cụm CH để thu thập thông tin từ các nút cảm biến. Vấn đề cần giải quyết của luận văn Luận văn xét trên một mạng lƣới cảm biến không dây với các nút cảm biến đƣợc triển khai ngẫu nhiên. Các cảm biến tiêu hao năng lƣợng không đồng đều. Theo cách truyền thông tin truyền thống thì các nút cảm biến càng gần các nút trạm đã đƣợc cố định thì sẽ tiêu thụ năng lƣợng nhanh, vì các nút cảm biến gần là do các nút cảm biến ở xa chuyển tiếp nhiều ngày mới đến nên năng lƣợng đã bị tiêu hao trên đƣờng đi, sau đó mới gửi đến trạm di động. Điều này không chỉ gây ra những nút cảm biến gần sink ngƣng hoạt động mà còn làm cho sink không thể truy cập đến các nút cảm biến khác. Để khắc phục tình trạng trên, ta phải hiệu chỉnh lại việc phân phối dữ liệu trên các tuyến đƣờng (dynamic routes) hƣớng tới trạm bằng việc xác định hƣớng di chuyển của mobile sink nhằm thu đƣợc dữ liệu đầy đủ. Từ đó, mới cải thiện đƣợc hiệu quả năng lƣợng, tăng tuổi thọ trong WSN và đây chính là vấn đề cần xem xét trong luận văn. Đối tượng nghiên cứu Tìm hiểu ƣu nhƣợc điểm của mạng cảm biến không dây, mô hình trạm thu phát di động (mobile sink), giao thức LEACH, LEACH-C, các thuật toán tối ƣu năng lƣợng trên mobile sink. 3 Phạm vi nghiên cứu − Nghiên cứu các kiến trúc mạng WSN − Nghiên cứu về các giao thức LEACH, LEACH – C, Dijkstra, ACO − Nghiên cứu, phân tích thuật toán định tuyến trên mobile sink, mô hình trạm thu phát di động. − Nghiên cứu phƣơng pháp tiếp cận giao thức định tuyến phân cụm kết hợp với các giải thuật tìm đƣờng đi ngắn nhất cho mobile sink từ trạm cơ sở (BS – Base Station hay sink) đến các trƣởng cụm (CH – Cluster Head) để thu thập thông tin cảm biến, đồng thời cải tiến thời gian sống của WSN Phương pháp nghiên cứu − Nghiên cứu lý thuyết: + Tìm hiểu các phƣơng pháp định tuyến hiện nay, tìm hiểu về mạng và kiến trúc WSN + Tìm hiểu cơ sở lý thuyết về thuật toán phân cụm + Tìm hiểu sự kết hợp của thuật toán tìm đƣờng đi ngắn nhất với giao thức định tuyến phân cụm LEACH-C trên mobile sink. − Nghiên cứu thực nghiệm: Mô phỏng thuật toán đề xuất thông qua phần mềm Matlab, phân tích kết quả đạt đƣợc so với LEACH, LEACH – C, LEACH-CD. Các đóng góp của luận văn Xác định tối ƣu hƣớng di chuyển cho mobile sink để thu thập thông tin đầy đủ giúp cải thiện đƣợc hiệu quả năng lƣợng của mạng bằng phƣơng pháp tiếp cận thuật toán phân cụm kết hợp với việc sử dụng 01 mobile sink. Cấu trúc luận văn Nội dung của luận văn gồm 04 chƣơng: Chương 1: Tổng quan về mạng cảm biến không dây Chƣơng này mô tả về cấu trúc mạng cảm biến không dây, đặc điểm và cấu trúc của nút cảm biến. Những vấn đề thƣờng gặp trong việc thiết kế mạng cảm biến không dây. 4 Những ứng dụng của mạng cảm biến không dây trong đời sống xã hội: quân sự, công nghiệp, nông nghiệp và giám sát môi trƣờng, gia đình, sức khỏe... Chương 2: Các công trình liên quan Giới thiệu một vài thuật toán định tuyến có trạm thu phát sóng di động nhƣ: Định tuyến động trên lƣới ảo (VGDRA – Virtual Grid based Dynamic Route Adjustment), phân cụm Leach kết hợp mobile sink theo quỹ đạo cố định, Leach – C có mobile sink, định tuyến mobile sink MSA (Mobile Sink Assisted Energy Efficient Routing Algorithm), MECA (Mobile sink based Energy-efficient Clustering Algorithm)…hoặc sử dụng các giao thức nhƣ Leach, Leach – C, CHEF (Cluster Head Election mechanism using Fuzzy logic). Chương 3: Trình bày giải pháp đề xuất xác định đƣờng đi cho sự di chuyển của mobile sink giúp giảm tiêu hao năng lƣợng từ trạm gốc đến các trƣởng cụm, nâng cao thời gian sống của WSN. Chương 4: Mô phỏng và đánh giá hiệu suất của giải pháp đề xuất. Kết luận và hướng phát triển Tài liệu tham khảo 5 CHƢƠNG 1: TỔNG QUAN VỀ MẠNG CẢM BIẾN KHÔNG DÂY 1.1. Giới thiệu Mạng cảm biến không dây (Wireless Sensor Network, viết tắt là WSN) là tập hợp nhiều nút cảm biến đƣợc kết nối với nhau bằng những phƣơng tiện quang học, kết nối sóng vô tuyến, hồng ngoại. WSN là một hệ thống tốn ít chi phí vì ngày nay với sự phát triển của khoa học và kỹ thuật thì việc thiết kế và phát triển các nút cảm biến có kích thƣớc nhỏ, đơn giản, giá thành thấp, … có số lƣợng lớn, và có thể thực hiện đƣợc nhiều chức năng nhƣ cảm biến, thu thập dữ liệu, xử lý tính toán dữ liệu sau đó truyền dữ liệu về trạm gốc để tiếp tục phân tích và đƣa ra các quyết định về môi trƣờng xung quanh. Tuy nhiên, các nút cảm biến có nguồn lực hạn chế (thƣờng dùng pin) về: năng lƣợng giới hạn, dung lƣợng lƣu trữ, khả năng xử lý, tốc độ truyền thấp. Chúng đƣợc phân bố một cách không có cấu trúc cụ thể. Thời gian hoạt động từ vài tháng đến vài năm và có thể hoạt động trong môi trƣờng khắc nghiệt (có hóa chất, nhiệt độ cao, ô nhiễm nặng...). Một số nút cảm biến có khả năng di chuyển, do có thể gắn các nút cảm biến này vào các thiết bị di động. Mỗi nút cảm biến trong mạng có nhiệm vụ cảm biến, quan sát môi trƣờng xung quanh, theo dõi hay xác định các mục tiêu cố định hay di động, thu thập thông tin. Sau đó, định tuyến thông tin về trạm thu phát (Sink) để chuyển tới ngƣời dùng thông qua mạng Internet hoặc Sink sẽ gửi yêu cầu định tuyến đến các nút cảm biến. Tất cả các nút cảm biến đƣợc theo dõi và giám sát bởi một trạm gốc (Base Station BS) hay trạm thu phát (Sink). Trạm này có bộ xử lý, khả năng lƣu trữ và năng lƣợng lớn đảm nhận chức năng nhận dữ liệu từ các nút cảm biến, xử lý, phân tích dữ liệu và đƣa ra các kết luận về môi trƣờng đang đƣợc theo dõi, kiểm soát. Có nhiều ứng dụng tiềm năng trong ngành công nghiệp, khoa học, giao thông, cơ sở hạ tầng, dân sự và an ninh nhƣ: giám sát môi trƣờng sống và hệ sinh thái, giám sát địa chấn, theo dõi sức khỏe, giám sát ô nhiễm nƣớc ngầm, giám sát quy trình công nghiệp, kiểm soát khí hậu… 6 1.2. Cấu trúc mạng cảm biến không dây 1.2.1. Cấu trúc một nút mạng WSN: Để cấu thành mạng các nút cảm biến trƣớc hết phải chế tạo, xây dựng và phát triển các nút. Tùy theo ứng dụng, các nút này sẽ có một số yêu cầu nhất định nhƣ: giá thành thấp, kích thƣớc nhỏ, tiêu thụ năng lƣợng hiệu quả, có khả năng tính toán, bộ nhớ đủ để lƣu trữ, có thể cảm biến, thu thập các thông số từ môi trƣờng chính xác và để truyền thông đến các nút lân cận thì các nút cảm biến phải có khả năng thu phát sóng tốt. Một nút cảm biến đƣợc tạo thành từ các thành phần cơ bản nhƣ trong hình 1.1 gồm bộ cảm biến (a sensing unit), bộ xử lý (a processing unit), bộ truyền nhận (a transceiver unit), và bộ năng lƣợng (a power unit). Cũng tùy ứng dụng sẽ có thêm các thành phần khác nhƣ hệ thống định vị (a location finding system), bộ phát nguồn (power generator), và bộ phận di động (mobilizer) [1]. Bộ cảm biến bao gồm hai bộ con: bộ cảm biến và bộ chuyển đổi từ tƣơng tự sang số (ADCs). Tín hiệu tƣơng tự đƣợc tạo ra bởi các cảm biến, đƣợc chuyển đổi sang tín hiệu số bằng bộ ADC dựa trên những hiện tƣợng quan sát đƣợc, sau đó đƣa vào bộ xử lý. Bộ xử lý kết hợp với bộ lƣu trữ nhỏ, quản lý các thủ tục bằng cách kết hợp các nút cảm biến với nhau để thực hiện nhiệm vụ cảm biến đã đƣợc chỉ định. Bộ thu phát kết nối các nút tới mạng. Chúng gửi và nhận các dữ liệu thu đƣợc từ chính nó hoặc các nút lân cận tới các nút khác hoặc tới sink. Một trong những thành phần quan trọng của nút cảm biến đó là bộ nguồn. Bộ nguồn có thể là một số loại pin. Để các nút có thời gian sống lâu thì bộ nguồn rất quan trọng, nó phải có khả năng nạp điện từ môi trƣờng. Bộ nguồn có thể đƣợc hỗ trợ bởi bộ lọc năng lƣợng nhƣ tế bào năng lƣợng mặt trời. Tùy thuộc vào những ứng dụng, cũng có những thành phần phụ khác. 7 Hình 1. 1: Các thành phần của nút cảm biến Hầu hết các kỹ thuật định tuyến và các nhiệm vụ cảm biến mạng đòi hỏi phải có kiến thức về vị trí với độ chính xác cao. Vì vậy, nút cảm biến cần phải có bộ định vị. Thỉnh thoảng, bộ di động cần di chuyển các nút cảm biến để thực hiện các nhiệm vụ đã đƣợc định sẵn. Tất cả những thành phần phụ này cần phải phù hợp với kích cỡ từng module. Ngoài kích cỡ ra cũng có những ràng buộc khác cho nút cảm biến nhƣ: tiêu thụ năng lƣợng cực kỳ thấp, thích nghi với môi trƣờng, hoạt động ở mật độ cao, chi phí thấp và có thể tự hoạt động mà không cần giám sát. 1.2.2. Cấu trúc mạng cảm biến không dây: Để có thể sử dụng nguồn tài nguyên hạn chế, kéo dài thời gian sống của mạng. Việc thiết kế cấu trúc mạng cần phải có một số cơ chế, kỹ thuật đặc thù sau: Giao tiếp không dây multihop: Khi sử dụng giao tiếp không dây có thể gặp nhiều hạn chế là do khoảng cách hay các vật cản. Đặc biệt, để chuyển tiếp thông tin từ nơi này đến đến khác với khoảng cách xa cần tiêu thụ một lƣợng công suất khá lớn nên cần các nút trung gian truyền thông nhằm giảm công suất tổng thể. Do vậy, các mạng cảm biến không dây nên dùng giao tiếp multihop. 8 Hoạt động hiệu quả năng lƣợng: vấn đề ƣu tiên trong việc sử dụng mạng cảm biến không dây là kéo dài thời gian sống của toàn mạng nên hoạt động hiệu quả năng lƣợng là kỹ thuật quan trọng trong mạng cảm biến không dây. Tự động cấu hình: Chẳng hạn nhƣ các nút có thể tự xác định vị trí địa lý của nó thông qua các nút khác (tự định vị) nên mạng cảm biến không dây cần phải có cơ chế tự động cấu hình các thông số một cách tự động. Xử lý trong mạng và tập trung dữ liệu: trong một số ứng dụng để thu thập đủ dữ liệu thì một nút cảm biến không đủ mà cần có sự cộng tác hoạt động của các nút lân cận, khi đó từng nút thu và gửi dữ liệu trực tiếp đến sink thì sẽ tốn băng thông và năng lƣợng. Cần phải tập hợp các dữ liệu trong một vùng rồi gửi đến sink nhƣ vậy, sẽ tiết kiệm băng thông và năng lƣợng hơn. Do vậy, cấu trúc mạng mới sẽ là: - Kết hợp vấn đề năng lƣợng và khả năng định tuyến - Tích hợp dữ liệu vào giao thức mạng - Truyền năng lƣợng hiệu quả qua các phƣơng tiện không dây - Chia sẻ nhiệm vụ giữa các nút lân cận Các nút cảm biến đƣợc phân bố trong trƣờng cảm biến (sensor field) nhƣ hình 1.2. Mỗi nút cảm biến có khả năng thu thập dữ liệu và định tuyến lại đến sink. Dữ liệu đƣợc định tuyến lại đến sink bởi một cấu trúc đa điểm nhƣ hình vẽ. Các sink có thể giao tiếp với các nút quản lý nhiệm vụ (task manager node) qua mạng Internet hoặc vệ tinh. 9 Hình 1. 2: Cấu trúc mạng cảm biến không dây 1.2.3. Kiến trúc giao thức mạng WSN Cấu trúc giao thức kết hợp dữ liệu cảm biến với các giao thức mạng, tăng cƣờng sự tƣơng tác giữa các nút mạng, phối hợp các tính toán về truyền tin sao cho tiết kiệm năng lƣợng nhất. Kiến trúc giao thức bao gồm lớp vật lý, lớp liên kết dữ liệu, lớp mạng, lớp truyền tải, lớp ứng dụng, phần quản lý năng lƣợng, phần quản lý di động và phần quản lý nhiệm vụ. Cấu trúc giao thức đƣợc sử dụng trong sink và tất cả các nút cảm biến đƣợc thể hiện trên hình 1.3 Hình 1. 3: Kiến trúc giao thức của mạng cảm biến 10 - Lớp ứng dụng: Trong lớp ứng dụng có một số giao thức quan trọng nhƣ giao thức quản lý mạng sensor (SMP - Sensor Management Protocol), giao thức quảng bá dữ liệu và chỉ định nhiệm vụ cho từng sensor (TADAP - Task Assignment and Data Advertisement), giao thức phân phối dữ liệu và truy vấn cảm biến (SQDDP Sensor Query and Data Dissemination). Các phần mềm ứng dụng sẽ đƣợc xây dựng và sử dụng trong lớp ứng dụng tùy vào từng nhiệm vụ của mạng cảm biến. - Lớp truyền tải: Khi mạng cảm biến kết nối với ngƣời dùng qua internet hay kết nối với mạng bên ngoài thì lớp truyền tải đặc biệt cần. Giao thức lớp vận chuyển giữa sink với ngƣời dùng (nút quản lý nhiệm vụ) thì có thể là giao thức gói ngƣời dùng (UDP - User Datagram Protocol) hay giao thức điều khiển truyền tải (TCP Transmission Control Protocol) thông qua internet hoặc vệ tinh. Còn giao tiếp giữa sink và các nút cảm biến cần các giao thức kiểu nhƣ UDP vì các nút cảm biến bị hạn chế về bộ nhớ. Hơn nữa các giao thức này còn phải tính đến sự tiêu thụ công suất, tính mở rộng và định tuyến tập trung dữ liệu. - Lớp mạng: Lớp mạng quan tâm đến việc định tuyến dữ liệu đƣợc cung cấp bởi lớp truyền tải. Việc định tuyến trong mạng cảm biến phải đối mặt với rất nhiều thách thức nhƣ mật độ các nút dày đặc, hạn chế về năng lƣợng…Do vậy thiết kế lớp mạng trong mạng cảm biến phải theo các nguyên tắc sau:  Tính hiệu quả về năng lƣợng luôn đƣợc xem là vấn đề quan trọng hàng đầu.  Các mạng cảm biến gần nhƣ là tập trung dữ liệu  Tích hợp dữ liệu và giao thức mạng.  Phải có cơ chế địa chỉ theo thuộc tính và biết về vị trí Có rất nhiều giao thức định tuyến đƣợc thiết kế cho mạng cảm biến không dây. Nhìn tổng quan, chúng đƣợc chia thành ba loại dựa vào cấu trúc mạng, đó là định tuyến ngang hàng, định tuyến phân cấp, định tuyến dựa theo vị trí. Xét theo hoạt động thì chúng đƣợc chia thành định tuyến dựa trên đa đƣờng (multipathbased), định tuyến theo truy vấn (query- based), định tuyến negotiation-based, định tuyến theo chất lƣợng dịch vụ (QoS-based), định tuyến kết hợp (coherent-based).
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng