Đăng ký Đăng nhập
Trang chủ Luận án tiến sĩ dáng điệu nghiệm của các bất đẳng thức vi biến phân...

Tài liệu Luận án tiến sĩ dáng điệu nghiệm của các bất đẳng thức vi biến phân

.PDF
110
22
76

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ------  ------ NGUYỄN THỊ VÂN ANH DÁNG ĐIỆU NGHIỆM CỦA CÁC BẤT ĐẲNG THỨC VI BIẾN PHÂN LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ------  ------ NGUYỄN THỊ VÂN ANH DÁNG ĐIỆU NGHIỆM CỦA CÁC BẤT ĐẲNG THỨC VI BIẾN PHÂN Chuyên ngành : Phương trình vi phân và tích phân Mã số : 9.46.01.03 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS. TS. Trần Đình Kế Hà Nội - 2019 MỤC LỤC LỜI CAM ĐOAN 5 LỜI CẢM ƠN 6 DANH SÁCH KÝ HIỆU 7 MỞ ĐẦU 8 Chương 1 1.1 KIẾN THỨC CHUẨN BỊ 20 NỬA NHÓM MỘT THAM SỐ . . . . . . . . . . . . . . . . . . 20 1.1.1 Nửa nhóm tuyến tính . . . . . . . . . . . . . . . . . . . . 20 1.1.2 Nửa nhóm phi tuyến . . . . . . . . . . . . . . . . . . . . 23 1.2 ĐỘ ĐO KHÔNG COMPACT (MNC) VÀ CÁC ƯỚC LƯỢNG . 27 1.3 GIẢI TÍCH ĐA TRỊ, ÁNH XẠ NÉN VÀ CÁC ĐỊNH LÝ ĐIỂM BẤT ĐỘNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.1 Một số vấn đề về giải tích đa trị . . . . . . . . . . . . . . 33 1.3.2 Ánh xạ nén và một số định lý điểm bất động . . . . . . . 35 1.4 TẬP HÚT TOÀN CỤC CỦA NỬA DÒNG ĐA TRỊ . . . . . . . 36 1.5 MỘT SỐ KẾT QUẢ BỔ TRỢ . . . . . . . . . . . . . . . . . . 37 1.5.1 Một số bất đẳng thức thường dùng . . . . . . . . . . . . 37 1.5.2 Một số bổ đề và định lý . . . . . . . . . . . . . . . . . . 38 1.5.3 Một số không gian hàm . . . . . . . . . . . . . . . . . . 39 Chương 2 BẤT ĐẲNG THỨC VI BIẾN PHÂN TRONG KHÔNG GIAN HỮU HẠN CHIỀU 41 2.1 ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2 SỰ TỒN TẠI NGHIỆM . . . . . . . . . . . . . . . . . . . . . . 42 3 4 2.3 SỰ TỒN TẠI NGHIỆM PHÂN RÃ . . . . . . . . . . . . . . . . 2.4 TẬP HÚT TOÀN CỤC CHO NỬA DÒNG ĐA TRỊ SINH BỞI DVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chương 3 48 51 BẤT ĐẲNG THỨC VI BIẾN PHÂN DẠNG PARABOLIC- ELLIPTIC TRONG KHÔNG GIAN VÔ HẠN CHIỀU 57 3.1 ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 SỰ TỒN TẠI NGHIỆM . . . . . . . . . . . . . . . . . . . . . . 58 3.3 SỰ TỒN TẠI TẬP HÚT TOÀN CỤC . . . . . . . . . . . . . . 69 3.4 ÁP DỤNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Chương 4 BẤT ĐẲNG THỨC VI BIẾN PHÂN DẠNG PARABOLIC- PARABOLIC TRONG KHÔNG GIAN VÔ HẠN CHIỀU 78 4.1 ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 SỰ TỒN TẠI NGHIỆM . . . . . . . . . . . . . . . . . . . . . . 85 4.3 SỰ TỒN TẠI TẬP HÚT TOÀN CỤC . . . . . . . . . . . . . . 94 4.4 ÁP DỤNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 KẾT LUẬN VÀ KIẾN NGHỊ 103 1 Những kết quả đã đạt được . . . . . . . . . . . . . . . . . . . . . 103 2 Đề xuất một số hướng nghiên cứu tiếp theo . . . . . . . . . . . . 103 TÀI LIỆU THAM KHẢO 106 LỜI CAM ĐOAN Tôi xin cam đoan các kết quả nghiên cứu trong luận án Dáng điệu nghiệm của các bất đẳng thức vi biến phân là công trình nghiên cứu của riêng tôi, hoàn thành dưới sự hướng dẫn của PGS.TS. Trần Đình Kế. Các kết quả trong luận án là hoàn toàn trung thực và chưa từng được công bố trong bất kỳ một công trình nghiên cứu nào khác mà tôi biết. Hà Nội, ngày ... tháng ... năm 2019 Nghiên cứu sinh Nguyễn Thị Vân Anh 5 LỜI CẢM ƠN Luận án được hoàn thành dưới sự hướng dẫn nghiêm khắc, tận tình, chu đáo của PGS.TS. Trần Đình Kế. Tác giả xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới Thầy vì sự tận tâm hướng dẫn mà Thầy dành cho tác giả trong suốt quá trình học tập. Thầy đã luôn sẵn sàng đón nhận những ý kiến, luôn sát sao giải thích và chỉ dẫn cho tác giả. Tác giả xin cảm ơn Thầy mỗi chiều thứ tư hàng tuần đã dành thời gian của mình, không ngần ngại chỉ bảo, chia sẻ, trao đổi các vấn đề mới, các phương pháp, đường hướng cho tác giả và cho nhóm nghiên cứu. Ngoài những hành trang quý báu về mặt khoa học, sự động viên của Thầy dành cho tác giả là nguồn động lực lớn giúp tác giả say mê trong nghiên cứu. Tác giả xin trân trọng gửi lời cảm ơn đến Ban Giám hiệu, Phòng Sau Đại học, Ban Chủ nhiệm Khoa Toán-Tin và các thầy cô Bộ môn Giải tích, khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội, nơi tác giả học tập và công tác, đã luôn giúp đỡ, động viên, tạo môi trường thuận lợi cho tác giả. Tác giả xin đặc biệt cảm ơn TS. Trần Thị Loan, PGS.TS. Cung Thế Anh, TS. Nguyễn Như Thắng, TS. Dương Anh Tuấn vì sự khích lệ và sự tận tình góp ý luận án. Tác giả xin gửi lời cảm ơn sâu sắc đến các thầy cô trong các Hội đồng, đã dành nhiều thời gian, công sức và tâm huyết để đóng góp những ý kiến quý báu giúp cho luận án của tác giả được hoàn thành tốt nhất. Tác giả xin gửi lời cảm ơn chân thành đến các bạn bè, những người cùng chung chí hướng, luôn giúp đỡ tác giả trong suốt quá trình nghiên cứu. Sau cùng, tác giả xin gửi lời cảm ơn từ tận đáy lòng đến gia đình, nơi luôn dành cho tác giả tình yêu thương vô hạn. Nếu không có sự gánh vác và san sẻ từ gia đình, tác giả không thể có được những kết quả này. Nguyễn Thị Vân Anh 6 DANH SÁCH KÝ HIỆU R tập hợp các số thực R+ tập hợp các số thực không âm J = [0, T ] với T>0 (E, k · kE ) không gian Banach với chuẩn k · kE 2E họ các tập con của E P(E) = {A ∈ 2E : A 6= ∅} Pb (E) = {A ∈ P(E) : A là tập bị chặn} Pc (E) = {A ∈ P(E) : A là tập đóng} K(E) = {A ∈ P(E) : A là compact} Kv(E) = {A ∈ P(E) : A là tập lồi và compact} L(E) không gian các toán tử tuyến tính, bị chặn trên không gian Banach E C(X; Y ) không gian các hàm liên tục từ X vào Y Cτ = C([−τ, 0]; E) BE [a, r] = {x ∈ E : kx − ak ≤ r} I ánh xạ đồng nhất → hội tụ mạnh * hội tụ yếu h. k. n. hầu khắp nơi DI bao hàm thức vi phân DVI bất đẳng thức vi biến phân VI bất đẳng thức biến phân DVI-PE bất đẳng thức vi biến phân dạng parabolicelliptic DVI-PP bất đẳng thức vi biến phân dạng parabolicparabolic 7 MỞ ĐẦU 1 Lý do chọn đề tài Lý thuyết định tính của phương trình vi phân (ODE) trải qua hơn một thế kỷ phát triển, đã chứng tỏ vai trò quan trọng của nó trong việc mô hình hóa và giải quyết nhiều bài toán của tự nhiên và kĩ thuật. Trong những thập kỉ cuối thế kỉ XX, phương trình vi phân đại số được quan tâm nghiên cứu và nhiều kết quả quan trọng đã được thiết lập (xem [12, 47]). Theo đó, các phương trình vi phân đại số (DAE) đã được sử dụng trong nghiên cứu bài toán về hệ thống mạng điện, hệ cơ học có ràng buộc, các phản ứng hóa học,... ở đó việc sử dụng phương trình vi phân thường không thể mô tả được hết các yếu tố ràng buộc. Tuy nhiên, khi nghiên cứu hệ động lực tiếp xúc có ma sát của vật thể đa diện hay các hệ lai ghép cơ học, các ODE và DAE lại trở nên hạn chế, do phát sinh điều kiện ràng buộc nằm ở dạng bất đẳng thức (ràng buộc một phía), và điều kiện về ngắt quãng trong cơ học tiếp xúc hoặc trong các bài toán kĩ thuật chuyển mạch (xem [4, 22]). Chính vì vậy, để nghiên cứu các hệ vi phân với ràng buộc thỏa mãn yêu cầu từ thực tiễn như trên đòi hỏi các nhà toán học phải khảo sát lớp bài toán rộng hơn, đó là các bất đẳng thức vi biến phân, trong đó bao gồm một lớp bài toán quan trọng là các hệ bù vi phân. Thuật ngữ bất đẳng thức vi biến phân (Differential variational inequality DVI) được sử dụng lần đầu tiên bởi Aubin và Cellina [5] năm 1984 trong cuốn sách chuyên khảo về bao hàm thức vi phân. Trong đó các tác giả xét bài toán    ∀t ≥ 0, x(t) ∈ K,    (1) supy∈K hx0 (t) − f (x(t)), x(t) − yi = 0,      x(0) = x0 , với K là một tập lồi, compact khác rỗng trong Rn . Bằng việc sử dụng hàm nón 8 9 pháp tuyến của tập K, bài toán trên được đưa về bao hàm thức vi phân   f 0 (t) ∈ F (x(t)),  x(0) = x . 0 Từ đó, các tác giả đã sử dụng công cụ của giải tích đa trị để nghiên cứu tính giải được của bài toán (1). Đến năm 1997, bài toán bất đẳng thức vi biến phân được mở rộng bởi Avgerinous và Papageorgiou trong bài báo [6]. Hai nhà toán học đã nghiên cứu về nghiệm tuần hoàn cho lớp DVI khi tập lồi, đóng, compact K biến thiên theo thời gian t   −x0 (t) ∈ NK(t) (x(t)) + F (t, x(t)), h.k.n t ∈ [0, b],  x(0) = x(b). ở đó NK(t) (x(t)) là nón pháp tuyến của tập lồi K(t) tại điểm x(t). Một trong những công trình có ý nghĩa tiên phong trong nghiên cứu các DVI một cách có hệ thống là của nhóm tác giả J.S. Pang và D.E. Stewart năm 2008 (xem [49]). Bằng việc xem xét bất đẳng thức vi biến phân là mô hình kết hợp giữa phương trình vi phân có ràng buộc thỏa mãn một bất đẳng thức biến phân, các DVI đã cho phép mô tả các quá trình có sự kết hợp của hai yếu tố: yếu tố động lực và yếu tố ràng buộc dạng biến phân. Bài toán DVI [49] đã được phát biểu tổng quát với mô hình cụ thể như sau: Tìm cặp hàm (x, u), trong đó x là hàm liên tục tuyệt đối và u là hàm khả tích thỏa mãn hệ: x0 (t) = f (t, x(t), u(t)), (2) hv − u(t), F (t, x(t), u(t)i ≥ 0, h.k.n t ∈ [0, T ]; ∀v ∈ K. (3) Đặt SOL(K, φ) là tập nghiệm của bài toán biến phân hv − u, φ(u)i ≥ 0, ∀v ∈ K. Khi đó ta chuyển (2)-(3) về dạng x0 (t) = f (t, x(t), u(t)), u(t) ∈ SOL(K, F (t, x(t), ·)). 10 Từ đó dẫn đến hệ vi phân đối với x(·) liên kết với bất đẳng thức vi biến phân (2)-(3) x0 (t) ∈ f (t, x(t), SOL(K, F (t, x(t), ·)). Điều kiện cho bởi phương trình đại số Γ(x(0), x(T )) = 0, (4) cho phép chúng ta xác định được điều kiện ban đầu hoặc điều kiện biên. Một trong những lớp bài toán đặc biệt của các bất đẳng thức vi biến phân là bài toán bù vi phân, khi K = C là một nón. Trong trường hợp này, bất đẳng thức vi biến phân (2)-(3) được viết dưới dạng x0 (t) = f (t, x(t), u(t)), C 3 u(t) ⊥ F (t, x(t), u(t)) ∈ C ∗ , với C ∗ là nón đối ngẫu của C. Công trình [49] của J.S. Pang và D.E. Stewart đã chỉ rõ được tầm quan trọng của các DVI trong rất nhiều lĩnh vực: động lực học tiếp xúc (Contact Dynamics), mạng điện (Electric Circuit), động lực học kinh tế (Economic Dynamics), bài toán trò chơi vi phân Nash... Bằng việc đề xuất mô hình (2)-(3), J.S. Pang và D.E. Stewart đã đưa DVI trở thành mô hình tổng quát của nhiều bài toán quan trọng được nghiên cứu trước đó như phương trình vi phân đại số, bài toán bù vi phân, bất đẳng thức biến phân tiến hóa,... Sau công trình của J.S. Pang và D.E. Stewart, đã có khá nhiều nghiên cứu sâu sắc về DVI. Các DVI cùng với những ứng dụng của chúng trở thành một vấn đề mở thu hút sự quan tâm của nhiều nhà toán học. Công trình của Z. Liu và các cộng sự năm 2013 đã nghiên cứu về bài toán tồn tại và tính rẽ nhánh toàn cục của nghiệm tuần hoàn cho một lớp các bất đẳng thức vi biến phân trong không gian Euclid hữu hạn chiều bằng phương pháp bậc tô-pô cho ánh xạ đa trị (xem [37]). Một số kết quả về tính giải được và điều kiện rẽ nhánh cho các DVI có thể được tham khảo trong các công trình [26, 35, 37, 41]. Cùng với đó, Gwinner thu được các kết quả về tính ổn định cho một lớp mới các DVI (xem 11 [27]). Tính ổn định cấu trúc của một số lớp DVI cũng được nghiên cứu trong [25, 50] và các tài liệu tham khảo trong đó. Các ứng dụng cụ thể của mô hình DVI cũng được các nhà toán học quan tâm. Công trình của Chen và Wang năm 2014 sử dụng mô hình DVI tổng quát để khảo sát bài toán cân bằng Nash động với ràng buộc chia sẻ (xem [19]). Liên quan đến ứng dụng này là mô hình trò chơi vi phân Nash, mô hình được mở rộng từ bài toán cân bằng Nash (xem [10, 19, 52]). Chú ý rằng, đối với trường hợp bài toán cân bằng Nash, người ta phải giải quyết bài toán điều khiển tối ưu được thiết lập bởi hàm quan sát riêng lẻ (tương ứng cho một đối tượng đưa ra quyết định). Tuy nhiên trên thực tế, có những tình huống đòi hỏi phải có nhiều hơn một đối tượng tham gia quyết định, theo đó mỗi phương án quan sát đều cố gắng đạt được trạng thái tối ưu thỏa mãn ràng buộc ở dạng phương trình vi phân. Từ đó, lý thuyết trò chơi vi phân được ra đời mà mô hình hóa toán học của nó chính là các DVI (có thể xem chi tiết trong [52]). Ngoài ra có thể kể đến các ứng dụng của DVI mô tả các hệ lai ghép trong kỹ thuật với cấu trúc biến thiên (xem [17, 20, 30]), động lực học chất rắn với tiếp xúc ma sát (xem [4, 49]), mạch điện có diode,... Bên cạnh những ứng dụng phong phú vừa được kể đến của các DVI hữu hạn chiều, việc xét bài toán DVI trên không gian vô hạn chiều cũng giữ một vai trò quan trọng. Điều này hoàn toàn tự nhiên do các bài toán nảy sinh trong kĩ thuật, trong nghiên cứu giải phẫu, hệ động lực kinh tế, cơ học tiếp xúc,... được mô tả bởi các hệ phương trình đạo hàm riêng. Có hai mô hình DVI vô hạn chiều được quan tâm nghiên cứu gần đây. Mô hình thứ nhất là DVI với ràng buộc dạng elliptic, được mô tả bởi hệ x0 (t) − Ax(t) = f (t, x(t), u(t)), Bu(t) + ∂φ(u(t)) 3 g(x(t), u(t)), (5) (6) trong đó A và B là các toán tử trên các không gian vô hạn chiều, ∂φ là ký hiệu dưới vi phân của phiếm hàm φ. Chú ý rằng (6) có thể viết dưới dạng bất đẳng thức biến phân suy rộng hBu(t) − g(x(t), u(t)), v − u(t)i + φ(v) − φ(u(t)) ≥ 0, với mọi v ∈ D(φ). (7) 12 Khi B là toán tử đạo hàm riêng loại elliptic, bất đẳng thức biến phân (7) đã được nghiên cứu trong [9]. Trong trường hợp A và B là các toán tử đạo hàm riêng elliptic và φ là hàm trơn, (5)-(6) là một hệ phương trình đạo hàm riêng kiểu parabolic-elliptic, được sử dụng trong mô hình hóa các bài toán sinh-hóa [31], bài toán khôi phục hình ảnh [32],... Khác với mô hình DVI thứ nhất, mô hình DVI thứ hai chứa ràng buộc động lực dạng parabolic, được xác định như sau x0 (t) − Ax(t) = f (t, x(t), u(t)), u0 (t) + Bu(t) + ∂φ(u(t)) 3 g(x(t), u(t)), (8) (9) với A, B và φ được giả thiết như trong mô hình thứ nhất. Trong mô hình này, (9) chính là một bất đẳng thức biến phân tiến hóa mà trường hợp tiêu biểu khi B = −∆, g = g(t) và đã được nghiên cứu trong [8, 9]. Cũng như đối với mô hình parabolic-elliptic, khi φ là hàm trơn và A, B là các toán tử đạo hàm riêng elliptic, (8)-(9) là một hệ phương trình đạo hàm riêng dạng parabolic-parabolic. Gần đây, một số kết quả về tính giải được của các DVI vô hạn chiều đã được thiết lập trong các công trình [42, 40, 38, 39, 44, 55]. Nhìn chung, những kết quả nghiên cứu định tính cho các DVI vô hạn chiều chưa được biết đến nhiều. Một trong những vấn đề quan trọng liên quan đến hệ động lực liên kết với các DVI, đó là nghiên cứu dáng điệu của các hàm trạng thái của hệ khi biến thời gian đủ lớn. Theo hiểu biết của chúng tôi, các kết quả theo hướng này cho các DVI còn khá hạn chế. Kết quả gần đây về dáng điệu nghiệm cho các DVI trong không gian hữu hạn chiều đã được công bố trong công trình [34]. Còn rất nhiều câu hỏi mở được đặt ra trong những nghiên cứu định tính với các DVI, bao gồm: tính ổn định nghiệm theo nghĩa Lyapunov, sự tồn tại tập hút toàn cục cho hệ động lực liên kết với DVI, sự tồn tại các lớp nghiệm đặc biệt của DVI như nghiệm dao động, nghiệm phân rã,... Đặc biệt, bài toán DVI trong không gian vô hạn chiều hiện đang là vấn đề mới, có tính thời sự. Khó khăn chính trong nghiên cứu các DVI vô hạn chiều nằm ở việc xác định tính giải được của bất đẳng thức biến phân (VI) đi kèm, sau đó là việc xác định tính chất của ánh xạ nghiệm của nó. Nếu ánh xạ nghiệm này không có tính chính quy, việc nghiên 13 cứu dáng điệu nghiệm cho hệ DVI sẽ không khả thi. Từ những phân tích trên, chúng tôi chọn đề tài nghiên cứu dáng điệu nghiệm cho các bất đẳng thức vi biến phân, bao gồm một số lớp tiêu biểu trong cả không gian hữu hạn và vô hạn chiều. Trong nội dung luận án này, chúng tôi xét ba lớp bài toán DVI: • Bất đẳng thức vi biến phân trong không gian hữu hạn chiều, • Bất đẳng thức vi biến phân dạng parabolic-elliptic trong không gian vô hạn chiều, và • Bất đẳng thức vi biến phân dạng parabolic-parabolic trong không gian vô hạn chiều. Mục tiêu chính của chúng tôi là nghiên cứu dáng điệu nghiệm của các lớp bài toán nói trên thông qua sự tồn tại tập hút toàn cục của nửa dòng đa trị sinh bởi hệ động lực liên kết với các DVI. Ngoài ra chúng tôi cũng chỉ ra điều kiện đủ cho sự tồn tại nghiệm phân rã của hệ động lực sinh bởi một lớp các DVI. 2 Mục đích, đối tượng và phạm vi nghiên cứu • Mục đích luận án: Nghiên cứu các vấn đề định tính của một số lớp DVI, bao gồm tính ổn định nghiệm theo nghĩa Lyapunov, dáng điệu nghiệm thông qua lý thuyết tập hút toàn cục và các lớp nghiệm đặc biệt như nghiệm phân rã. • Đối tượng nghiên cứu: Bài toán bất đẳng thức vi biến phân trong trường hợp được đưa về bao hàm thức vi phân. Chúng tôi nghiên cứu một số lớp DVI hữu hạn chiều và hai lớp DVI vô hạn chiều dạng parabolic-elliptic, dạng parabolic-parabolic. • Phạm vi nghiên cứu: ? Nội dung 1: Bất đẳng thức vi biến phân trong không gian hữu hạn chiều. 14 Đối với vấn đề nghiên cứu dáng điệu nghiệm của các bất đẳng thức vi biến phân hữu hạn chiều, chúng tôi xét bài toán cụ thể như sau: x0 (t) = Ax(t) + h(x(t)) + B(x(t), xt )u(t), t ∈ [0, T ], (10) hv − u(t), F (x(t)) + G(u(t))i ≥ 0, ∀v ∈ K, với hầu khắp t ∈ J, (11) x(s) = ϕ(s), s ∈ [−τ, 0], (12) ở đây x là hàm nhận giá trị trong không gian Rn , ràng buộc biến phân u(t) ∈ K với K là một tập con đóng lồi trong Rm , xt kí hiệu là hàm quá khứ của trạng thái tính đến thời điểm t. Trong bài toán này, A : Rn → Rn là một toán tử tuyến tính. Các hàm B : Rn × Cτ → Rn×m , F : Rn → Rm , G : K → Rm là các hàm liên tục với giả thiết F bị chặn đều và G là hàm đơn điệu trên K. Trong lý thuyết phương trình vi phân, hệ (10)-(12) được gọi là một hệ vi phân với ràng buộc một phía (unilateral constrain). Bất đẳng thức vi biến phân (10)-(12) được mở rộng khi xét thêm điều kiện trễ lên hàm trạng thái x(·). Trong trường hợp bài toán không có trễ, J.S. Pang và các cộng sự đã giải quyết nhiều lớp bài toán liên quan đến vấn đề tồn tại nghiệm, tính duy nhất của nghiệm và sự phụ thuộc nghiệm vào các dữ kiện ban đầu (xem [49, 18]). Những kết quả về tính chính quy và ổn định cho lớp bài toán bù vi phân cũng được nghiên cứu bởi J.S. Pang và các cộng sự, tương ứng với trường hợp đặc biệt K = Rm + , được ứng dụng rộng rãi trong kĩ thuật mạch điện (xem [15, 16, 20, 22, 30]). Trong những công trình này, công cụ chính được sử dụng là giải tích biến phân, phương pháp lặp Euler, phương pháp lặp Newton, nhằm rời rạc hóa bài toán để vượt qua các điều kiện khi mà tính chính quy của ánh xạ nghiệm của bất đẳng thức biến phân bị phá vỡ. Trong bài toán (10) - (12), chúng tôi chứng minh được sự tồn tại nghiệm, sự tồn tại nghiệm phân rã tốc độ mũ, và sự tồn tại tập hút của nửa dòng đa trị cho hệ động lực sinh bởi (10) - (12). ? Nội dung 2: Bài toán bất đẳng thức vi biến phân trong không gian vô hạn chiều dạng parabolic-elliptic. Cho X là một không gian Banach và U là một không gian Banach phản xạ. 15 Chúng tôi xét bài toán sau: x0 (t) − Ax(t) ∈ F (x(t), u(t)), t > 0, (13) Bu(t) + ∂φ(u(t)) 3 g(x(t), u(t)), t ≥ 0, (14) x(0) = ξ, (15) ở đó (x(·), u(·)) nhận giá trị trong X × U ; hàm φ : U → R là hàm chính thường, lồi và nửa liên tục dưới trên U ; F : X × U → P(X) là một ánh xạ đa trị; A là toán tử tuyến tính đóng sinh ra C0 -nửa nhóm trên X; B : U → U ∗ là một toán tử tuyến tính liên tục được xác định thông qua phiếm hàm song tuyến tính, trong đó U ∗ là không gian đối ngẫu của U . Trong trường hợp K là một tập lồi đóng trong U , φ = IK là hàm chỉ trên tập K, các không gian X = Rn , U = Rm và F là hàm đơn trị thì bài toán (13) (15) có dạng bất đẳng thức vi biến phân được nghiên cứu trong [49]. Gần đây, bài toán trên không gian vô hạn chiều với mô hình tương tự cũng được xem xét bởi Liu, Zeng, và Motreanu trong [39]. Các tác giả đã nghiên cứu một lớp phương trình tiến hóa với ràng buộc ở dạng bất đẳng thức biến phân tổng quát x0 (t) = Ax(t) + f (t, x(t), u(t)), hg(t, x(t), u(t)), v − u(t)i + φ(v) − φ(u(t)) ≥ 0, ∀v ∈ K, t ∈ [0, T ], x(0) = x0 , trong đó x(t) ∈ E và u(t) ∈ K ⊂ E1 với E, E1 là các không gian Banach, K là một tập lồi khác rỗng. Trong công trình này, các kết quả về tính giải được và tính chất của tập nghiệm với giả thiết tập K là compact được chứng minh. Ở đây, điều kiện về tính compact của tập K đảm bảo rằng ánh xạ nghiệm của bất đẳng thức biến phân có tính nửa liên tục trên. Chúng ta biết rằng khi sử dụng những phương pháp giải tích nhằm đưa DVI về một phương trình vi phân hoặc bao hàm thức vi phân, tính chính quy của ánh xạ nghiệm như tính đo được, tính nén, tính liên tục là các điều kiện cần thiết. Liên quan đến bài toán của chúng tôi, có thể chỉ ra nhiều mô hình được sinh bởi các phương trình đạo hàm riêng khi X và U là các không gian vô hạn chiều. 16 Cho X = U = L2 (Ω) với Ω là một miền trong Rn . Xét hệ phương trình kiểu parabolic-elliptic: Zt = ∆Z + F (Z, u), trên Ω × (0, ∞), (16) − ∆u + h(u) = g(Z, u), trên Ω × (0, ∞), (17) Z(x, 0) = Z0 , x ∈ Ω, (18) ở đó Z = Z(x, t) và u = u(x, t) là các hàm được xác định trên Ω × R+ thỏa mãn điều kiện biên Dirichlet thuần nhất hoặc điều kiện biên Neumann thuần nhất. Bài toán này xuất hiện trong nghiên cứu về sự di chuyển của vi khuẩn dưới tác động của hóa chất (xem [31]), hoặc trong xử lý khôi phục hình ảnh kỹ thuật số (xem [32]). Dưới những điều kiện thích hợp, hàm h trong (17) được viết ở dạng h(u) = ∂j(u)  R 1  Ω H(u(x))dx, nếu H(u) ∈ L (Ω), j(u) =  +∞, trong các trường hợp còn lại ở đó H(u) = Ru 0 h(s)ds. Có thể thấy rằng (16)- (18) là một trường hợp riêng của bài toán (13)-(15). Kết quả thu được đối với bài toán (13)-(15) bao gồm sự tồn tại nghiệm, các tính chất của tập nghiệm và sự tồn tại một tập hút toàn cục cho hệ động lực sinh bởi bài toán này. ? Nội dung 3: Bài toán bất đẳng thức vi biến phân trong không gian vô hạn chiều dạng parabolic-parabolic. Trong phần này chúng tôi nghiên cứu một lớp bất đẳng thức vi biến phân khi ràng buộc dạng biến phân có tính chất của một hệ động lực dạng parabolic. Bài toán DVI dạng parabolic-parabolic được mô tả như sau x0 (t) − Ax(t) ∈ F (x(t), u(t)), (19) u0 (t) + Bu(t) + ∂φ(u(t)) 3 h(x(t)), (20) x(0) = x0 và u(0) = u0 , (21) 17 trong đó x(t) ∈ X với X là một không gian Banach và u(t) được xét trên các không gian Hilbert của bộ ba tiến hóa U ⊂ H = H 0 ⊂ U 0 . Do sự xuất hiện của dưới vi phân ∂φ, bao hàm thức (20) được hiểu như một bất đẳng thức biến phân tiến hóa. Bài toán (19)-(21) được viết lại như sau x0 (t) − Ax(t) ∈ F (x(t), u(t)), hu0 (t) + Bu(t) − h(x(t)), v − u(t)i + φ(v) − φ(u(t)) ≥ 0, ∀v ∈ H, x(0) = x0 và u(0) = u0 . Một trong những ứng dụng của bài toán parabolic-parabolic là mô hình hóa các hiện tượng trong sinh học (xem [51]). Ta xét hệ diễn tả quá trình phân cực tế bào như sau: yt − σ1 ∆y = −f (y) + u, (22) ut − σ2 ∆u + u = f (y). (23) Hệ (22)-(23) được Morita và Ogawa nghiên cứu trong [45]. Bằng cách đặt X = 1 H = L2 (Ω), A = σ1 ∆, F (y, u) = −f (y) + u, B = −σ2 ∆, φ(u) = kuk2H và 2 h(y) = f (y) ta thấy hệ (22)-(23) là một trường hợp đặc biệt của bài toán (19)(20). Trường hợp riêng này tương ứng với φ là hàm trơn và A, B là các toán tử đạo hàm riêng elliptic. Kết quả gần đây về tính giải được của bài toán (19)-(21) được trình bày trong công trình [44]. Ngoài ra, theo khảo sát của chúng tôi, chưa có kết quả nào đề cập đến tính chất định tính của nghiệm đối với hệ (19)-(21). Trong luận án này, chúng tôi sẽ trình bày các kết quả về tính giải được và sự tồn tại một tập hút toàn cục của một nửa dòng đa trị sinh bởi hệ động lực liên kết với (19)-(21). 3 Phương pháp nghiên cứu Luận án sử dụng các công cụ của giải tích đa trị, lý thuyết nửa nhóm (xem [46]), lý thuyết điểm bất động, lý thuyết ổn định để thực hiện các nội dung nghiên cứu nêu trên. Ngoài ra đối với các nội dung cụ thể chúng tôi sử dụng một số kỹ thuật tương ứng: 18 • Nghiên cứu tính giải được của các bài toán phi tuyến: Phương pháp ước lượng theo độ đo không compact [3] và các định lý điểm bất động. • Nghiên cứu dáng điệu nghiệm của bất đẳng thức vi biến phân thông qua nghiên cứu sự tồn tại nghiệm phân rã, sử dụng các định lý điểm bất động cho ánh xạ nén. • Nghiên cứu sự tồn tại tập hút toàn cục theo lược đồ của Melnik và Valero [43]. 4 Cấu trúc và các kết quả của luận án Ngoài phần mở đầu, kết luận, danh mục các công trình được công bố và danh mục tài liệu tham khảo, luận án gồm 4 chương: • Chương 1: Kiến thức chuẩn bị. Trong chương này, chúng tôi nhắc lại các kết quả về lý thuyết nửa nhóm, lý thuyết độ đo không compact, ánh xạ nén và các định lý điểm bất động, một số kiến thức về giải tích đa trị, lý thuyết ổn định của các hệ vi phân. • Chương 2: Bất đẳng thức vi biến phân trong không gian hữu hạn chiều. Trong chương này, chúng tôi chứng minh tính ổn định của nghiệm cho một lớp các bất đẳng thức vi biến phân với trễ hữu hạn. Chúng tôi chỉ ra sự tồn tại một tập hút toàn cục cho nửa dòng đa trị liên kết với bất đẳng thức vi biến phân và sự tồn tại nghiệm phân rã. • Chương 3: Bất đẳng thức vi biến phân dạng parabolic-elliptic trong không gian vô hạn chiều. Trong chương này, chúng tôi đưa ra lớp bất đẳng thức vi biến phân dạng parabolic-elliptic và chứng minh kết quả về sự tồn tại nghiệm, sự tồn tại một tập hút toàn cục cho nửa dòng đa trị sinh bởi nghiệm của lớp bài toán này. • Chương 4: Bất đẳng thức vi biến phân dạng parabolic-parabolic trong không gian vô hạn chiều. Trong chương này, chúng tôi xét một lớp bất đẳng thức vi biến phân dạng parabolic-parabolic và chứng minh kết quả về tính giải 19 được, sự tồn tại một tập hút toàn cục cho nửa dòng đa trị sinh bởi nghiệm của lớp hệ này. 5 Ý nghĩa của các kết quả trong luận án Các kết quả của luận án là mới, có ý nghĩa khoa học, và góp phần vào việc hoàn thiện lý thuyết về dáng điệu nghiệm cho các bất đẳng thức vi biến phân, trong cả trường hợp hữu hạn chiều và vô hạn chiều. Các kết quả chính đạt được đã được công bố trong 02 bài báo trên các tạp chí khoa học quốc tế uy tín (trong danh mục ISI), 1 bài báo ở dạng tiền ấn phẩm và đã được báo cáo tại: • Xêmina của Bộ môn Giải tích, Khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội; • Hội thảo cho Nghiên cứu sinh, Khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội, năm 2017; • Hội nghị khoa học khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội, năm 2019. • Mini-workshop "PDE 2019 Analysis and Numerics", VIASM, Hanoi 09/2019. Chương 1 KIẾN THỨC CHUẨN BỊ Trong chương này, E là một không gian Banach và L(E) là không gian các toán tử tuyến tính bị chặn trên E. 1.1 NỬA NHÓM MỘT THAM SỐ Trong mục này, ta trình bày một số khái niệm và kết quả cơ bản của lý thuyết nửa nhóm một tham số. Nội dung trong mục này có thể xem trong các tài liệu chuyên khảo [7, 23, 36, 46, 54]. 1.1.1 Nửa nhóm tuyến tính Định nghĩa 1.1.1. Một họ các ánh xạ S(t) ∈ L(E), 0 ≤ t < ∞, được gọi là nửa nhóm tuyến tính trên E nếu nó thỏa mãn (i) S(0) = I, (ii) S(t + s) = S(t)S(s) với mọi t, s ≥ 0. Định nghĩa dưới đây cho phép ta xác định toán tử sinh của một nửa nhóm cho trước. Định nghĩa 1.1.2. Cho nửa nhóm tuyến tính một tham số {S(t)}t≥0 . Khi đó toán tử tuyến tính A được gọi là toán tử sinh của nửa nhóm {S(t)}t≥0 nếu S(t)x − x , t→0 t Ax = lim với mọi x ∈ D(A), trong đó D(A) là miền xác định của toán tử A   S(t)x − x tồn tại . D(A) = x ∈ E : lim t→0 t 20
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất