Tài liệu Luận án toán học-hệ nhân tử trong nhóm phạm trù phân bậc

  • Số trang: 116 |
  • Loại file: PDF |
  • Lượt xem: 420 |
  • Lượt tải: 0
dangvantuan

Tham gia: 02/08/2015

Mô tả:

§¹i häc huÕ Tr­êng ®¹i häc s­ ph¹m ph¹m thÞ cóc HÖ nh©n tö trong nhãm ph¹m trï ph©n bËc luËn ¸n tiÕn sÜ to¸n häc HuÕ - 2014 §¹i häc huÕ Tr­êng ®¹i häc s­ ph¹m ph¹m thÞ cóc HÖ nh©n tö trong nhãm ph¹m trï ph©n bËc Chuyªn ngµnh: §¹i sè vµ lý thuyÕt sè M· sè: 62. 46. 05. 01 luËn ¸n tiÕn sÜ to¸n häc Ng­êi h­íng dÉn khoa häc: 1. PGS. TS. NguyÔn TiÕn Quang 2. GS. TS. Lª V¨n ThuyÕt HuÕ, 2014 Lêi cam ®oan T«i xin cam ®oan ®©y lµ c«ng tr×nh nghiªn cøu cña t«i ®­îc viÕt chung víi c¸c ®ång t¸c gi¶. Nh÷ng kÕt qu¶ viÕt chung víi c¸c t¸c gi¶ kh¸c ®· ®­îc sù nhÊt trÝ cña c¸c ®ång t¸c gi¶ khi ®­a vµo luËn ¸n. C¸c sè liÖu, kÕt qu¶ ®­îc tr×nh bµy trong luËn ¸n lµ trung thùc vµ ch­a tõng ®­îc ai c«ng bè trong bÊt kú c«ng tr×nh nµo kh¸c. T¸c gi¶ Ph¹m ThÞ Cóc 1 Lêi c¶m ¬n LuËn ¸n ®­îc hoµn thµnh d­íi sù h­íng dÉn cña PGS. TS. NguyÔn TiÕn Quang vµ GS. TS. Lª V¨n ThuyÕt. Lêi ®Çu tiªn, em xin bµy tá lßng biÕt ¬n ch©n thµnh vµ s©u s¾c nhÊt ®Õn c¸c ThÇy. C¸c ThÇy kh«ng chØ truyÒn cho em niÒm ®am mª nghiªn cøu khoa häc, tËn t×nh h­íng dÉn vµ gióp ®ì em vÒ mäi mÆt, mµ cßn dµnh cho em sù cæ vò vµ ®éng viªn trong suèt qu¸ tr×nh häc tËp vµ nghiªn cøu cña m×nh. T«i xin tr©n träng c¶m ¬n c¸c thÇy c« trong Khoa To¸n, Phßng Sau ®¹i häc - Tr­êng §¹i häc s­ ph¹m - §¹i häc HuÕ, Ban ®µo t¹o sau ®¹i häc - §¹i häc HuÕ vµ c¸c thÇy c« trong Bé m«n §¹i sè, Khoa Khoa häc tù nhiªn - Tr­êng §¹i häc Hång §øc - Thanh Hãa ®· t¹o mäi ®iÒu kiÖn thuËn lîi cho t«i häc tËp, nghiªn cøu vµ hoµn thµnh ch­¬ng tr×nh nghiªn cøu cña m×nh. T«i còng xin göi lêi c¶m ¬n ®Õn Th¹c sü NguyÔn Thu Thñy v× nh÷ng sù gióp ®ì ch©n thµnh. Cuèi cïng, t«i muèn bµy tá lßng biÕt ¬n s©u s¾c ®Õn gia ®×nh t«i v× nh÷ng sù ®ång c¶m, ®éng viªn vµ chia sÎ nh÷ng khã kh¨n trong suèt thêi gian t«i lµm nghiªn cøu sinh vµ hoµn thµnh luËn ¸n nµy. Ph¹m ThÞ Cóc 2 Môc lôc 1 Mét sè kiÕn thøc chuÈn bÞ 16 1.1 Nhãm ph¹m trï (bÖn) ph©n bËc . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1.1 Nhãm ph¹m trï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1.2 Nhãm ph¹m trï thu gän vµ c¸c t­¬ng ®­¬ng chÝnh t¾c . . . . . . . . . 17 1.1.3 Nhãm ph¹m trï ph©n bËc . . . . . . . . . . . . . . . . . . . . . . . . 18 1.1.4 Nhãm ph¹m trï bÖn ph©n bËc . . . . . . . . . . . . . . . . . . . . . . 19 1.1.5 Hµm tö monoidal, t­¬ng ®­¬ng tù nhiªn monoidal . . . . . . . . . . . 19 1.2 Ann-ph¹m trï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.1 Ann-ph¹m trï . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.2 Ann-hµm tö . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.3 Ann-ph¹m trï thu gän 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Ph©n líp c¸c hµm tö monoidal kiÓu (ϕ, f ) vµ øng dông 2.1 Ph©n líp ®èi ®ång ®iÒu c¸c hµm tö monoidal kiÓu 25 (ϕ, f ) . . . . . . . . . . . . 25 2.2 Ph©n líp c¸c nhãm ph¹m trï . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Ph©n líp c¸c nhãm ph¹m trï bÖn . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Ph©n líp c¸c nhãm ph¹m trï bÖn ph©n bËc bëi hÖ nh©n tö . . . . . . . . . . . 37 2.5 ¸p dông vµo bµi to¸n më réng nhãm cæ ®iÓn . . . . . . . . . . . . . . . . . 45 2.5.1 Nhãm ph¹m trï cña mét h¹t nh©n trõu t­îng . . . . . . . . . . . . . . 45 2.5.2 Hµm tö monoidal vµ bµi to¸n më réng nhãm 3 . . . . . . . . . . . . . . 49 Nhãm ph¹m trï chÆt chÏ vµ më réng nhãm kiÓu m«®un chÐo 53 3.1 Nhãm ph¹m trï liªn kÕt víi mét m«®un chÐo . . . . . . . . . . . . . . . . . . 53 3.2 Ph©n líp c¸c m«®un chÐo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Bµi to¸n më réng nhãm kiÓu m«®un chÐo: lý thuyÕt c¶n trë vµ ®Þnh lý ph©n líp 58 4 Nhãm ph¹m trï ph©n bËc chÆt chÏ vµ më réng nhãm ®¼ng biÕn kiÓu chÐo Γ-m«®un 65 4.1 Lý thuyÕt ®èi ®ång ®iÒu nhãm ®¼ng biÕn cña Cegarra . . . . . . . . . . . . . 65 3 4.2 Nhãm ph¹m trï ph©n bËc thu gän vµ hµm tö monoidal ph©n bËc kiÓu (ϕ, f ) . 66 4.2.1 X©y dùng nhãm ph¹m trï ph©n bËc thu gän th«ng qua ph¹m trï khung 67 4.2.2 X©y dùng nhãm ph¹m trï ph©n bËc thu gän b»ng ph­¬ng ph¸p hÖ nh©n tö . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.3 Ph©n líp c¸c hµm tö monoidal ph©n bËc kiÓu 4.3 Γ-m«®un chÐo vµ nhãm ph¹m trï ph©n bËc liªn kÕt . . . . . . . . . . . . . . 73 4.4 Ph©n líp c¸c Γ-m«®un chÐo . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5 Bµi to¸n më réng nhãm ®¼ng biÕn kiÓu ®Þnh lý ph©n líp 5 (ϕ, f ) . . . . . . . . . . 72 Γ-m«®un chÐo: lý thuyÕt c¶n trë vµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Ann-ph¹m trï chÆt chÏ vµ më réng vµnh kiÓu E-hÖ chÝnh qui 5.1 Lý thuyÕt ®èi ®ång ®iÒu vµnh cña Mac Lane vµ Shukla 88 . . . . . . . . . . . . 88 5.2 Song m«®un chÐo vµ E-hÖ chÝnh qui . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Ph©n líp c¸c E-hÖ chÝnh qui . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4 Më réng vµnh kiÓu E-hÖ chÝnh qui . . . . . . . . . . . . . . . . . . . . . . . 99 4 B¶ng ký hiÖu Ký hiÖu NghÜa ObG tËp c¸c vËt cña ph¹m trï MorG tËp c¸c mòi tªn cña ph¹m trï (0, g, d) rµng buéc ®¬n vÞ cña phÐp céng (1, l, r) rµng buéc ®¬n vÞ (cña phÐp nh©n) Π = π0 G tËp c¸c líp vËt ®¼ng cÊu cña A = π1 G tËp c¸c tù ®¼ng cÊu cña vËt ®¬n vÞ SG ph¹m trï thu gän cña ph¹m trï Hom(ϕ,f ) [S, S0 ] tËp c¸c líp ®ång lu©n c¸c hµm tö kiÓu tõ G G G I G (ϕ, f ) 0 S ®Õn S (Π, A), (Π, A, k) R (Π, A, h) Γ (F, Fe) nhãm ph¹m trï kiÓu (F, F̆ , Fe) e (G, G) e (H, H), Ann-hµm tö e Γ ), (GΓ , G eΓ ) (HΓ , H c¸c t­¬ng ®­¬ng monoidal nhãm ph¹m trï (Π, A) Γ-ph©n bËc kiÓu (Π, A) hµm tö monoidal (Γ-ph©n bËc) c¸c t­¬ng ®­¬ng monoidal chÝnh t¾c Γ-ph©n bËc chÝnh t¾c (R, M ), (R, M, h) Ann-ph¹m trï kiÓu H i (Π, A) c¸c nhãm ®èi ®ång ®iÒu nhãm HΓi (Π, A) i HM acL (R, M ) i HShu (R, M ) c¸c nhãm ®èi ®ång ®iÒu nhãm ®¼ng biÕn MA vµnh c¸c song tÝch cña vµnh (R, M ) c¸c nhãm ®èi ®ång ®iÒu vµnh cña Mac Lane c¸c nhãm ®èi ®ång ®iÒu vµnh cña Shukla A tËp c¸c líp t­¬ng ®­¬ng c¸c më réng nhãm Ext(Π, A, ψ) d M, (B, D, d, θ), B → D (Γ-)m«®un chÐo, E-hÖ ExtB→D (Q, B, ψ) tËp c¸c líp t­¬ng ®­¬ng c¸c më réng nhãm kiÓu m«®un chÐo ExtΓB→D (Q, B, ψ) tËp c¸c líp t­¬ng ®­¬ng c¸c më réng nhãm ®¼ng biÕn kiÓu 5 Γ-m«®un chÐo B¶ng thuËt ng÷ ThuËt ng÷ TiÕng Anh Ann-ph¹m trï Ann-category Ann-ph¹m trï chÆt chÏ strict Ann-category Ann-ph¹m trï chÝnh qui regular Ann-category Ann-ph¹m trï thu gän reduced Ann-category Ann-hµm tö Ann-functor Ann-hµm tö ®¬n single Ann-functor Ann-mòi tªn Ann-morphism Ann-t­¬ng ®­¬ng Ann-equivalence Ann-t­¬ng ®­¬ng chÝnh t¾c canonical Ann-equivalence c¶n trë obstruction ®Ýnh stick ®iÒu kiÖn khíp coherence condition E-hÖ E-system E-hÖ chÝnh qui regular E-system hµm tö monoidal monoidal functor hµm tö monoidal chÝnh qui regular monoidal functor hµm tö monoidal ®èi xøng symmetric monoidal functor hµm tö monoidal ph©n bËc graded monoidal functor hµm tö monoidal ph©n bËc chÝnh qui regular graded monoidal functor h¹t nh©n trõu t­îng abstract kernel hÖ nh©n tö factor set hÖ nh©n tö chÝnh qui regular factor set gi¶ hµm tö pseudo-functor m«®un chÐo crossed module m«®un chÐo ®¼ng biÕn equivariant crossed module më réng nhãm ®¼ng biÕn equivariant group extension më réng tÝch chÐo crossed product extension nhãm ph¹m trï categorical group nhãm ph¹m trï chÆt chÏ strict categorical group nhãm ph¹m trï bÖn braided categorical group nhãm ph¹m trï bÖn ph©n bËc graded braided categorical group 6 nhãm ph¹m trï ph©n bËc graded categorical group nhãm ph¹m trï ph©n bËc chÆt chÏ strict graded categorical group nhãm pham trï rêi r¹c discrete categorical group nhãm ph¹m trï thu gän reduced categorical group ph¹m trï khung skeletal category ph¹m trï monoidal monoidal category ph¹m trï monoidal ®èi xøng symmetric monoidal category ph¹m trï Picard Picard category ph©n bËc graded rµng buéc constraint rµng buéc bÖn braided constraint rµng buéc ®¬n vÞ unit constraint rµng buéc giao ho¸n commutativity constraint rµng buéc kÕt hîp associativity constraint song m«®un chÐo crossed bimodule song tÝch bimultiplication song tÝch giao ho¸n permutable bimultiplication sù t­¬ng thÝch compatibility tiÒn ®Ýnh pre-stick t­¬ng ®­¬ng ph¹m trï categorical equivalence t­¬ng ®­¬ng tù nhiªn monoidal monoidal natural equivalence vËt object 7 s¬ ®å mèi liªn hÖ gi÷a c¸c kh¸i niÖm, thuËt ng÷ Nhãm ph¹m trï Ann-ph¹m trï ph©n bËc @ @ @ @ @ Nhãm ph¹m trï 1. Nhãm ph¹m trï  ⊃ Nhãm ph¹m trï chÆt chÏ  - M«®un chÐo @ @ @ @ @ Më réng nhãm  2. Nhãm ph¹m trï  ph©n bËc ⊃ Më réng nhãm kiÓu m«®un chÐo ⊃  Nhãm ph¹m trï ph©n bËc chÆt chÏ - Γ-m«®un chÐo @ @ @ @ 3. Ann-ph¹m trï Më réng nhãm  ®¼ng biÕn  ⊃ ⊃ Më réng nhãm ®¼ng biÕn kiÓu Γ-m«®un chÐo Ann-ph¹m trï chÆt chÏ  - @ @ @ @ @ Më réng vµnh  Më réng vµnh kiÓu E-hÖ chÝnh qui ⊃ 8 E-hÖ chÝnh qui Më ®Çu Kh¸i niÖm ph¹m trï monoidal (hay ph¹m trï tens¬) ®­îc ®Ò xuÊt bëi BÐnabou [44], S. Mac Lane [26], G. M. Kelly [23], ... vµo ®Çu nh÷ng n¨m 60 cña thÕ kû tr­íc. §ã lµ mét ph¹m trï C ®­îc trang bÞ mét song hµm tö ⊗ : C × C → C cã tÝnh kÕt hîp (sai kh¸c mét ®¼ng cÊu tù nhiªn) vµ mét vËt I võa lµ ®¬n vÞ tr¸i võa lµ ®¬n vÞ ph¶i ®èi víi phÐp to¸n ⊗ (còng sai kh¸c mét ®¼ng cÊu tù nhiªn). C¸c ®¼ng cÊu tù nhiªn kÕt hîp vµ ®¬n vÞ ph¶i tháa m·n nh÷ng ®iÒu kiÖn khíp nhÊt ®Þnh ®Ó ®¶m b¶o r»ng tÊt c¶ c¸c biÓu ®å phï hîp lµ giao ho¸n. NÕu c¸c ®¼ng cÊu nµy ®Òu lµ ®ång nhÊt th× ta nãi c¸c rµng buéc lµ chÆt chÏ, vµ ph¹m trï ®ang xÐt lµ ph¹m trï monoidal chÆt chÏ. Mçi ph¹m trï monoidal ®Òu t­¬ng ®­¬ng víi mét ph¹m trï monoidal chÆt chÏ. PhÐp to¸n tens¬ th«ng th­êng lµm cho c¸c kh«ng gian vect¬, c¸c nhãm aben, c¸c R-m«®un hoÆc c¸c R-®¹i sè trë thµnh ph¹m trï monoidal. Do ®ã, ph¹m trï monoidal cã thÓ ®­îc xem nh­ tæng qu¸t hãa cña c¸c kh¸i niÖm nµy vµ nhiÒu vÝ dô kh¸c. Ph¹m trï monoidal ®­îc "mÞn hãa" ®Ó trë thµnh ph¹m trï víi cÊu tróc nhãm khi bæ sung thªm kh¸i niÖm vËt kh¶ nghÞch. Trong tr­êng hîp ph¹m trï nÒn lµ mét groupoid (nghÜa lµ mäi mòi tªn trong ph¹m trï ®Òu lµ ®¼ng cÊu) th× ta thu ®­îc mét líp ph¹m trï quan träng, ®ã lµ nhãm ph¹m trï. Mét nhãm ph¹m trï (hay Gr-ph¹m trï theo c¸ch gäi cña H. X. SÝnh [50]) lµ mét ph¹m trï monoidal trong ®ã mäi mòi tªn ®Òu kh¶ nghÞch vµ mäi vËt ®Òu cã nghÞch ®¶o yÕu (ë ®©y nghÞch ®¶o yÕu cña mét vËt ®Òu ®¼ng cÊu víi vËt ®¬n vÞ X lµ mét vËt Y sao cho X ⊗ Y vµ Y ⊗ X I ). §Æc biÖt, mét nhãm ph¹m trï chÆt chÏ (theo c¸ch gäi cña A. Joyal vµ R. Street [22]) lµ mét ph¹m trï monoidal chÆt chÏ trong ®ã mäi mòi tªn ®Òu kh¶ nghÞch vµ mäi vËt ®Òu cã nghÞch ®¶o chÆt chÏ (X ®­îc gäi lµ ⊗ Y = I = Y ⊗ X ). Kh¸i niÖm nµy cßn G -groupoid theo R. Brown vµ C. Spencer [8], hay 2-nhãm theo B. Noohi [29], hay 2-nhãm chÆt chÏ theo J. C. Baez vµ A. D. Lauda [3], hay Gr-ph¹m trï chÆt chÏ theo H. X. SÝnh [51]. Nhãm ph¹m trï bÖn lµ mét nhãm ph¹m trï ®­îc trang bÞ thªm rµng buéc bÖn. Trong tr­êng hîp rµng buéc bÖn lµ ®èi xøng th× ta thu ®­îc kh¸i niÖm nhãm ph¹m trï ®èi xøng (hay ph¹m trï Picard, Pic-ph¹m trï theo [50]) hay 2-nhãm ®èi xøng. Nh÷ng t¸c gi¶ ®Çu tiªn nghiªn cøu vÒ nhãm ph¹m trï mµ ta cã thÓ kÓ ®Õn lµ N. Saavedra Rivano [49], H. X. SÝnh [50], M. L. Laplaza [24], ... Trong luËn ¸n cña m×nh n¨m 1975 [50], H. X. SÝnh ®· m« t¶ cÊu tróc cña nhãm ph¹m trï vµ ph¹m trï Picard vµ ph©n líp chóng bëi nhãm ®èi ®ång ®iÒu chiÒu 3 cña c¸c nhãm. Do trong líp ph¹m trï nµy mäi mòi tªn ®Òu lµ ®¼ng cÊu nªn c¸c bÊt biÕn ®Æc tr­ng cña mçi ph¹m trï thuéc líp nµy ®Òu ®­îc x¸c ®Þnh. Theo ®ã, mçi nhãm ph¹m trï vËt ®¼ng cÊu cña G x¸c ®Þnh hoµn toµn ba bÊt biÕn: nhãm Π = π0 G c¸c líp G, Π-m«®un A = π1 G c¸c tù ®¼ng cÊu cña vËt ®¬n vÞ cña G vµ mét líp 9 ®èi ®ång ®iÒu chuÈn t¾c chiÒu 3 cña nhãm Π víi c¸c hÖ tö trong Π-m«®un A. H¬n n÷a, mçi nhãm ph¹m trï ®Òu t­¬ng ®­¬ng víi mét nhãm ph¹m trï kiÓu (Π, A) qua c¸c t­¬ng ®­¬ng chÝnh t¾c ®­îc x©y dùng nhê kh¸i niÖm ®Ýnh. Do ®ã, sù ph©n líp c¸c nhãm ph¹m trï hoµn toµn cã thÓ ®­îc thùc hiÖn mét c¸ch ®¬n gi¶n h¬n trªn líp c¸c ph¹m trï lo¹i nµy (c¸c nhãm ph¹m trï tiÒn ®Ýnh kiÓu (Π, A)). KÕt qu¶ nµy ®· cho phÐp x¸c lËp mèi liªn hÖ gi÷a lý thuyÕt nhãm ph¹m trï, ®èi ®ång ®iÒu nhãm vµ bµi to¸n më réng nhãm cæ ®iÓn cña Schreier - Eilenberg - Mac Lane [51]. Sau ®ã, lý thuyÕt nhãm ph¹m trï víi tÝnh kh¸i qu¸t cña nã ngµy cµng cã nhiÒu øng dông. LuËn ¸n cña H. X. SÝnh [50] cã thÓ xem nh­ lµ ®· tr×nh bµy mét c¸ch ®Çy ®ñ c¸c vÊn ®Ò c¬ b¶n liªn quan ®Õn nhãm ph¹m trï, nh­ng c«ng tr×nh nµy kh«ng ®­îc xuÊt b¶n vµ còng rÊt khã t×m. J. C. Baez vµ A. D. Lauda [3] sau ®ã ®· cã mét tæng kÕt kh¸ tØ mØ cho c¸c nhãm ph¹m trï, tuy nhiªn c¸c t¸c gi¶ nµy l¹i kh«ng ®Ò cËp tíi bµi to¸n ph©n líp. C¸c nhãm ph¹m trï Γ-ph©n bËc ®­îc giíi thiÖu lÇn ®Çu tiªn trong [20] bëi A. Frohlich vµ C. T. C. Wall. GÇn ®©y, nhiÒu vÝ dô thó vÞ kh¸c vÒ nhãm ph¹m trï ph©n bËc còng xuÊt hiÖn trong t«p« ®¹i sè vµ lý thuyÕt vµnh (xem [14, 16]). Trong [14], A. M. Cegarra vµ c¸c ®ång t¸c gi¶ ®· chøng ®Þnh lý ph©n líp chÝnh x¸c cho c¸c nhãm ph¹m trï ph©n bËc vµ c¸c hµm tö monoidal ph©n bËc bëi nhãm ®èi ®ång ®iÒu ®¼ng biÕn chiÒu thø 3 theo nghÜa trong [15]. Sau ®ã, c¸c kÕt qu¶ nµy ®· ®­îc ¸p dông ®Ó ®­a ra lêi gi¶i thÝch hîp cho bµi to¸n më réng ®¼ng biÕn cña nhãm víi h¹t nh©n kh«ng aben trong [14]. §©y lµ mét d¹ng kh¸i qu¸t cña bµi to¸n më réng nhãm cæ ®iÓn, mµ ë ®©y nã xuÊt hiÖn nh­ lµ mét tr­êng hîp ®Æc biÖt øng víi Γ = 1. KÕt qu¶ nµy cho ta thÊy mèi liªn hÖ gi÷a bé ba: lý thuyÕt nhãm ph¹m trï ph©n bËc, më réng nhãm ®¼ng biÕn vµ ®èi ®ång ®iÒu ®¼ng biÕn. Nhãm ph¹m trï bÖn ®­îc xÐt tíi lÇn ®Çu trong [22] bëi A. Joyal vµ R. Street nh­ mét më réng cña ph¹m trï Picard, trong ®ã c¸c nhãm ph¹m trï bÖn ®· ®­îc ph©n líp bëi nhãm ®èi ®ång ®iÒu aben 3 Hab (M, N ). T×nh huèng tæng qu¸t h¬n ®èi víi c¸c nhãm ph¹m trï Picard ®­îc ®­a ra bëi A. Frohlich vµ C. T. C. Wall víi tªn gäi nhãm ph¹m trï ph©n bËc [20] (sau nµy, A. M. Cegarra vµ E. Khmaladze [18] gäi lµ ph¹m trï Picard ph©n bËc). C¸c ®Þnh lý ph©n líp ®ång lu©n cho ph¹m trï c¸c nhãm ph¹m trï bÖn ph©n bËc, vµ tr­êng hîp riªng cña nã lµ ph¹m trï c¸c ph¹m trï Picard ph©n bËc ®· ®­îc tr×nh bµy theo thø tù trong [17] vµ [18]. Trong phÐp chøng minh c¸c ®Þnh lý ph©n líp nµy, phÇn thó vÞ nhÊt vµ còng lµ phøc t¹p nhÊt lµ phÐp dùng 3-®èi chu tr×nh ®­îc c¶m sinh bëi mét nhãm ph¹m trï bÖn ph©n bËc (hoÆc ph¹m trï Picard ph©n bËc) qua ph¹m trï khung mµ mçi líp t­¬ng ®­¬ng cña c¸c ph¹m trï cïng lo¹i lµ t­¬ng øng víi mét líp ®èi ®ång ®iÒu chiÒu 3. Trong bµi b¸o [34], N. T. Quang ®· giíi thiÖu mét c¸ch tiÕp cËn kh¸c cho bµi to¸n ph©n líp ph¹m trï c¸c nhãm ph¹m trï tö Γ-ph©n bËc dùa trªn ph­¬ng ph¸p hÖ nh©n tö (hay gi¶ hµm theo nghÜa cña A. Grothendieck [47]). Ph­¬ng ph¸p nµy dùa trªn ý t­ëng sau. Mçi nhãm 10 ph¹m trï Γ-ph©n bËc ®­îc xem nh­ më réng cña mét nhãm ph¹m trï bëi nhãm Γ. Do mçi nhãm ph¹m trï lµ t­¬ng ®­¬ng víi mét nhãm ph¹m trï kiÓu (Π, A) nªn 3-®èi chu tr×nh c¶m sinh cã thÓ ®­îc x¸c ®Þnh tõ mét hÖ nh©n tö t­¬ng tù nh­ c¸ch x¸c ®Þnh c¸i c¶n trë cña bµi to¸n më réng nhãm. Ph­¬ng ph¸p nµy cã nhiÒu triÓn väng trong viÖc ¸p dông cho ph¹m trï c¸c nhãm ph¹m trï bÖn Γ-ph©n bËc. NÕu nh­ nhãm ph¹m trï ®­îc xem nh­ lµ mét phiªn b¶n ph¹m trï cña cÊu tróc nhãm th× vµo n¨m 1988 N. T. Quang [1] ®· ®­a ra kh¸i niÖm Ann-ph¹m trï, xem nh­ mét ph¹m trï hãa cña kh¸i niÖm vµnh, víi nh÷ng ®ßi hái vÒ tÝnh kh¶ nghÞch cña c¸c vËt vµ cña c¸c mòi tªn trong ph¹m trï nÒn. Còng trong [1], N. T. Quang ®· x¸c ®Þnh ®­îc c¸c bÊt biÕn ®Æc tr­ng cña mét Ann-ph¹m trï bao gåm mét vµnh tö thuéc nhãm ®èi ®ång ®iÒu Mac Lane R, mét R-song m«®un M vµ mét phÇn 3 HM acL (R, M ) theo nghÜa trong [48]. Tõ ®ã x¸c lËp ®­îc mét song ¸nh gi÷a tËp c¸c líp t­¬ng ®­¬ng cña c¸c Ann-ph¹m trï tiÒn ®Ýnh kiÓu (R, M ) víi tËp c¸c líp ®èi ®ång ®iÒu c¸c cÊu tróc cña Ann-ph¹m trï kiÓu (R, M ) (§Þnh lý 3.4, Ch­¬ng IV [1]). Sau ®ã, bµi to¸n ph©n líp c¸c Ann-hµm tö ®· ®­îc N. T. Quang vµ D. D. Hanh gi¶i quyÕt trong [35] nhê c¸c nhãm ®èi ®ång ®iÒu chiÒu thÊp cña ®èi ®ång ®iÒu vµnh Mac Lane. Còng trong bµi b¸o nµy, c¸c t¸c gi¶ ®· chØ ra mèi liªn hÖ gi÷a bµi to¸n më réng vµnh vµ lý thuyÕt c¶n trë cña c¸c Ann-hµm tö. Líp c¸c Ann-ph¹m trï chÝnh qui (rµng buéc ®èi xøng tháa m·n ®iÒu kiÖn ®èi víi mäi vËt cX,X = id X ), n¶y sinh tõ bµi to¸n më réng vµnh, ®· ®­îc ph©n líp trong [1] bëi nhãm ®èi ®ång ®iÒu cña ®¹i sè kÕt hîp 3 HShu (R, M ) theo nghÜa cña Shukla trong [52]. GÇn ®©y nhÊt, bµi to¸n ph©n líp c¸c Ann-ph¹m trï trong tr­êng hîp tæng qu¸t ®· ®­îc N. T. Quang gi¶i quyÕt trän vÑn trong [37]. M«®un chÐo cña c¸c nhãm ®­îc J. H. C. Whitehead ®­a ra vµo n¨m 1949 trong c«ng tr×nh nghiªn cøu cña «ng vÒ biÓu diÔn 2-d¹ng ®ång lu©n [43] mµ kh«ng cã sù trî gióp cña lý thuyÕt ph¹m trï. Trong bµi b¸o ®­îc xuÊt b¶n n¨m 1976 [8], R. Brown vµ C. Spencer ®· chØ ra r»ng mçi m«®un chÐo ®Òu x¸c ®Þnh mét G -groupoid (nghÜa lµ, mét nhãm ph¹m trï chÆt chÏ) vµ ng­îc l¹i, do ®ã m«®un chÐo cã thÓ ®­îc nghiªn cøu bëi lý thuyÕt ph¹m trï. KÕt qu¶ nµy cho phÐp x¸c lËp mèi liªn hÖ gi÷a lý thuyÕt nhãm ph¹m trï víi m«®un chÐo, mét kh¸i niÖm c¬ b¶n vµ cã nguån gèc tõ t«p« ®¹i sè. Mét c¸ch chÝnh x¸c, R. Brown vµ C. Spencer ®· chøng minh r»ng (§Þnh lý 1, [8]) ph¹m trï c¸c m«®un chÐo lµ t­¬ng ®­¬ng víi ph¹m trï c¸c G -groupoid (trong ph¹m trï thø nhÊt c¸c mòi tªn lµ c¸c ®ång cÊu m«®un chÐo, cßn trong ph¹m trï thø hai mòi tªn lµ c¸c hµm tö b¶o toµn phÐp to¸n nhãm). Tr­íc ®ã, kÕt qu¶ nµy ®· ®­îc t×m ra mét c¸ch ®éc lËp bëi J. -L. Verdier vµo n¨m 1965 trong mét c«ng tr×nh cña «ng nh­ng kh«ng ®­îc c«ng bè. Sau ®ã, kÕt qu¶ nµy ®· ®­îc sö dông vµ trÝch dÉn trong kh¸ nhiÒu nghiªn cøu cña c¸c t¸c gi¶ kh¸c cã liªn quan tíi m«®un chÐo hoÆc nhãm ph¹m trï. Mét d¹ng kh¸i qu¸t hãa cña §Þnh lý 1 trong [8] cho c¸c m«®un chÐo trong nhãm 11 víi phÐp to¸n vµ c¸c ph¹m trï trong ®· ®­îc T. Porter giíi thiÖu trong [32]. Nh­ vËy, cã thÓ xem nh­ R. Brown vµ C. Spencer lµ nh÷ng t¸c gi¶ ®Çu tiªn ®· ®­a ra ®­îc mét t­¬ng ®­¬ng ph¹m trï gi÷a mét bªn lµ ph¹m trï c¸c m«®un chÐo vµ mét bªn lµ ph¹m trï cña mét lo¹i ®¹i sè ph¹m trï. Tuy nhiªn, trong t­¬ng ®­¬ng nµy, ngoµi viÖc x©y dùng ®­îc t­¬ng øng gi÷a c¸c vËt cña hai ph¹m trï, c¸c t¸c gi¶ míi chØ x©y dùng ®­îc t­¬ng øng trªn mét líp c¸c mòi tªn vµ c¸c hµm tö rÊt ®Æc biÖt. Do ®ã, t­¬ng ®­¬ng nµy ch­a ph¶n ¸nh ®­îc b¶n chÊt cña tenx¬ ph¹m trï, ®ã lµ mèi liªn hÖ víi ®èi ®ång ®iÒu nhãm. Mèi liªn hÖ gi÷a nhãm ph¹m trï chÆt chÏ, m«®un chÐo vµ ®èi ®ång ®iÒu nhãm ®· ®­îc A. Joyal vµ R. Street chØ ra trong b¶n th¶o bµi b¸o n¨m 1986 [21], nh­ng sau ®ã l¹i bÞ bá ®i trong phiªn b¶n cuèi cïng [22]. Bµi to¸n më réng nhãm kiÓu m«®un chÐo ®­îc giíi thiÖu trong [42] vµ [46] ®· ®­îc R. Brown vµ c¸c céng sù nghiªn cøu trong c¸c c«ng tr×nh [7], [9], [10]. Trong ®ã, c¸c t¸c gi¶ ®· gi¶i thÝch ®Þnh lý vÒ sù tån t¹i vµ ph©n líp c¸c më réng lo¹i nµy b»ng c¸ch sö dông ph­¬ng ph¸p phøc chÐo, t­¬ng tù nh­ ph­¬ng ph¸p phøc xÝch trong ®¹i sè ®ång ®iÒu. C¸c kÕt qu¶ vÒ bµi to¸n më réng nhãm kiÓu m«®un chÐo ®· ®­îc biÓu diÔn (thÓ hiÖn) qua ®èi ®ång ®iÒu nhãm, t­¬ng tù nh­ kÕt qu¶ cæ ®iÓn cña Eilenberg - Mac Lane (MÖnh ®Ò 8.3, Ch­¬ng IV [27]). Trong [51], H. X. SÝnh còng ®· sö dông nhãm ph¹m trï chÆt chÏ ®Ó t×m l¹i §Þnh lý 9.2, Ch­¬ng IV, [27] vÒ sù thÓ hiÖn mét 3-®èi chu tr×nh nhãm nh­ lµ c¸i c¶n trë cña bµi to¸n më réng nhãm. §iÒu nµy gîi ý cho c¸c nghiªn cøu vÒ viÖc thÓ hiÖn nh÷ng kh¸i niÖm liªn quan ®Õn m«®un chÐo qua ng«n ng÷ nhãm ph¹m trï, vµ tõ ®ã øng dông trë l¹i c¸c kÕt qu¶ cña lý thuyÕt nhãm ph¹m trï cho c¸c bµi to¸n vÒ m«®un chÐo. Kh¸i niÖm m«®un chÐo cña J. H. C. Whitehead [43] ®· ®­îc tæng qu¸t hãa theo nhiÒu c¸ch kh¸c nhau dùa trªn c¸c quan ®iÓm kh¸c nhau khi xem chóng lµ 1-m«®un chÐo hay m«®un chÐo trªn c¸c nhãm. M«®un chÐo (hay 1-m«®un chÐo) m« t¶ c¸c 2-d¹ng ®ång lu©n liªn th«ng vµ do ®ã chóng ®ãng vai trß quan träng trong ®¹i sè ®ång ®iÒu. N¨m 1984, D. ConduchÐ [45] ®· ®­a ra kh¸i niÖm 2-m«®un chÐo vµ m« t¶ chóng nh­ lµ c¸c 3-d¹ng liªn th«ng. Sau ®ã, vµo n¨m 2009 Z. Arvasi vµ c¸c ®ång t¸c gi¶ ®· giíi thiÖu kh¸i niÖm tæng qu¸t h¬n, 3-m«®un chÐo, vµ m« t¶ chóng nh­ lµ c¸c 4-d¹ng ®ång lu©n ®¹i sè [2]. Nh­ ®· nãi ë trªn, mçi m«®un chÐo trªn c¸c nhãm ®­îc xem nh­ mét nhãm ph¹m trï chÆt chÏ, vµ chóng th­êng ®­îc nghiªn cøu nhiÒu nhÊt d­íi d¹ng nµy. Sau ®ã, H. -J. Baues [4] ®· giíi thiÖu kh¸i niÖm m«®un chÐo trªn c¸c trªn c¸c k-®¹i sè vµ lµ k-chÎ ra cã cïng h¹t nh©n M vµ ®èi h¹t nh©n B ®· ®­îc ph©n líp bëi nhãm ®èi ®ång ®iÒu Hochschild bëi vµnh giao ho¸n biÖt, víi k-®¹i sè (k lµ tr­êng). C¸c m«®un chÐo 3 HHoch (B, M ) [5]. Trong [6] c¸c t¸c gi¶ thay thÕ tr­êng k K vµ gäi c¸c m«®un chÐo trªn c¸c K-®¹i sè lµ song m«®un chÐo. §Æc K = Z th× chóng t«i thu ®­îc kh¸i niÖm song m«®un chÐo trªn vµnh. Kh¸i niÖm m«®un chÐo trªn c¸c nhãm cã thÓ ®­îc x¸c ®Þnh trªn vµnh theo mét c¸ch 12 kh¸c, mµ chóng t«i gäi lµ E-hÖ. Tr­êng hîp ®Æc biÖt cña E-hÖ, E-hÖ chÝnh qui, trïng víi kh¸i niÖm song m«®un chÐo trªn vµnh, vµ do ®ã kh¸i niÖm E-hÖ lµ yÕu h¬n kh¸i niÖm song m«®un chÐo trªn vµnh. T­¬ng tù nh­ m«®un chÐo trªn c¸c nhãm, kh¸i niÖm E-hÖ chÝnh qui mµ chóng t«i ®­a ra nh»m môc ®Ých kÕt nèi víi kh¸i niÖm Ann-ph¹m trï chÆt chÏ (mäi rµng buéc trong nã ®Òu lµ chÆt chÏ) th«ng qua mét t­¬ng ®­¬ng ph¹m trï, lµ më réng cña t­¬ng ®­¬ng ph¹m trï ®· ®­îc thiÕt lËp bëi R. Brown vµ C. Spencer. N»m trong chuçi c¸c bµi to¸n më réng kiÓu m«®un chÐo, chóng t«i ®­a ra vµ gi¶i quyÕt bµi to¸n më réng vµnh kiÓu E-hÖ chÝnh qui, xem nh­ lµ mét øng dông cña kh¸i niÖm E-hÖ còng nh­ cña lý thuyÕt Ann-ph¹m trï. Mét phiªn b¶n kh¸c cña kh¸i niÖm m«®un chÐo trªn c¸c nhãm lµ kh¸i niÖm m«®un chÐo trªn c¸c Γ-nhãm, th­êng ®­îc gäi lµ m«®un chÐo Γ-®¼ng biÕn (hay ®¬n gi¶n lµ Γ-m«®un chÐo). Kh¸i niÖm nµy ®· ®­îc B. Noohi giíi thiÖu trong [30] khi so s¸nh c¸c ph­¬ng ph¸p kh¸c nhau ®Ó ®Þnh nghÜa ®èi ®ång ®iÒu nhãm víi c¸c hÖ tö trong mét m«®un chÐo. Do ®ã, vÊn ®Ò t×m ra mét líp ph¹m trï phï hîp ®Ó biÓu diÔn c¸c Γ-m«®un chÐo, tõ ®ã ph©n líp c¸c Γ-m«®un chÐo, ... ®ang cßn lµ vÊn ®Ò më. Nh­ vËy, bªn c¹nh nh÷ng kÕt qu¶ ®· cã vÒ mèi liªn hÖ gi÷a m«®un chÐo, nhãm ph¹m trï chÆt chÏ, ®èi ®ång ®iÒu nhãm vµ bµi to¸n më réng nhãm cæ ®iÓn; mèi liªn hÖ gi÷a nhãm ph¹m trï ph©n bËc, lý thuyÕt ®èi ®ång ®iÒu ®¼ng biÕn vµ bµi to¸n më réng ®¼ng biÕn; mèi liªn hÖ gi÷a lý thuyÕt Ann-ph¹m trï, ®èi ®ång ®iÒu vµnh vµ bµi to¸n më réng vµnh, chóng t«i tiÕp tôc nghiªn cøu mét c¸ch cã hÖ thèng mèi c¸c liªn hÖ nµy vµ c¸c phiªn b¶n tæng qu¸t hãa cña chóng. Kü thuËt hÖ nh©n tö ®· ®­îc sö dông xuyªn suèt c¶ ®Ò tµi nghiªn cøu ®Ó gi¶i quyÕt nhiÒu vÊn ®Ò. Do ®ã, d­íi sù h­íng dÉn cña PGS. TS. NguyÔn TiÕn Quang vµ GS. TS. Lª V¨n ThuyÕt, chóng t«i chän ®Ò tµi "HÖ nh©n tö trong nhãm ph¹m trï ph©n bËc" ®Ó gi¶i quyÕt c¸c vÊn ®Ò nªu trªn. Môc ®Ých cña luËn ¸n tr­íc hÕt lµ nghiªn cøu vÒ líp hµm tö monoidal gi÷a c¸c nhãm ph¹m trï kiÓu (Π, A), ®Ó tõ ®ã ph©n líp ph¹m trï c¸c nhãm ph¹m trï vµ ph¹m trï c¸c nhãm ph¹m trï bÖn. Hai lµ, ph©n líp c¸c nhãm ph¹m trï bÖn ph©n bËc bëi c¸c hÖ nh©n tö. Ba lµ, nghiªn cøu mét sè phiªn b¶n cña m«®un chÐo trªn c¸c nhãm cña J. H. C. Whitehead, bao gåm: sù biÓu diÔn cña chóng qua c¸c líp ph¹m trï nµo ®ã (gäi lµ ph¹m trï liªn kÕt), mèi liªn hÖ gi÷a c¸c ®ång cÊu m«®un chÐo lo¹i ®ã víi c¸c hµm tö gi÷a c¸c ph¹m trï liªn kÕt t­¬ng øng, vµ sö dông c¸c kÕt qu¶ cña lý thuyÕt ph¹m trï cïng lo¹i ®Ó gi¶i quyÕt bµi to¸n më réng kiÓu m«®un chÐo t­¬ng øng, xem nh­ lµ mét øng dông cña lý thuyÕt chung. §èi t­îng nghiªn cøu cña luËn ¸n tr­íc hÕt lµ mét sè líp ph¹m trï víi cÊu tróc vµ øng dông cña chóng, bao gåm: nhãm ph¹m trï, nhãm ph¹m trï bÖn, nhãm ph¹m trï ph©n bËc, nhãm ph¹m trï bÖn ph©n bËc, vµ Ann-ph¹m trï. §èi t­îng tiÕp theo mµ luËn ¸n quan t©m nghiªn cøu ®ã lµ m«®un chÐo vµ c¸c phiªn b¶n cña nã, c¸c ®ång cÊu m«®un chÐo vµ c¸c 13 hµm tö gi÷a c¸c ph¹m trï liªn kÕt vµ bµi to¸n më réng kiÓu m«®un chÐo t­¬ng øng. §Ò tµi nghiªn cøu ®­îc cÊu tróc thµnh 5 ch­¬ng, kh«ng kÓ c¸c phÇn më ®Çu, kÕt luËn, tµi liÖu tham kh¶o vµ danh môc tõ khãa. Ch­¬ng 1, Mét sè kiÕn thøc chuÈn bÞ, tr×nh bµy mét sè kh¸i niÖm vµ kÕt qu¶ ®· biÕt vÒ lý thuyÕt nhãm ph¹m trï vµ Ann-ph¹m trï ®­îc sö dông cho c¸c ch­¬ng sau. Ch­¬ng 2, Ph©n líp c¸c hµm tö monoidal kiÓu (ϕ, f ) vµ øng dông, bao gåm mét sè néi dung sau. TTr­íc hÕt, chóng t«i m« t¶ vÒ c¸c hµm tö monoidal gi÷a c¸c nhãm ph¹m trï kiÓu (Π, A) (hµm tö monoidal kiÓu (ϕ, f )), tr×nh bµy lý thuyÕt c¶n trë vµ ®Þnh lý ph©n líp cho c¸c hµm tö lo¹i nµy (§Þnh lý 2.6). KÕt qu¶ ph©n líp nµy kh«ng nh÷ng ®­îc sö dông ®Ó chøng minh ®Þnh lý ph©n líp cho ph¹m trï c¸c nhãm ph¹m trï (§Þnh lý 2.7) vµ ph¹m trï c¸c nhãm ph¹m trï bÖn (§Þnh lý 2.10), mµ cßn ®­îc n©ng lªn cho nh÷ng cÊu tróc phøc t¹p h¬n ®Ó sö dông trong c¸c ch­¬ng sau. §ång thêi chóng t«i giíi thiÖu mét øng dông ®¹i sè cña lý thuyÕt c¶n trë cña c¸c hµm tö monoidal liªn quan ®Õn mét trong nh÷ng bµi to¸n cæ ®iÓn cña lý thuyÕt nhãm lµ bµi to¸n më réng nhãm (§Þnh lý 2.18). Còng trong Ch­¬ng 2 nµy, chóng t«i chøng minh ®Þnh lý ph©n líp cho ph¹m trï c¸c nhãm ph¹m trï bÖn ph©n bËc b»ng ph­¬ng ph¸p hÖ nh©n tö. Ch­¬ng 3, Nhãm ph¹m trï chÆt chÏ vµ më réng nhãm kiÓu m«®un chÐo, nghiªn cøu vÒ mèi liªn hÖ gi÷a m«®un chÐo, nhãm ph¹m trï chÆt chÏ vµ bµi to¸n më réng nhãm kiÓu m«®un chÐo. Chóng t«i x©y dùng mèi liªn hÖ gi÷a c¸c ®ång cÊu m«®un chÐo víi c¸c hµm tö monoidal gi÷a c¸c nhãm ph¹m trï chÆt chÏ liªn kÕt, tõ ®ã thu ®­îc mét t­¬ng ®­¬ng ph¹m trï (§Þnh lý 3.4) mµ t­¬ng ®­¬ng ph¹m trï cña R. Brown vµ C. Spencer trong [8] chØ lµ tr­êng hîp riªng. §ång thêi, chóng t«i sö dông c¸c nhãm ph¹m trï chÆt chÏ vµ kÕt qu¶ vÒ c¸c hµm tö monoidal ®· nãi ë Ch­¬ng 2 ®Ó thu l¹i kÕt qu¶ cña bµi to¸n më réng nhãm kiÓu m«®un chÐo cña R. Brown vµ c¸c céng sù [9], xem nh­ mét øng dông cña lý thuyÕt nhãm ph¹m trï cã liªn quan tíi m«®un chÐo. Ch­¬ng 4, Nhãm ph¹m trï ph©n bËc chÆt chÏ vµ më réng nhãm ®¼ng biÕn kiÓu Γ-m«®un chÐo, tr×nh bµy mét kh¸i qu¸t chung cho c¶ hai lý thuyÕt më réng nhãm kiÓu m«®un chÐo vµ lý thuyÕt më réng nhãm ®¼ng biÕn. §ã lµ lý thuyÕt më réng nhãm ®¼ng biÕn kiÓu Γ-m«®un chÐo. Tr­íc hÕt, chóng t«i ®­a ra kh¸i niÖm nhãm ph¹m trï ph©n bËc chÆt chÏ ®Ó kÕt nèi víi kh¸i niÖm Γ-m«®un chÐo cña B. Noohi th«ng qua mét t­¬ng ®­¬ng ph¹m trï (§Þnh lý 4.9. KÕt qu¶ nµy lµ më réng cña §Þnh lý 3.4 ë Ch­¬ng 3 (øng víi Γ = 1), vµ do ®ã lµ më réng cña §Þnh lý 1 cña R. Brown vµ C. Spencer trong [8]. Bªn c¹nh ®ã, chóng t«i tr×nh bµy lý thuyÕt Schreier ®èi víi c¸c më réng nhãm ®¼ng biÕn kiÓu chÐo nhê c¸c Γ-m«®un Γ-hµm tö monoidal (§Þnh lý 4.11 vµ §Þnh lý 4.13), tõ ®ã thu l¹i ®­îc §Þnh lý ph©n líp c¸c më réng nhãm kiÓu m«®un chÐo cña R. Brown vµ O. Mucuk (§Þnh lý 5.2 [9]) vµ §Þnh lý ph©n líp c¸c më réng cña c¸c 14 Γ-nhãm cña A. M. Cegarra vµ c¸c ®ång t¸c gi¶ (§Þnh lý 4.1 [14]) nh­ nh÷ng tr­êng hîp riªng. Tr­êng hîp thø nhÊt øng víi Γ = 1 vµ m«®un chÐo tïy ý, tr­êng hîp thø hai øng víi m«®un chÐo c¸c tù ®¼ng cÊu cña mét nhãm vµ Γ tïy ý. §iÒu ®Æc biÖt h¬n n÷a lµ khi c¶ hai tr­êng hîp nµy ®ång thêi x¶y ra (nghÜa lµ Γ = 1 vµ m«®un chÐo lµ m«®un chÐo c¸c tù ®¼ng cÊu cña mét nhãm) th× ta thu ®­îc bµi to¸n më réng nhãm cæ ®iÓn. Ch­¬ng 5, Ann-ph¹m trï chÆt chÏ vµ më réng vµnh kiÓu E-hÖ chÝnh qui, nghiªn cøu vÒ E-hÖ, mèi liªn hÖ cña chóng víi mét sè kh¸i niÖm liªn quan ®· biÕt vµ t×m kiÕm øng dông liªn quan ®Õn bµi to¸n më réng. Kh¸i niÖm E-hÖ mµ chóng t«i ®­a ra ®­îc xem nh­ mét phiªn b¶n cña m«®un chÐo trªn c¸c nhãm cho vµnh. Tr­êng hîp ®Æc biÖt, kh¸i niÖm E-hÖ chÝnh qui lµ trïng víi kh¸i niÖm song m«®un chÐo trªn vµnh. Nhê viÖc biÓu diÔn c¸c E-hÖ chÝnh qui th«ng qua c¸c Ann-ph¹m trï chÆt chÏ (cßn gäi lµ 2-vµnh chÆt chÏ) vµ nh÷ng nghiªn cøu vÒ mèi liªn hÖ gi÷a c¸c ®ång cÊu E-hÖ chÝnh qui víi c¸c Ann-hµm tö gi÷a c¸c Ann-ph¹m trï chÆt chÏ liªn kÕt mµ chóng t«i thu ®­îc kÕt qu¶ ph©n líp ph¹m trï c¸c E-hÖ chÝnh qui (§Þnh lý 5.7). Cuèi cïng, chóng t«i ®­a ra vµ gi¶i quyÕt bµi to¸n më réng vµnh kiÓu E-hÖ chÝnh qui (§Þnh lý 5.10), xem nh­ lµ mét øng dông cña kh¸i niÖm E-hÖ còng nh­ cña lý thuyÕt Ann-ph¹m trï. 15 Ch­¬ng 1 Mét sè kiÕn thøc chuÈn bÞ Sau khi kh¸i niÖm ph¹m trï monoidal ®­îc giíi thiÖu bëi J. BÐnabou trong [44], S. Mac Lane trong [26], G. M. Kelly trong [23], ... vµo ®Çu nh÷ng n¨m 60 cña thÕ kû tr­íc, nã ®· ®­îc nhiÒu ng­êi quan t©m nghiªn cøu vµ ph¸t triÓn kh¸ nhanh. Nh÷ng nghiªn cøu liªn quan tíi mét sè líp ph¹m trï monoidal ®Æc biÖt nh­ nhãm ph¹m trï, Ann-ph¹m trï, ... ®· ®¹t ®­îc nh÷ng kÕt qu¶ s©u s¾c nhê nh÷ng ph¸t hiÖn, n¶y sinh mét c¸ch tù nhiªn, vÒ mèi liªn kÕt t­¬ng øng víi lý thuyÕt ®èi ®ång ®iÒu nhãm, ®èi ®ång ®iÒu vµnh, ... V× vËy, trong ch­¬ng nµy chóng t«i tr×nh bµy mét sè kh¸i niÖm vµ kÕt qu¶ c¬ b¶n liªn quan ®Õn: nhãm ph¹m trï dùa theo tµi liÖu [50], nhãm ph¹m trï ph©n bËc dùa theo tµi liÖu [14], nhãm ph¹m trï bÖn ph©n bËc dùa theo tµi liÖu [17] vµ Ann-ph¹m trï dùa theo tµi liÖu [1]. Trong toµn bé luËn ¸n nµy, ®Ó cho tiÖn, ®«i khi chóng t«i ký hiÖu cho tÝch tenx¬ 1.1 XY hoÆc X.Y thay X ⊗ Y cña hai vËt. Nhãm ph¹m trï (bÖn) ph©n bËc 1.1.1 Nhãm ph¹m trï Mét ph¹m trï monoidal (G, ⊗, I, a, l, r) lµ mét ph¹m trï G cïng víi mét song hµm tö ⊗ : G × G → G, mét vËt cè ®Þnh I gäi lµ vËt ®¬n vÞ cña ph¹m trï vµ c¸c ®¼ng cÊu tù nhiªn aX,Y,Z : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z, lX : I ⊗ X → X , rX : X ⊗ I → X, t­¬ng øng gäi lµ rµng buéc kÕt hîp, rµng buéc ®¬n vÞ tr¸i vµ rµng buéc ®¬n vÞ ph¶i. C¸c rµng buéc nµy ph¶i tho¶ m·n c¸c ®iÒu kiÖn khíp, lÇn l­ît gäi lµ tiªn ®Ò ngò gi¸c vµ tiªn ®Ò tam gi¸c (aX,Y,Z ⊗ idT ) aX,Y ⊗Z,T (idX ⊗ aY,Z,T ) = aX⊗Y,Z,T aX,Y,Z⊗T , (1.1) idX ⊗ lY = (rX ⊗ idY )aX,I,Y . (1.2) 16 Mét ph¹m trï monoidal ®­îc gäi lµ chÆt chÏ nÕu rµng buéc kÕt hîp ®¬n vÞ a vµ c¸c rµng buéc l, r ®Òu lµ c¸c phÐp ®ång nhÊt. Mét nhãm ph¹m trï G lµ mét ph¹m trï monoidal mµ tÊt c¶ c¸c vËt ®Òu kh¶ nghÞch vµ ph¹m trï nÒn lµ mét groupoid, nghÜa lµ tÊt c¶ c¸c mòi tªn ®Òu lµ ®¼ng cÊu. 1.1.2 Nhãm ph¹m trï thu gän vµ c¸c t­¬ng ®­¬ng chÝnh t¾c Cho G lµ mét nhãm ph¹m trï. Khi ®ã tËp π0 G c¸c líp vËt ®¼ng cÊu cña G lµ mét nhãm, trong ®ã luËt hîp thµnh, ký hiÖu lµ phÐp nh©n, ®­îc c¶m sinh bëi phÐp to¸n vÞ 1 lµ líp c¸c vËt ®¼ng cÊu víi vËt ®¬n vÞ ®¬n vÞ ⊗, phÇn tö ®¬n I . TËp π1 G = Aut(I) c¸c tù ®¼ng cÊu cña vËt I lµ mét nhãm giao ho¸n víi phÐp to¸n nhãm, ký hiÖu lµ phÐp céng, chÝnh lµ phÐp hîp thµnh hîp thµnh. H¬n n÷a, π1 G lµ mét π0 G-m«®un tr¸i víi t¸c ®éng ®­îc cho bëi: −1 su = γX δX (u), X ∈ s, s ∈ π0 G, u ∈ π1 G, trong ®ã γX , δX lÇn l­ît ®­îc cho bëi biÓu ®å giao ho¸n sau: X lX γX (u) - 6 I ⊗X X 6 rX lX u⊗id - Rµng buéc kÕt hîp cña I ⊗X - 6 X 6 rX X ⊗I id⊗u - X ⊗ I. G c¶m sinh mét 3-®èi chu tr×nh nhãm k ∈ Z 3 (π0 G, π1 G). Víi c¸c d÷ kiÖn nµy, ta x©y dùng ®­îc mét ph¹m trï nhãm δX (u) X SG cã c¸c vËt lµ c¸c phÇn tö cña π0 G vµ c¸c mòi tªn lµ nh÷ng tù ®¼ng cÊu (s, u) : s → s, s ∈ π0 G, u ∈ π1 G. PhÐp hîp thµnh cña hai mòi tªn ®­îc c¶m sinh bëi phÐp céng trong π1 G, (s, u) ◦ (s, v) = (s, u + v). Ph¹m trï SG t­¬ng ®­¬ng víi ph¹m trï G nhê c¸c t­¬ng ®­¬ng chÝnh t¾c ®­îc x©y dùng nh­ sau. Víi mçi s = [X] ∈ π0 G ta chän mét ®¹i diÖn Xs ∈ G sao cho X1 = I vµ víi mçi X ∈ s ta chän mét mòi tªn ®¼ng cÊu iX : Xs → X sao cho iXs = id. Hä (Xs , iX ) ®­îc gäi lµ mét ®Ýnh cña nhãm ph¹m trï G nÕu iI⊗Xs = lXs , iXs ⊗I = rXs . Víi mçi ®Ýnh (Xs , iX ) chóng ta thu ®­îc hai hµm tö   G : G → SG    G(X) = [X] = s    f G(X → −1 −1 Y ) = (s, γX (iY f iX )) s 17   H : SG → G    H(s) = Xs    H(s, u) = γ (u). Xs Hai hµm tö G vµ H lµ nh÷ng t­¬ng ®­¬ng ph¹m trï bëi c¸c phÐp biÕn ®æi tù nhiªn α = (iX ) : HG ∼ = idG , β = id : GH ∼ = idSG . Chóng ®­îc gäi lµ nh÷ng t­¬ng ®­¬ng chÝnh t¾c. Bëi phÐp chuyÓn cÊu tróc nhê bé bèn (G, H, α, β), ph¹m trï SG trë thµnh mét nhãm ph¹m trï víi phÐp to¸n ®­îc x¸c ®Þnh nh­ sau: s ⊗ t = s.t, s, t ∈ π0 G, (s, u) ⊗ (t, v) = (st, u + sv), Nhãm ph¹m trï u, v ∈ π1 G. SG cã rµng buéc ®¬n vÞ lµ chÆt chÏ vµ cã rµng buéc kÕt hîp as,r,t = (srt, k(s, r, t)), víi k ∈ Z 3 (π0 G, π1 G). H¬n n÷a, c¸c t­¬ng ®­¬ng G vµ H trë thµnh c¸c t­¬ng ®­¬ng monoidal cïng víi c¸c ®¼ng cÊu tù nhiªn eX,Y = G(iX ⊗ iY ) , H e s,t = i−1 G Xs ⊗Xt : Xs Xt → Xst . Nhãm ph¹m trï (1.3) SG ®­îc gäi lµ mét thu gän cña nhãm ph¹m trï G. Chóng ta cã thÓ nãi SG cã kiÓu (Π, A, k), hoÆc ®¬n gi¶n lµ kiÓu (Π, A), khi ta thay thÕ π0 G, π1 G bëi c¸c nhãm Π vµ Π-m«®un A mét c¸ch t­¬ng øng. 1.1.3 Nhãm ph¹m trï ph©n bËc Trong luËn ¸n nµy, ký hiÖu mét nhãm Π ®­îc trang bÞ thªm mét Γ-t¸c ®éng tr¸i bëi c¸c tù ®¼ng cÊu, vµ mét Π-m«®un Γ-®¼ng (tr¸i) Γ lµ mét nhãm cè ®Þnh. Ta nh¾c l¹i r»ng mét Γ-nhãm Π lµ biÕn lµ mét Γ-nhãm aben A ®­îc trang bÞ mét cÊu tróc Π-m«®un sao cho σ(xa) = (σx)(σa), víi mäi σ ∈ Γ, x ∈ Π vµ a ∈ A. Mét Γ-®ång cÊu f : Π → Π0 gi÷a c¸c Γ-nhãm lµ mét ®ång cÊu nhãm tháa m·n f (σx) = σf (x), σ ∈ Γ, x ∈ Π. Nhãm tö cña Γ ®­îc xem nh­ mét ph¹m trï víi ®óng mét vËt ký hiÖu lµ ∗, mòi tªn lµ c¸c phÇn Γ vµ phÐp hîp thµnh lµ phÐp to¸n nhãm. H¬n n÷a, Γ lµ mét nhãm ph¹m trï, gäi lµ nhãm ph¹m trï rêi r¹c. Ph¹m trï G ®­îc gäi lµ Γ-ph©n bËc nÕu cã mét hµm tö gr : G → Γ. Ph©n bËc ®­îc gäi lµ æn ®Þnh nÕu víi mçi trong G víi ®èi miÒn X sao cho gr(f ) = σ . Mét ph¹m trï monoidal i) mét ph¹m trï vµ X ∈ Ob G vµ mçi σ ∈ Γ tån t¹i mét mòi tªn f Γ-ph©n bËc G = (G, gr, ⊗, I, a, l, r) bao gåm: Γ-ph©n bËc æn ®Þnh (G, gr), c¸c hµm tö Γ-ph©n bËc ⊗ : G ×Γ G → G I : Γ → G, ii) c¸c ®¼ng cÊu tù nhiªn bËc 1 ∼ ∼ aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z), lX : I ⊗ X → ∼ X, rX : X ⊗ I → X tháa m·n hai ®iÒu kiÖn khíp (1.1) vµ (1.2). 18
- Xem thêm -