Đăng ký Đăng nhập
Trang chủ Khóa luận tốt nghiệp phân loại một số dạng phương trình thường gặp ở bậc trung h...

Tài liệu Khóa luận tốt nghiệp phân loại một số dạng phương trình thường gặp ở bậc trung học phổ thông và phương pháp giải

.PDF
58
434
145

Mô tả:

PHẦN I: MỞ ĐẦU 1. LÝ DO CHỌN ĐỀ TÀI Ngay từ khi còn ngồi trên ghế nhà trường chúng ta thấy chuyên đề về phương trình, bất phương trình là một trong những chuyên đề xuyên suốt các năm học của học sinh, bắt đầu từ những bài toán “Tìm x biết” dành cho học sinh lớp dưới đến việc cụ thể hóa vấn đề phương trình và hoàn thiện cơ bản các nội dung về phương trình đại số ở cấp hai. Đến bậc phổ thông và chuyên nghiệp kiến thức về phương trình càng chuyên sâu, đa dạng đồng nghĩa với độ khó khăn và phức tạp hơn. Đây là một nội dung quan trọng bắt buộc học sinh phải nắm bắt được và có kĩ năng giải một cách thành thạo. Qua giải phương trình học sinh nắm được kiến thức cơ bản như tập hợp, quan hệ thứ tự, tập hợp số… Tuy nhiên vấn đề về phương trình lại là một trong những vấn đề khó, yêu cầu không chỉ nắm vững các kiến thức cơ bản, mà còn phải biết vận dụng linh hoạt các phương pháp để giải bài toán phương trình. Đó là một trở ngại không nhỏ khiến cho nhiều học sinh khi gặp các bài toán về giải các loại phương trình trong học tập cũng như với những học sinh tham gia các kì thi học sinh giỏi. Hơn nữa, có nhiều dạng phương trình nên việc tập hợp, phân loại, hệ thống cũng khiến cho các em gặp khó khăn. Bản thân em là người giáo viên dạy toán tương lai muốn hoàn thành nhiệm vụ của mình thì ngay từ khi đang là sinh viên cần phải biết nỗ lực tìm tòi kiến thức, tổng hợp cho bản thân mình những kinh nghiệm làm hành trang cho tương lai. Từ khó khăn của bản thân và của học sinh trong việc học và giải phương trình em đã tìm kiếm tài liệu cũng như tổng hợp kiến thức để làm đề tài “ Phân loại một số dạng phương trình thường gặp ở bậc trung học phổ thông và phương pháp giải ” mong rằng sẽ hình thành kiến thức, tạo nền tảng giúp cho các em học sinh có điều kiện giải các bài Toán mà không bị sai lầm, góp phần đổi mới và nâng cao chất lượng dạy học ở trường phổ thông. 2. MỤC ĐÍCH NGHIÊN CỨU Giới thiệu phân loại một số dạng phương trình thường gặp ở bậc trung học vận dụng một số phương pháp giải phương trình bằng những ví dụ cụ thể.Trên cơ sở những kinh nghiệm giảng dạy và thực tiễn học tập của học sinh, cung cấp cho học sinh kiến thức tổng quát về các loại phương trình đồng thời tìm ra những phương pháp giải một số phương trình một cách hiệu quả nhất. 3. ĐỐI TƯỢNG NGHIÊN CỨU Các loại phương trình thường gặp ở bậc trung học phổ thông và một số phương pháp. Thể hiện trên nhiều học sinh khác nhau: học sinh khá, giỏi và học sinh trung bình về môn toán. 4. NHIỆM VỤ NGHIÊN CỨU Đưa ra một số phương trình thường gặp ở bậc trung học phổ thông và cách giải để từ đó tổng quát lên dạng và đưa ra phương pháp giải. 5. PHƯƠNG PHÁP NGHIÊN CỨU -Phương pháp nghiên cứu lý luận. -Phương pháp phân tích, tổng hợp. -Phương pháp thống kê, phân loại. -Nghiên cứu sách: sách giáo khoa, sách tham khảo về phương trình. -Tham khảo internet: diendantoanhoc.net; tailieu.vn; vn.math.com; violet.com. -Tham khảo ý kiến giáo viên hướng dẫn; giáo viên ở trường thực tập. PHẦN II: NỘI DUNG CHƯƠNG I: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN Để dể dàng trong việc giải toán người giải phải biết phân dạng, phân tích để khai thác hết giả thiết, các điều kiện yêu cầu của đề bài, thể loại bài toán,.. để từ đó định hướng cách giải. Đại bộ phận học sinh chúng ta không hiểu rõ sự quan trọng cần thiết của việc phân tích và nhận định hướng giải, nhiều em không học lí thuyết mà vận dụng ngay, không giải được thì chán nản, bỏ không giải và giở sách giải ra chép vv... Trong quá trình học tập và tìm hiểu, ta thấy các dạng phương trình đa dạng và phong phú mà ta phải vận dụng nhiều kĩ năng biến đổi đại số như sử dụng hằng đẳng thức đáng nhớ và một số hằng đẳng thức mở rộng, dùng các phép biến đổi tương đương và các phép biến đổi đại số, phân tích đa thức thành nhân tử... Công cụ giải phương trình không đồi hỏi cao xa cái quan trọng là học sinh phải n ắm vững kiến thức, phải có lập luận chặt chẽ, phải biết xét đầy đủ các khía cạnh, các trường hợp cụ thể của từng vấn đề. Đặc biệt là yêu cầu đối với học sinh khá, giỏi; phải biết hết sức sáng tạo, linh hoạt trong khi giải phương trình, biết đặc biệt hóa và tổng quát hóa những vấn đề cần thiết. I. NGUỒN GỐC SỰ RA ĐỜI CỦA PHƯƠNG TRÌNH Lý thuyết phương trình đại số có lịch sử rất lâu đời. Từ năm 2000 trước Công Nguyên, người Ai Cập đã biết giải các phương trình bậc nhất, người Babylon đã biết giải các phương trình bậc hai và tìm ra được những bảng đặc biệt để giải phương trình bậc ba.Tất nhiên các hệ số của phương trình được xét đều là những số đã cho nhưng cách giải của người xưa chứng tỏ rằng họ cũng đã biết đến các quy tắc tổng quát.Trong nền toán học của người Hi Lạp, lý thuyết phương trình đại số được phát triển trên cơ sở hình học, liên quan đến việc phát minh ra tính vô ước của một số đoạn thẳng.Vì lúc đó, người Hi Lạp chỉ biết các số nguyên dương và phân số dương nên đối với họ phương trình x2 = 2 vô nghiệm. Tuy nhiên, phương trình đó lại giải được trong phạm vi các đoạn thẳng vì nghiệm của nó là đường chéo của hình vuông có cạnh bằng 1. Đến thế kỷ VII, lý thuyết phương trình bậc nhất và bậc hai được các nhà toán học Ấn Độ phát triển, họ cho ra đời phương pháp giải phương trình bậc hai bằng cách bổ sung thành bình phương của một nhị thức. Sau đó, người Ấn Độ cũng ứng dụng rộng rãi các số âm, số Ả Rập với cách viết theo vị trí của các chữ số. Đến thế kỷ thứ XVI, các nhà toán học La Mã là Tartlia (1500 - 1557), Cardano (1501 - 1576) và nhà toán học Ferrari (1522 – 1565) đã giải được các phương trình bậc ba và bậc bốn. Đầu thế kỷ XIX, nhà toán học người Nauy Henrik Abel cho rằng không thể giải phương trình tổng quát bậc ba lớn hơn bốn bằng phương pháp toán học thông thường của đại số.Không lâu sau đó, nhà toán học người Pháp Évariste Golois đã hoàn tất công trình lý thuyết về phương trình đại số của loài người. II. ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH Cho hai hàm số của n biến phức x1, x2,....., xn là f ( x1, x2,......, xn ) và g ( x1, x2 ,......, xn ). Ta gọi tập hợp n số phức x = (x1, x2,....., xn ) thuộc Cn là một điểm trong không gian phức n chiều Cn . Khi đó các hàm số f ( x1, x2,......, xn ) và g ( x1, x2 ,......, xn ) được gọi là các hàm một biến f(x), g(x) trong Cn . Trong toán học, một phương trình là một cách viết thể hiện hai hàm số bằng nhau đối với một số giá trị (hoặc không có giá trị nào) của các biến số. Viết một cách tổng quát một phương trình là: f ( x1 , x2 ,...., xi ) = g (x1 , x2 ,...., xi ) (1) h( x1 , x2 ,...., xi ) = 0 (2) Các giá trị của các biến số ở đó hai giá trị hàm số bằng nhau được gọi là nghiệm số của phương trình.Việc tìm ra các nghiệm số của phương trình gọi là giải phương trình.Nghiệm số, nếu tồn tại, có thể tìm thấy bằng biến đổi toán học và biểu diễn bằng các hàm toán học cơ bản hoặc tìm thấy dưới dạng số bằng phương pháp số, ngay cả khi không thể biểu diễn bằng hàm toán học cơ bản. Cần chú ý phân biệt phương trình với đẳng thức, sự thể hiện rằng giá trị hai hàm số luôn bằng nhau với mọi biến số. III. PHÂN LOẠI PHƯƠNG TRÌNH Tùy theo f(x) và g(x) là biểu thức toán học loại gì mà phương trình được gọi tên theo loại đó. Nếu cả hai biểu thức f(x) và g(x) đều là biểu thức đại số thì (1) là phương trình đại số, trong trường hợp trái lại thì (1) là phương trình siêu việt. Nếu cả hai biểu thức f(x) và g(x) đều là biểu thức đại số hữu tỉ (đa thức hoặc phân thức hữu tỉ) thì (1) gọi là phương trình đại số hữu tỉ. Ðặc biệt, nếu f(x) và g(x) đều là đa thức (biểu thức hữu tỉ nguyên) thì (1) được gọi là phương trình đa thức hoặc phương trình đại số nguyên. Nếu trái lại, ít nhất một trong hai biểu thức f(x) hoặc g(x) là phân thức hữu tỉ thực sự và biểu thức còn lại là đa thức thì (1) được gọi là phương trình phân thức. Nếu ít nhất một trong hai biểu thức f(x) hoặc g(x) là đại số vô tỉ (tức là có chứa căn số của ẩn) và biểu thức còn lại là hữu tỉ thì (1) được gọi là phương trình vô tỉ. Ví dụ: Phương trình đa thức: x2n + xn + 1 = x2 + x + 1. Phương trình phân thức: x-1 = 2x - 3 . x +x+1 2 Phương trình vô tỉ: . IV. PHƯƠNG TRÌNH CHỨA THAM SỐ Cho hàm số f(x), ngoài đối số ra còn có các chữ số a, b, c … nếu trong việc khảo sát và nghiên cứu, ta xem các chữ a, b, c … như là đã biết thì chúng được gọi là tham số, hay thông số, hay tham biến. Giả sử a = α , b = β , c = γ là tập hợp giá trị bằng số nào đó của các chữ a, b, c … Nếu thay các giá trị đó vào hàm số f thì ta được f(x, α , β ,…, γ ) xác định một hàm số nào đó của đối số x thì α , β ,…, γ được gọi là hệ thống giá trị thừa nhận được của các tham số. Nếu f(x, α , β ,…, γ ) không có nghĩa với mọi giá trị bằng số của x trên trường số đã cho thì số. α , β ,…, γ là một hệ thống giá trị không thừa nhận được của các tham Phương trình f(x, a, b, …,c) với ẩn số x và các tham số a, b, …, c được gọi là phương trình chứa tham số. Khi có một hệ thống giá trị thừa nhận được của tham số, phương trình này trở thành phương trình cụ thể: f(x, α , β ,…, γ ) = 0 với ẩn số x và không chứa tham số nữa và tập nghiệm của nó hoàn toàn xác định. Giải phương trình chứa tham số là xác định tất cả các nghiệm của nó với mỗi hệ thống giá trị thừa nhận được của các tham số. Ví dụ 1: Các phương trình ax + b = 0 ax2 + bx + c = 0 là các phương trình chứa tham số a, b, c. Các tham số này có thể lấy mọi giá trị thực bất kì. Với mỗi hệ thống giá trị (thực bất kỳ, đều thừa nhận được) của các tham số, ta được một phương trình cụ thể và có thể giải chúng để tìm tập nghiệm. Ví dụ 2: Phương trình ax + x + 1 = 0 chứa tham số a. Các giá trị thừa nhận được của tham số a được xác định bởi điều kiện a > 0 Ví dụ 3: Phương trình Chứa các tham số a, b. Các giá trị thừa nhận được của tham số được xác định bởi cácđiều kiện: Chẳng hạn a = 2, b = 0 là các giá trị không thừa nhận được của các tham số. V. PHƯƠNG TRÌNH TƯƠNG ĐƯƠNG Các định nghĩa Để cho gọn, ta viết P1 (x ) , P2 (x ) để chỉ hai phương trình hay hai hệ phương trình, tuyển phương trình một ẩn hay n ẩn Định nghĩa 1: P2 (x ) được gọi là hệ quả của P1 (x ) trên S nếu tập nghiệm M 1 của P1 ( x ) là tập con của tập nghiệm M 2 của P2 (x ) M1 ⊆ M 2 Ta kí hiệu P1 (x ) ⇒ P2 (x ) (trên S) Ví dụ. P1 ( x ) : 3 − x = x −1; P2 (x ) : x 2 − x − 2 = 0. Ta có M 1 = {2} , M 2 = {− 1, 2}, do đó M 1 ⊂ M 2 , vậy P1 (x ) ⇒ P2 (x ) Định nghĩa 2: Giả sử P1 ( x ), P2 ( x ) là hai phương trình một ẩn hay n ẩn. P1 ( x) và P2 ( x) được gọi là tương đương nếu M 1 = M 2 . Nói khác đi, P1 ( x) và P2 ( x) là tương đương trên S khi và chỉ khi P1 ( x) và P2 ( x) là hệ quả của nhau. Ta kí hiệu bởi: P1 ( x) ⇔ P2 ( x) hoặc P1 ( x) ~ P2 ( x) Ví dụ 1: Các phương trình x2 + 1 = 0 x4 +1 = 0 x 2 n + 1 = 0 (n>3) Trên Q và R là tương đương ( vì đều vô nghiệm, M 1 = M 2 = M 3 = ∅ ). Nhưng trên C chúng không tương đương vì M 1 = {± i} ;  2  (1 ± i ); M 2 = ±  2    π kπ    π kπ  M 2 = cos +  + i sin + , k = 0,1,....,2n − 1.  2n n    2n n   VI. CÁC ĐỊNH LÍ VỀ PHƯƠNG TRÌNH TƯƠNG ĐƯƠNG Qúa trình giải một phương là quá trình biến đổi phương trình đó để đến một phương trình đơn giản hơn mà ta dã biết cách giải. Nếu các phép biến đổi không làm thay đổi tập nghiệm của phương trình thì phương trình đã cho được biến đổi tương đương, còn nếu làm thay đổi miền xác định của phương trình thì có thể tập hợp nghiệm của phương trình đã cho cũng đã bị thay đổi. Để hiểu rõ hơn ta dựa vào các định lí sau. Định lí: Cho phương trình f(x) = g(x) . Nếu h(x) có nghĩa trong miền xác định của phương trình đã cho thì : f(x) = g(x) ⇔ f(x) + h(x) = g(x) + h(x). (1) Chứng minh: Trong (1) cho x một giá trị a nào đó thuộc miền xác định của phương trình f(x) = g(x), thì ta có : f(a)= g(a) ⇔ f(a)+ h(a) = g(a)+ h(a) là một mệnh đề luôn luôn đúng, là một tính chất của đẳng thức.Vậy (1) là hằng đúng. Hệ quả 1: Có thể chuyển các hạng tử từ vế này sang vế kia của phương trình, nhưng phải đổi dấu của nó. Thật vậy, nếu ta cộng vào hai vế của phương trình f(x) + h(x) = g(x) cùng một biểu thức –h(x) thì ta được phương trình tương đương f(x) = g(x) – h(x) Phương trình sau được biến đổi tương đương từ phương trình trước, bằng cách chuyển h(x) sang vế phải và đổi dấu nó. Hệ quả 2: Mọi phương trình đều có thể đưa về dạng mà vế phải bằng không. Vì thế, ta luôn có thể kí hiệu phương trình là F(x) = 0 Định lí 2. Cho phương trình f(x) = g(x). Nếu biểu thức h(x) có nghĩa và khác không trong miền xác định của phương trình đã cho thì f(x) = g(x) ⇔ f(x).h(x) = g(x).h(x) Chứng minh: Tương tự như chứng minh ở định lí 1 Định lí 3. Nếu nâng hai vế của một phương trình lên lũy thừa bậc lẻ thì ta được một phương trình tương đương với phương trình đã cho ( trên trường số thực ) Chứng minh: Thật vậy, nếu a là nghiệm của phương trình f(x) = g(x) (1) tức là f(a) = g(a) là đúng thì ta có: [ f (a )]2 k +1 = [g (a )]2 k +1 (2) Nghĩa là a cũng là nghiệm của phương trình: [ f (a )]2k +1 = [g (a )]2 k +1 (3) Đảo lại, nếu a là nghiệm của phương trình (3), tức là đẳng thức (2) đúng thì ta có f(a) = g(a), do đó a là nghiệm của phương trình (1). Ví dụ: Phương trình x – 3 = 2 có tập nghiệm M 1 = {5} ; Phương trình (x – 3)2 = 22 có tập nghiệm là M 2 = {5,1} . KẾT LUẬN CHƯƠNG I Ở chương này đã làm rõ cho ta biết được lịch sử hình thành hoàn thiện về phương trình đồng thời cũng giúp ta biết được thế nào là phương trình..., để từ đó ta có thể phân loại các phương trình và đưa ra các phương pháp giải phù hợp. CHƯƠNG II PHÂN LOẠI MỘT SỐ DẠNG PHƯƠNG TRÌNH THƯỜNG GẶP Ở BẬC TRUNG HỌC PHỔ THÔNG VÀ VẬN DỤNG CÁC PHƯƠNG PHÁP VÀO GIẢI TOÁN I. PHÂN LOẠI MỘT SỐ DẠNG PHƯƠNG TRÌNH THƯỜNG GẶP Ở BẬC THPT 1. PHƯƠNG TRÌNH BẬC NHẤT 1.1 Định nghĩa: Phương trình bậc nhất là tất cả các phương trình có dạng hoặc có thể đưa về dạng ax + b = 0 ⇔ ax = -b (a ≠ 0). Trong đó x là ẩn số phải tìm, a và b đã biết hoặc a, b phụ thuộc một tham số hay nhiều tham số. 1.2 Phương pháp giải Phương trình có dạng : Nếu , phương trình có nghiệm duy nhất x = Nếu , phương trình có vô số nghiệm. Nếu , phương trình vô nghiệm. 1.3 Một số ví dụ Ví dụ 1 Giải phương trình: 3x − 9 = 0 Giải 3x − 9 = 0 ⇔ 3x = 9 ⇔ x =3 Vậy nghiệm của phương trình là Ví dụ 2 Giải phương trình: x =3 −b a x −1 x −1 x −1 + − =2 2 3 6 Giải x −1 x −1 x −1 + − =2 2 3 6 1 1 1 ⇔ ( x − 1)  + −  = 2 2 3 6 4 ⇔ ( x − 1) = 2 6 ⇔ x −1 = 3 ⇔ x = 4 Ví dụ 3 Giải phương trình: 2 x − 1 5x + 2 x − 3 − = +1 3 12 4 Giải Ta có: ⇔ 2x −1 5x + 2 x − 3 − = +1 3 12 4 4(2x −1) −(5x +2) = 3(x −3) +12 ⇔ ⇔ 8x −4−5x − 2 = 3x −9 +12 0x = 9 Vậy phương trình vô nghiệm 1.4 Một số bài tập vận dụng Bài 1 Giải và biện luận phương trình sau (1) Giải Phương trình (1) tương đương với: -Nếu 3m +1 ≠ 0 thì m ≠ − 1 3 Phương trình có nghiệm duy nhất là x = -Nếu 3m+1 = 0 thì m = − 1 , ta có: 3 5m + 1 3m + 1 5 0x = + 1 , phương trình vô nghiệm 3 Kết luận: - Nếu phương trình có nghiệm duy nhất x = - Nếu Bài 2 5m + 1 3m + 1 , phương trình vô nghiệm Giải phương trình Giải 2. PHƯƠNG TRÌNH BẬC HAI 2.1 Định nghĩa: Phương trình bậc hai theo x là mọi phương trình có dạng hoặc có thể đưa về dạng : ax2 + bx + c = 0 (1) Trong đó x là ẩn; a, b, c là các hệ số đã biết với a ≠ 0. Biểu thức ở vế trái f(x) = ax2 + bx + c được gọi là tam thức bậc hai đối với biến x. Ðể phương trình (1) ta biến đổi như sau (phương pháp đề xuất bình phương đủ): b c  = a  x2 + x +  a a   = a  x2 + 2   b b2 c b2  x+ + − 2a 4 a 2 a 4a 2   Do đó: được gọi là biệt thức của phương trình. Biểu thức Xảy ra ba trường hợp: a) Nếu , phương trình (1) có hai nghiệm thực là: b) Nếu , khi đó (1) có một nghiệm kép là: c) Nếu phương trình (1) vô nghiệm trên R, nhưng có hai nghiệm phức liên hợp trên C là: Chú ý: Nếu b là số chẵn, b = 2b’ thì = 4(b’2 - ac) Ðặt b’2 – ac = ’ và gọi biệt thức thu gọn. Khi đó nếu ’ , phương trình có hai nghiệm thực (phân biệt hoặc kép) là: Giữa các nghiệm của phương trình bậc hai (1) ta có định lí thuận và đảo sau đây của Viét, là trường hợp riêng quan trọng của định lí Viét. Ðịnh lí Viét: Nếu phương trình bậc hai ax2 + bx + c = 0 có nghiệm x1, x2 thì: x1 + x2 = −b a x1.x2 = c a Đảo lại, nếu hai số x, y thỏa mãn x + y = S và x.y = P thì x, y là nghiệm của phương trình bậc hai X2 – SX + P = 0. Từ đó suy ra một hệ quả rất thông dụng: Hệ quả. 1) Nếu a + b + c = 0 thì phương trình (1) có một nghiệm bằng 1, và nghiệm kia bằng c . a 2) Nếu a – b + c = 0 thì phương trình (1) có một nghiệm bằng -1 và nghiệm kia bằng - c . a 2.2 Phương pháp giải A. Phương trình bậc hai khuyết +) Phương trình bậc hai khuyết có các dạng sau: ax 2 = 0(a ≠ 0; b = 0; c = 0) mà nghiệm là x=0 ax2 + bx = 0 ( a ≠ 0 , c=0) mà nghiệm là x1 = 0, x 2 = ax2 + c = 0 ( a ≠ 0 ,c= 0) mà nghiệm là x1, 2 = ± −b a −c nếu a và c trái dấu, vô a nghiệm nếu a và c cùng dấu. Phương pháp giải: Bằng cách lập biệt số ∆ và ∆ ’(với b là số chẵn) rồi xét theo ba trường hợp như trên B. Phương trình bậc hai đủ: - Phương trình bậc hai đủ có dạng ax2 + bx + c = 0 (a, b, c đều khác 0). 2.3 Một số ví dụ Ví dụ 1 Giải phương trình: Giải: Ta thấy (1) có dạng Vậy nghiệm của phương trình là và 1 . 2 Ví dụ 2 Giải phương trình Giải Ta thấy (2) có dạng Vậy nghiệm của phương trình là Ví dụ 3 . Cho phương trình: x 2 − 2(1 + 2m )x + 3 + 4m = 0 (*) a) Tìm điều kiện để phương trình có nghiệm. b) Tính biểu thức x13 + x 23 theo m. c) Tìm m có một nghiệm bằng ba nghiệm kia. 2 2 d) Viết phương trình bậc hai có nghiệm là x1 và x2 , trong đó x1 , x2 là nghiệm của phương trình (*). Giải a) Điều kiện: b) Ta có: Theo Viét ta có: Thay vào, ta có: c) Ta có: Thay (c) vào (a) ta có: Do đó: Thay x1, x2 vào (b) ta được: Kết hợp với điều kiện ban đầu (câu a) ta thấy hai giá trị này của m đều thỏa mãn. d) Vậy phương trình cần tìm là: Tìm hai số biết tổng và tích. Ví dụ 1 Tìm các số x, y thỏa mãn điều kiện: Giải , do đó có thể coi x, y là các nghiệm phương trình: Vì Ta có Giải ra ta được Ví dụ 2 Cho phương trình trị của m để các nghiệm x1, x2 của phương trình thỏa mãn điều kiện . Tìm các giá Giải Ðiều kiện để phương trình có hai nghiệm (phân biệt hoặc nghiệm kép) là . . phương trình đã cho có hai nghiệm x1, x2. Theo hệ thức Viét ta Với 2 ( m − 2) , m có . 4 ( m − 2) m2 Do đ 2 2 ( m − 3) m . Giá trị không thỏa mãn điều kiện Vậy m = 2 là giá trị cần tìm. Bài tập vận dụng Cho phương trình có hai nghiệm c và d, phương trình có hai nghiệm a và b. Tính a, b, c, d biết rằng các số đó đều khác 0. Giải Áp dụng hệ thức Vi-ét vào hai phương trình đã cho, ta được: Từ (1) suy ra Từ (3) suy ra Từ (2), do ta có Từ (4) do ta có Thay vào (1), ta được Do đó suy ra Ðiều kiện để phương trình bậc hai có nghiệm. Ta đã biết phương trình bậc hai có nghiệm khi . Từ đó suy ra phương trình bậc hai và chỉ khi có nghiệm thường có các cách sau: Cách 1: Chứng tỏ rằng . Cho phương trình x2 – 2(2a – 1)x + a – 3 = 0 (1) Bài tập a) Chứng minh rằng phương trình (1) luôn luôn có nghiệm với mọi giá trị của tham số a. b) Tìm hệ thức giữa các nghiệm x1 và x2 c) Tìm tất cả các giá trị của a để ta có: x12 + x22 > 8 x2 − x1 = 4 Hướng dẫn giải a) Phương trình x2 – 2(2a – 1)x + a – 3 = 0 (1) Ta có: ∆′ = (2a – 1)2 – (a – 3) = 4a2 – 5a + 4 > 0, ∀ a Do đó: Phương trình (1) luôn luôn có hai nghiệm phân biệt x1 và x2 với mọi giá trị của tham số a. b) Theo định lí Viet, ta có:  x1 + x2 = 2(2a − 1)  x + x2 = 4 a − 2 ⇔ 1   x1 x2 = a − 3 a = x1 x2 + 3 ⇔ x1 + x2 = 4( x1 . x2 + 3) – 2 ⇔ 4 x1 . x2 - ( x1 + x2 ) + 10 = 0 Vậy hệ thức giữa x1 và x2 độc lập đối với a là: 4 x1. x2 − ( x1 + x2 ) + 10 = 0 c) +) Theo định lí Viet và giả thiết, ta có:  x1 + x2 = 4a − 2  x1 + x2 = 4a − 2   ⇔  x1 x2 = a − 3  x1 x2 = a − 3 x − x = 4 x − x = 4  2 1  2 1 ⇔ (2a + 1)(2a – 3) = a – 3 ⇔ 4a2 – 5a = 0 ⇔ a = 0 và a = 5 4 Vậy có hai giá trị của a thỏa a = 0 ; a = +) Ta có: 5 4 x12 + x22 ≥ 8 ⇔ ( x1 + x2 )2 - 2 x1 x2 ≥ 8 2 ⇔ (4a - 2) – 2(a – 3) ≥ 0 2 ⇔ 8a – 9a + 1 ⇔ a ≤ 1 8 ∨ ≥ 0 a ≥1 Vậy các giá trị của a phải tìm là: a ≤ Cách 2: Chứng tỏ rằng 1 ∨ 8 a ≥1 (Thật vậy, nếu thì ) Ví dụ Chứng minh rằng phương trình sau có nghiệm với mọi m: Giải: Xét tích Vậy phương trình (1) có nghiệm với mọi m. Chú ý a) Nếu mà ta cũng có nên phương trình có nghiệm. b) Chỉ với điều kiện , chưa đảm bảo phương trình nghiệm. Chẳng hạn ta xét phương trình có , ta có , nhưng với m = 0 thì phương trình trở thành , vô nghiệm Như vậy khi gặp trường hợp , phải xét hai trường hợp: . Bài tập vận dụng Bài 1 Chứng minh rằng nếu bm = 2(c + n) thì ít nhất một trong hai phương trình sau có nghiệm. Bài 2 Tìm các giá trị của m để các phương trình sau có nghiệm: Bài 3 Chứng minh rằng các phương trình sau có nghiệm với mọi a và b: a) b) Hướng dẫn giải Bài 1 Giải Chứng minh bằng phản chứng: Giả sử hai phương trình đều vô nghiệm thì , Mặt khác, theo giả thiết .Vậy ít nhất một trong hai phương trình đã cho có nghiệm. Mâu thuẫn với Bài 2 nên Giải Với phương trình vô nghiệm. Với phương trình có nghiệm Với là phương trình là bậc hai, nó có nghiệm nếu Do đó phải có tức là Kết luận: Với Bài 3 . thì phương trình có nghiệm. Giải 2 2  b  3b ≥0 a) ∆′ = a − ab + b =  a −  + 2 4  2 2 b) Nghiệm hữu tỉ của phương trình bậc hai. tức
- Xem thêm -

Tài liệu liên quan