Đăng ký Đăng nhập
Trang chủ Khoá luận tốt nghiệp: IP trên nền các mạng quang WDM đặc biệt sẽ tập trung vào k...

Tài liệu Khoá luận tốt nghiệp: IP trên nền các mạng quang WDM đặc biệt sẽ tập trung vào kĩ thuật lưu lượng IP/WDM

.PDF
106
54
51

Mô tả:

Khoá luận tốt nghiệp: IP trên nền các mạng quang WDM đặc biệt sẽ tập trung vào kĩ thuật lưu lượng IP/WDM Khoá luận tốt nghiệp xem xét về IP trên nền các mạng quang WDM đặc biệt sẽ tập trung vào kĩ thuật lưu lượng IP/WDM. Khoá luận sẽ tập trung trình bày về các cơ chế cơ bản và kiến trúc phần cứng cũng như phần mềm để triển khai các mạng quang WDM cho phép truyền dẫn lưu lượng IP
Đồ án tốt nghiệp đại học Mục lục MỤC LỤC MỤC LỤC ....................................................................................................................... I THUẬT NGỮ VIẾT TẮT ............................................................................................. III LỜI NÓI ĐẦU ................................................................................................................. 1 CHƯƠNG I TỔNG QUAN VỀ IP/WDM ...................................................................... 3 1.1 Khái niệm mạng IP/WDM .................................................................................... 3 1.2 Lí do chọn IP/WDM.............................................................................................. 6 CHƯƠNG II KĨ THUẬT LƯU LƯỢNG IP/WDM ........................................................ 9 2.1 Mô hình hoá lưu lượng viễn thông ........................................................................ 9 2.1.1 Mô hình lưu lượng dữ liệu và thoại cổ điển .................................................. 9 2.1.2 Các mô hình lưu lượng dữ liệu lí thuyết ...................................................... 10 2.1.3 Một mô hình tham chiếu băng thông ........................................................... 11 2.2 Bảo vệ và tái cấu hình ......................................................................................... 17 2.3 Các mô hình bảo vệ và tái cấu hình trong mạng IP/WDM ................................. 18 2.4 Khái niệm kĩ thuật lưu lượng IP/WDM .............................................................. 18 2.5 Mô hình hoá kĩ thuật lưu lượng IP/WDM........................................................... 19 2.5.1 Kĩ thuật lưu lượng chồng lấn ....................................................................... 20 2.5.2 Kĩ thuật lưu lượng tích hợp .......................................................................... 21 2.5.3 Nhận xét ....................................................................................................... 22 2.6 Mô hình chức năng của kĩ thuật lưu lượng IP/WDM ......................................... 23 2.6.1 Cơ sở dữ liệu thông tin trạng thái mạng IP/WDM ...................................... 26 2.6.2 Quản lí giao diện IP với WDM .................................................................... 28 2.6.3 Khởi tạo tái cấu hình .................................................................................... 28 2.6.4 Đo kiểm và giám sát lưu lượng.................................................................... 29 2.6.5 Giám sát hiệu năng tín hiệu quang .............................................................. 36 2.7 Kĩ thuật lưu lượng MPLS .................................................................................... 37 2.7.1 Cân bằng tải ................................................................................................. 37 2.7.2 Giám sát mạng ............................................................................................. 41 CHƯƠNG III TÁI CẤU HÌNH TRONG KĨ THUẬT LƯU LƯỢNG IP/WDM ......... 43 3.1 Tái cấu hình mô hình ảo đường đi ngắn nhất ...................................................... 43 3.1.1 Mô hình ảo có quy tắc và bất quy tắc .......................................................... 45 3.1.2 Thiết kế mô hình .......................................................................................... 46 3.1.3 Một số thuật toán dựa trên kinh nghiệm ...................................................... 46 Nguyễn Thế Cương, D2001VT i Đồ án tốt nghiệp đại học Mục lục 3.1.4 Dịch chuyển mô hình ảo .............................................................................. 52 3.2 Tái cấu hình cho các mạng WDM chuyển mạch gói .......................................... 56 3.2.1 Tổng quan về tái cấu hình WDM chuyển mạch gói .................................... 56 3.2.2 Các điều kiện tái cấu hình ............................................................................ 58 3.2.3 Một trường hợp thực tế ................................................................................ 59 3.2.4 Mô tả thuật toán dựa trên kinh nghiệm ........................................................ 61 3.2.5 Thảo luận về thuật toán ................................................................................ 67 3.2.6 Dịch chuyển tái cấu hình đường đi ngắn nhất. ............................................ 68 CHƯƠNG IV PHẦN MỀM XỬ LÍ LƯU LƯỢNG IP/WDM ...................................... 70 4.1 Phần mềm kĩ thuật lưu lượng IP/WDM .............................................................. 70 4.2 Kiến trúc phần mềm cho kĩ thuật lưu lượng chồng lấn ....................................... 70 4.3 Kiến trúc phần mềm cho kĩ thuật lưu lượng tích hợp ......................................... 73 4.4 Kĩ thuật lưu lượng IP - giao thức điều khiển mạng (IP TECP) .......................... 75 4.5 Giao diện người sử dụng - mạng IP/WDM (UNI) .............................................. 81 4.6 Kĩ thuật lưu lượng WDM - giao thức điều khiển mạng (WDM TECP) ............. 87 4.7 Kĩ thuật lưu lượng phản hồi vòng kín. ................................................................ 95 4.7.1 Quá trình triển khai mô hình mạng .............................................................. 96 4.7.2 Hội tụ mạng ................................................................................................. 97 KẾT LUẬN ................................................................................................................... 99 TÀI LIỆU THAM KHẢO ...........................................................................................101 Nguyễn Thế Cương, D2001VT ii Đồ án tốt nghiệp đại học Thuật ngữ viết tắt THUẬT NGỮ VIẾT TẮT Viết tắt ANSI ARP ATM BGP CSPF DCN DHCP DHP ECMP FBM FTP GMPLS GUI HTDA HTTP ICMP ID IETF Ifmanager IP LAN LEMS LMP LSA LSP MAC MIB MLDA MPLS Tiếng Anh American National Standard Institute Address Resolution Protocol Asynchronous Transfer Mode Border Gateway Protocol Constraint-based Shortest Path First Routing Data Communication Network Dynamic Host Configuration Protocol Demand Hop-count Product heuristic algorithm Equal Cost Multiple Path Fractional Brownian Motion File Transfer Protocol Generalized Multiprotocol Label Switching Graphical User Interface Heuristic Topology Design Algorithm Hypertext Transfer Protocol Internet Control Message Protocol Identifier Internet Engineering Task Force Interface manager Internet Protocol Local Area Network Link Elimination via Matching Scheme Link Management Protocol Link State Advertisement Label Switched Path Medium Access Control Management Information Base Minimum-delay Logical Topology Design Algorithm Multiprotocol Label Switching Nguyễn Thế Cương, D2001VT Tiếng Việt Viện tiêu chuẩn quốc gia Hoa Kì Giao thức phân giải địa chỉ Chế độ truyền dẫn không đồng bộ Giao thức cổng biên Định tuyến đường đi ngắn nhất trước tiên dựa trên ràng buộc Mạng truyền thông dữ liệu Giao thức cấu hình host động Thuật toán dựa trên kinh nghiệm tích đếm hop nhu cầu Đa đường đồng chi phí Chuyển động phân mảnh Brownian Giao thức truyền file Chuyển mạch nhãn đa giao thức tổng quát Giao diện người sử dụng đồ hoạ Thuật toán thiết kế mô hình dựa trên kinh nghiệm Giao thức truyền siêu văn bản Giao thức bản tin điều khiển Internet Bộ nhận dạng Nhóm kĩ sư Internet Khối quản lí giao diện Giao thức Internet Mạng cục bộ Loại bỏ tuyến nối thông qua lược đồ ghép Giao thức quản lí tuyến nối Quảng bá trạng thái tuyến nối Đường chuyển mạch nhãn Điều khiển truy nhập môi trường Cơ sở thông tin quản lí Thuật toán thiết kế mô hình logic tối thiểu hoá trễ Chuyển mạch nhãn đa giao thức iii Đồ án tốt nghiệp đại học MSN MTU NC&M NE NGI NMS NSFNET OADM OAM OAM&P OC-12 OC-3 OC-48 OC-192 OHTMS OIF OLS OMP OSCP OSPF OXC PC QoS RAM RARP RD RDHP RSVP SCSI SDH Thuật ngữ viết tắt Manhattan Street Network Maximum Transmission Unit Network Control and Management Network Element Next Generation Internet Network Management System Mạng phố Manhattan Đơn vị truyền dẫn tối đa Quản lí và điều khiển mạng Optical Add/Drop Multiplexer Operation and Maintenance Operation, Administration, Maintenance and Provisioning Optical Carrier Level 12 (622,08 Mb/s) Optical Carrier Level 3 (155,52Mb/s) Optical Carrier Level 48 (2448,32 Mb/s) Optical Carrier Level 192 (9953,28 Mb/s) LP-based One-Hop Traffic Maximisation Scheme Optical Internetworking Forum Optical Label Switching Optimized Multi Path Optical Switch Control Protocol Open Shortest Path First Protocol Optical Cross Connect Personal Computer Quality of Service Random Access Memory Reverse Address Resolution Protocol Residual Demand heuristic algolrithm Residual Demand Hop-count Product heuristic algolrithm Resource Reservation Protocol Small Computer Systems Interface Synchronous Digital Hierarchy Khối xen/tách quang Hoạt động và bảo trì Hoạt động, quản trị, bảo trì và giám sát Mức mang quang 12 (622,08 Mb/s) Mức mang quang 3 (155,52Mb/s) Mức mang quang 48 (2448,32 Mb/s) Mức mang quang 192 (9953,28 Mb/s) Lược đồ tối ưu hoá lưu lượng đơn hop dựa trên LP Diễn đàng liên mạng Internet quang Chuyển mạch nhãn quang Đa đường tối ưu Giao thức điều khiển chuyển mạch quang Giao thức đường đi ngắn nhất trước tiên mở Đấu chéo quang Máy tính cá nhân Chất lượng dịch vụ Bộ nhớ truy cập ngẫu nhiên Giao thức phân giải địa chỉ ngược Nguyễn Thế Cương, D2001VT Phần tử mạng Internet thế hệ kế tiếp Hệ thống quản lí mạng Thuật toán dựa trên kinh nghiệm nhu cầu dư thừa Thuật toán dựa trên kinh nghiệm tích đếm hop nhu cầu dư thừa Giao thức đặt trước tài nguyên Giao diện các hệ thống máy tính nhỏ Phân cấp số đồng bộ iv Đồ án tốt nghiệp đại học SNMP SNR SONET SPF SRLG TCP TE TECP TELNET TILDA TMN TTL UDP UNI VPC VPN WADM WAN WDM WSXC Simple Network Management Protocol Signal-to-Noise Ratio Synchronous Optical Network Shortest Path First Shared Risk Link Group Transmission Control Protocol Terminal Equipment, Traffic Engineering Traffic Engineering to Control Protocol Remote Telminal protocol Traffic Independent Logical Topology Design Algorithm Telecommunications Management Network Time To Live User Datagram Protocol User to Network Interface Virtual Path Connection Virtual Private Network Wavelength Add/Drop Multiplexer Wide Area Network Wavelength Amplifier Wavelength Selective Cross Connect Nguyễn Thế Cương, D2001VT Thuật ngữ viết tắt Giao thức quản lí mạng đơn giản Tỉ lệ tín hiệu trên nhiễu Mạng quang đồng bộ Đường đi ngắn nhất trước tiên Nhóm tuyến nối nguy hiểm chia sẻ Giao thức điều khiển truyền dẫn Thiết bị đầu cuối, kĩ thuật lưu lượng Kĩ thuật lưu lượng cho giao thức điều khiển Giao thức đầu cuối ở xa Thuật toán thiết kế mô hình logic độc lập lưu lượng Mạng quản lí viễn thông Thời gian sống Giao thức Datagram người sử dụng Giao diện người sử dụng-mạng Kết nối đường ảo Mạng cá nhân ảo Bộ ghép kênh xen/tách bước sóng Mạng diện rộng Bộ khuếch đại bước sóng Khối đấu chéo lựa chọn bước sóng v Đồ án tốt nghiệp đại học Lời nói đầu LỜI NÓI ĐẦU Xu hướng giao thức IP trở thành tầng hội tụ cho các dịch vụ viễn thông ngày càng trở nên rõ ràng. Phía trên tầng IP, vẫn đang xuất hiện ngày càng nhiều các ứng dụng và dịch vụ dựa trên nền IP. Những ưu thế nổi trội của lưu lượng IP đang đặt ra vấn đề là các hoạt động thực tiễn kĩ thuật của hạ tầng mạng nên được tối ưu hoá cho IP. Mặt khác, quang sợi, như một công nghệ phân tán, đang cách mạng hoá ngành công nghiệp viễn thông và công nghiệp mạng nhờ dung lượng mạng cực lớn mà nó cho phép, qua đó cho phép sự phát triển của mạng Internet thế hệ sau. Sử dụng công nghệ ghép kênh theo bước sóng WDM dựa trên nền mạng hiện tại sẽ có thể cho phép nâng cao đáng kể băng thông mà vẫn duy trì được hiện trạng hoạt động của mạng. Nó cũng đã được chứng minh là một giải pháp hiệu quả về mặt chi phí cho các mạng đường dài. Khi sự phát triển trên toàn thế giới của sợi quang và các công nghệ WDM, ví dụ như các hệ thống điều khiển và linh kiện WDM trở nên chín muồi, thì các mạng quang dựa trên WDM sẽ không chỉ được triển khai tại các đường trục mà còn trong các mạng nội thị, mạng vùng và mạng truy nhập. Các mạng quang WDM sẽ không chỉ còn là các các đường dẫn điểm-điểm, cung cấp các dịch vụ truyền dẫn vật lí nữa mà sẽ biến đổi lên một mức độ mềm dẻo mới. Tích hợp IP và WDM để truyền tải lưu lượng IP qua các mạng quang WDM sao cho hiệu quả đang trở thành một nhiệm vụ cấp thiết. Khoá luận tốt nghiệp của em sẽ xem xét về IP trên nền các mạng quang WDM đặc biệt sẽ tập trung vào kĩ thuật lưu lượng IP/WDM. Khoá luận sẽ tập trung trình bày về các cơ chế cơ bản và kiến trúc phần cứng cũng như phần mềm để triển khai các mạng quang WDM cho phép truyền dẫn lưu lượng IP và sẽ gồm có bốn chương:  Chương I: Tổng quan về IP/WDM. Chương này sẽ trình bày khái niệm mạng IP/WDM, đưa ra ba xu hướng chồng giao thức cho mạng này, các ưu nhược điểm của từng xu hướng. Lí do vì sao IP/WDM lại được chọn là giải pháp cho tương lai cũng sẽ được chỉ ra trong chương I  Chương II: Kĩ thuật lưu lượng IP/WDM. Chương II sẽ trình bày một số vấn đề chung trong kĩ thuật lưu lượng, khái niệm kĩ thuật lưu lượng IP/WDM, hai phương pháp triển khai, mô hình chức năng của kĩ thuật lưu lượng IP/WDM và kĩ thuật lưu lượng MPLS áp dụng cho IP/WDM.  Chương III: Tái cấu hình trong kĩ thuật lưu lượng IP/WDM. Chương này sẽ tập trung đi sâu vào các vấn đề: tái cấu hình mô hình ảo đường đi ngắn nhất, tái cấu hình cho mạng WDM chuyển mạch gói, mô tả và thảo Nguyễn Thế Cương, D2001VT 1 Đồ án tốt nghiệp đại học Lời nói đầu luận về một thuật toán cụ thể và cuối cùng là dịch chuyển tái cấu hình đường đi ngắn nhất.  Chương IV: Phần mềm xử lí lưu lượng IP/WDM. Trong chương IV, các kiến trúc phần mềm cho các xu hướng kĩ thuật lưu lượng, chi tiết về giao diện giữa điều khiển mạng và kĩ thuật lưu lượng, và giữa kĩ thuật lưu lượng IP và kĩ thuật lưu lượng WDM trong trường hợp kĩ thuật lưu lượng chồng lấn sẽ được trình bày. Mặc dù đã có nhiều cố gắng song do thời gian và trình độ có hạn nên khoá luận này chắc chắn không tránh khỏi những thiếu sót. Rất mong nhận được những ý kiến đóng góp của các thầy cô và các bạn. Nhân đây, em xin gửi lời cảm ơn chân thành tới thầy giáo T.S Lê Ngọc Giao đã tạo mọi điều kiện và tận tình hướng dẫn em trong quá trình thực hiện đồ án. Em cũng xin gửi lời cảm ơn tới các thầy cô trong khoa Viễn Thông I đã giúp đỡ em trong thời gian qua. Xin gửi lời cảm ơn đến gia đình, bạn bè và người thân - những người đã luôn giúp đỡ, cổ vũ và kịp thời động viên tôi trong suốt thời gian qua. Hà Nội, ngày tháng năm 2005 Sinh viên Nguyễn Thế Cương Nguyễn Thế Cương, D2001VT 2 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM CHƯƠNG I TỔNG QUAN VỀ IP/WDM 1.1 Khái niệm mạng IP/WDM Mạng IP/WDM được thiết kế để truyền dẫn lưu lượng IP trong một mạng quang cho phép WDM để tận dụng sự phổ biến của kết nối IP và dung lượng băng thông cực lớn của WDM. Hình 1.1 dưới đây chỉ ra việc truyền dẫn các gói tin IP hoặc các tín hiệu SONET/SDH thông qua mạng WDM. Một khối điều khiển bằng phần mềm sẽ điều khiển ma trận chuyển mạch. Ở đây, IP, với vai trò là công nghệ ở lớp mạng, sẽ dựa trên tầng dữ liệu để cung cấp:  Đóng khung (ví dụ như SONET hay Ethernet)  Phát hiện lỗi (ví dụ như kiểm tra CRC)  Sửa lỗi (ví dụ như yêu cầu phát lại tự động ARQ) Một vài các chức năng tầng liên kết được thể hiện trong giao diện ví dụ như các giao diện khách xen/tách hay các giao diện truyền dẫn nhờ vật lí. KHỐI ĐIỀU KHIỂN Sợi quang Các kênh bước sóng MUX MUX Bộ phát đáp Gigabit, Ethernet SONET Ma trận chuyển mạch Các cổng đầu ra tín hiệu (Giao diện khách) IP IP SONET/SDH Các cổng đầu vào tín hiệu (Giao diện khách) IP IP SONET/SDH Lưu lượng vào ra Hình 1.1 Truyền tải gói tin IP trên các kênh bước sóng Một mục tiêu của mạng quang là cung cấp truyền dẫn trong suốt quang từ đầu cuối tới đầu cuối để tối thiểu hoá trễ mạng. Điều này đòi hỏi các giao diện toàn quang và các ma trận chuyển mạch toàn quang cho các thành phần mạng trung gian và biên giới mạng. Bộ phát đáp được sử dụng để khuyếch đại tín hiệu quang. Tồn tại các bộ phát đáp toàn quang (các laser biến đổi được) và các bộ phát đáp quang-điện-quang (O-E-O). Hình cũng chỉ ra hai loại lưu lượng là IP (ví dụ như Gigabit Ethernet) và SONET/SDH và do đó đòi hỏi các giao diện giữa Gigabit Ethernet và SONET/SDH. Nguyễn Thế Cương, D2001VT 3 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM Trong trường hợp các kết nối đa truy nhập, một tầng con của tầng liên kết dữ liệu là giao thức truy nhập môi trường (MAC) sẽ làm trung gian truy nhập để chia sẻ kết nối sao cho tất cả các node đều có cơ hội truyền dữ liệu. Hiện đang tồn tại ba xu hướng chính để truyền dẫn IP trên nền WDM (Hình 1.2). Xu hướng thứ nhất là truyền dẫn IP trên ATM, sau đó qua SONET/SDH và cuối cùng là sợi quang WDM. Ở đây WDM được dùng như là công nghệ truyền dẫn song song với tầng vật lý. Ưu điểm chính của phương pháp này là nhờ việc sử dụng ATM, các loại lưu lượng khác nhau với các đòi hỏi QoS khác nhau có thể được mang trên cùng một sợi quang. IP ATM IP/MPLS SONET/SDH SONET/SDH IP/MPLS WDM WDM WDM Hìn h 1.2 Ba xu hướng cho IP/WDM (tầng dữ liệu) Một ưu điểm khác khi dùng ATM là khả năng sử dụng kĩ thuật lưu lượng và độ mềm dẻo trong việc giám sát mạng của ATM. Nó bổ sung cho định tuyến lưu lượng nỗ lực tối đa (best effort) của IP truyền thống. Tuy nhiên, xu hướng này bị cho là phức tạp, tăng chi phí mạng và có xu hướng tạo ra các nghẽn cổ chai tính toán ở các mạng tốc độ cao. Nó được giải quyết bởi sự xuất hiện của kĩ thuật MPLS trong tầng IP. Các đặc tính chính của MPLS như sau:  Sử dụng một nhãn đơn giản và có độ dài cố định để xác định dòng/tuyến.  Tách riêng dữ liệu chuyển tiếp và thông tin điều khiển. Thông tin điều khiển được dùng để thiết lập đường đi ban đầu nhưng các gói tin được vận chuyển tới node kế tiếp dựa theo nhãn trong bảng chuyển tiếp.  Với một mô hình chuyển tiếp đồng nhất và được đơn giản hoá, các mào đầu IP chỉ được xử lý và kiểm tra tại các biên giới của các mạng MPLS và sau đó các gói tin MPLS được chuyển tiếp dựa theo các “nhãn” (thay vì phải phân tích các mào đầu gói tin IP đã được đóng gói).  MPLS cung cấp đa dịch vụ. Ví dụ một mạng riêng ảo VPN thiết lập bởi MPLS có một mức độ ưu tiên cụ thể được xác định bởi trường tương đương chuyển tiếp FEC (Forwarding Equivalence Class). Nguyễn Thế Cương, D2001VT 4 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM  Cho phép phân loại các gói tin dựa theo chính sách. Các gói tin được kết hợp trong FEC nhờ việc sử dụng một nhãn. Việc sắp xếp gói tin vào FEC được thực hiện tại biên giới mạng dựa theo trường dịch vụ hoặc địa chỉ đích trong phần mào đầu của gói tin.  Cung cấp các cơ chế cho phép kĩ thuật lưu lượng. Các cơ chế này được triển khai để cân bằng tải tuyến nhờ giám sát lưu lượng và thực hiện chỉnh các dòng một cách tích cực hoặc dự đoán trước. Trong mạng IP hiện tại, kĩ thuật lưu lượng là rất khó nếu không nói là không thể vì chuyển đổi hướng lưu lượng dùng các chỉnh sửa định tuyến không trực tiếp là không hiệu quả và nó có thể gây ra tắc nghẽn nghiêm trọng hơn ở đâu đó trong mạng. MPLS cho phép định tuyến hiện bởi nó cung cấp và tập trung chủ yếu vào chuyển tiếp dựa trên trường. Ngoài ra MPLS cũng cung cấp các công cụ cho điều khiển lưu lượng như kĩ thuật đường ngầm, kĩ thuật tránh và phòng vòng lặp, kĩ thuật ghép dòng. Xu hướng thứ hai là IP/MPLS trên nền SONET/SDH và WDM. SONET/SDH cung cấp một số đặc tính hấp dẫn sau cho xu hướng này:  SONET cung cấp một phân cấp ghép kênh tín hiệu quang tiêu chuẩn qua đó các tín hiệu tốc độ thấp được ghép thành các tín hiệu tốc độ cao.  SONET cung cấp một tiêu chuẩn khung truyền dẫn.  Mạng SONET có khả năng bảo vệ/hồi phục hoàn toàn trong suốt đối với các tầng cao hơn, ở đây là tầng IP. Các mạng SONET thường sử dụng mô hình ring. Sơ đồ bảo vệ SONET có thể là:  1+1, nghĩa là dữ liệu được truyền dẫn trên hai hướng ngược nhau và ở đích thì tín hiệu có chất lượng tốt hơn sẽ được lựa chọn.  1:1, chỉ ra rằng có một đường bảo vệ dành riêng cho đường chính  n:1, thể hiện một số đường chính (n) chia sẻ chung một đường bảo vệ. Thiết kế của SONET cũng tăng cường OAM&P để truyền các thông tin cảnh báo, điều khiển và hiệu năng giữa các hệ thống và giữa các mức mạng. Tuy nhiên, SONET mang quá nhiều thông tin mào đầu và chúng lại được mã hoá ở nhiều mức khác nhau. Mào đầu đường (POH) được mang từ đầu cuối tới đầu cuối. Mào đầu tuyến (LOH) được sử dụng cho tín hiệu giữa thiết bị kết cuối tuyến ví dụ như các bộ ghép kênh OC-n. Mào đầu đoạn (SOH) được sử dụng để thông tin giữa các thành phần mạng liền kề ví dụ như các bộ tái tạo. Với một OC-1 với tốc độ là 51,84 Mbps, phần tải của nó chỉ có khả năng truyền dẫn một DS-3 với tốc độ bit là 44,736 Mbps. Nguyễn Thế Cương, D2001VT 5 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM Xu hướng thứ ba ứng dụng IP/MPLS trực tiếp trên WDM và là giải pháp hiệu quả nhất. Tuy nhiên, nó lại yêu cầu tầng IP có trách nhiệm bảo vệ và phục hồi tuyến. Nó cũng yêu cầu một khuôn dạng khung được đơn giản hoá để điều khiển lỗi truyền dẫn. Có một vài lựa chọn khuôn dạng khung cho IP trên nền WDM. Một vài công ty đã phát triển một chuẩn mới là Slim SONET/SDH. Nó cung cấp các chức năng tương tự như SONET/SDH nhưng với các kĩ thuật hiện đại để thay thế mào đầu và ghép kích thước khung vào kích thước gói tin. Một ví dụ khác là ứng dụng khuôn dạng khung Gigabit Ethernet. Chuẩn 10Gigabit Ethernet mới được thiết kế là để dành riêng cho các hệ thống WDM ghép chặt. Sử dụng khuôn dạng Ethernet, các máy chủ ở bất kì hướng nào của kết nối cũng không cần sắp xếp lên một khuôn dạng giao thức khác (ví dụ như ATM) để truyền dẫn. Các mạng IP truyền thống sử dụng báo hiệu trong băng nên lưu lượng báo hiệu và điều khiển được truyền dẫn trên cùng một đường và tuyến. Một mạng quang WDM có một mạng truyền thông riêng rẽ dành cho các bản tin điều khiển. Như vậy nó sử dụng báo hiệu ngoài băng như trong hình 1.3 Lưu lượng dữ liệu Báo hiệu ngoài băng (a) Mạng WDM Lưu lượng dữ liệu và điều khiển Báo hiệu trong băng (b) Mạng IP truyền thống Hình 1.3 Lưu lượng dữ liệu và điều khiển trong mạng IP và WDM Trong mặt phẳng điều khiển, IP trên nền WDM có thể hỗ trợ nhiều kiến trúc mạng khác nhau và sự lựa chọn kiến trúc chỉ phụ thuộc vào môi trường mạng hiện có, nhà quản trị và chủ sở hữu mạng. 1.2 Lí do chọn IP/WDM IP là giao thức được thiết kế để xác định địa chỉ mạng lớp ba và từ đó định tuyến qua các mạng con với các công nghệ lớp hai khác nhau. Phía trên tầng IP tồn tại rất nhiều các dịch vụ và ứng dụng dựa trên nền tảng IP khác nhau. Trong khi đó phía dưới Nguyễn Thế Cương, D2001VT 6 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM lớp IP thì sợi quang sử dụng công nghệ WDM là công nghệ truyền dẫn hứa hẹn nhất, cho phép dung lượng mạng vô cùng lớn để đáp ứng được sự phát triển của Internet. Công nghệ này sẽ trở nên hấp dẫn hơn nhiều khi giá thành của các hệ thống WDM giảm đi. Mặt phẳng điều khiển có nhiệm vụ truyền dẫn các bản tin điều khiển để chuyển đổi các thông tin sẵn có và có thể tiếp cận được, tính toán cũng như thiết lập đường truyền dẫn dữ liệu. Mặt phẳng dữ liệu có nhiệm vụ truyền dẫn lưu lượng ứng dụng và lưu lượng người sử dụng. Một chức năng điển hình của mặt phẳng dữ liệu là đệm và chuyển tiếp gói tin. IP không phân tách mặt phẳng dữ liệu và mặt phẳng điều khiển và do đó nó đòi hỏi các cơ chế QoS tại các bộ định tuyến để phân biệt các bản tin điều khiển và các gói tin dữ liệu. Một hệ thống điều khiển mạng WDM truyền thống sử dụng một kênh điều khiển riêng biệt, còn được gọi là mạng truyền thông dữ liệu, để truyền dẫn các bản tin điều khiển. Một hệ thống quản lý và điều khiển mạng WDM, theo TMN, được triển khai theo cấu trúc tập trung. Để cho phép mở rộng địa chỉ, các hệ thống này dùng một phân cấp quản lý. Kết hợp IP và WDM có nghĩa là, ở trong mặt phẳng dữ liệu ta có thể yêu cầu các tài nguyên mạng WDM chuyển tiếp lưu lượng IP một cách hiệu quả còn trong mặt phẳng điều khiển ta có thể xây dựng một mặt phẳng điều khiển đồng bộ. IP/WDM cũng đánh địa chỉ tất cả các mức trung gian của các mạng quang intra- và inter-WDM và các mạng IP. Các động cơ thúc đẩy IP/WDM bao gồm:  Các mạng quang WDM có thể đánh địa chỉ lưu lượng Internet đang phát triển bằng cách khai thác cơ sở hạ tầng sợi quang sẵn có. Sử dụng công nghệ WDM có thể tăng một cách đáng kể việc tận dụng băng thông sợi quang.  Hầu hết lưu lượng dữ liệu qua các mạng là IP. Gần như tất cả các ứng dụng dữ liệu đầu cuối người sử dụng đều sử dụng IP. Lưu lượng thoại truyền thống cũng có thể đóng gói nhờ các kĩ thuật VoIP.  IP/WDM thừa hưởng sự mềm dẻo và khả năng thích ứng mà các giao thức điều khiển IP cho phép.  IP/WDM có thể đạt được hoặc nhắm vào sự phân bố băng thông động theo nhu cầu (hay giám sát thời gian thực) trong các mạng quang. Bằng cách phát triển từ các mạng quang điều khiển tập trung truyền thống sang mạng tự điều khiển phân bố, mạng IP/WDM tích hợp không những giảm thiểu chi phí quản lý mạng mà còn cung cấp phân bố tài nguyên động và giám sát dịch vụ theo nhu cầu. Nguyễn Thế Cương, D2001VT 7 Đồ án tốt nghiệp đại học Chương I. Tổng quan về IP/WDM  Với sự giúp đỡ của các giao thức IP, IP/WDM có thể hy vọng đánh địa chỉ được WDM hay các nhà khai thác hoạt động trung gian NE.  Các mạng quang WDM đòi hỏi mặt phẳng điều khiển thống nhất và có khả năng phân cấp giữa các mạng con được cung cấp bởi các nhà khai thác WDM khác nhau. Các giao thức điều khiển IP đã được triển khai rất rộng rãi và được chứng minh là có khả năng phân cấp. Sự xuất hiện của MPLS không chỉ bổ sung cho IP truyền thống kĩ thuật lưu lượng và khả năng QoS biến đổi mà còn đưa ra một mặt phẳng điều khiển trung tâm IP thống nhất giữa các mạng.  Sự khác biệt giữa các thiết bị mạng WDM đòi hỏi sự liên kết giữa các nhà khai thác trung gian. Ví dụ như các WADM không trong suốt đòi hỏi các khuôn dạng tín hiệu nhất định ví dụ như tín hiệu SONET/SDH ở các giao diện khách xen/tách của chúng. Sự liên kết hoạt động giữa WDM đòi hỏi sự xuất hiện của tầng mạng mà ở đây là IP.  IP/WDM có thể đạt được sự phục hồi động bằng cách phân mức các cơ chế điều khiển phân tán được dùng trong mạng.  Từ quan điểm dịch vụ, các mạng IP/WDM có thể lợi dụng các cơ chế, chính sách, mô hình, cơ cấu QoS được đề nghị và phát triển trong mạng IP.  Rút kinh nghiệm từ tích hợp IP và ATM, IP và WDM cần một sự tích hợp mạnh hơn nữa để tăng tính hiệu quả và khả năng mềm dẻo. Ví dụ như, IP trên nền ATM cổ điển là tĩnh và phức tạp và chuyển đổi địa chỉ IP sang ATM là bắt buộc phải chuyển đổi giữa các địa chỉ IP và các địa chỉ ATM. Tích hợp IP/WDM sẽ cho phép truyền dẫn mạng quang một cách hiệu quả, làm giảm chi phí cho lưu lượng IP và tăng cường sự tận dụng mạng quang. Nguyễn Thế Cương, D2001VT 8 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM CHƯƠNG II KĨ THUẬT LƯU LƯỢNG IP/WDM 2.1 Mô hình hoá lưu lượng viễn thông Kĩ thuật lưu lượng phải được thực hiện trên một mô hình cụ thể mà ở đây là mô hình mạng viễn thông hoặc mạng máy tính. Do đó, không thể không xem xét các phương pháp mô hình hoá mạng. Để mô hình hoá mạng viễn thông hay mạng máy tính cần hai bước là mô hình hoá lưu lượng và mô hình hoá hệ thống. Mô hình hoá lưu lượng được sử dụng để mô tả luồng lưu lượng đến hệ thống ví dụ như tốc độ đến, phân bố lưu lượng và tận dụng tuyến nối trong khi mô hình hệ thống được sử dụng để mô tả chính bản thân hệ thống kết mạng của nó ví dụ như cấu hình và mô hình hàng đợi. Kiểu hệ thống hoàn toàn tổn thất có thể được sử dụng để làm mô hình cho các mạng chuyển mạch kênh vì trong đó không có vị trí đợi. Vì thế, khi hệ thống đã đầy thì nếu như khi đó có một khách hàng mới, anh/chị ta sẽ không được phục vụ. Hệ thống có tổn thất dựa trên việc giám sát để chỉ ra nhu cầu của khách hàng. Còn hệ thống đợi hoàn toàn được sử dụng để mô hình hoá các mạng chuyển mạch gói với giả thiết rằng hàng đợi là vô hạn. Khi đó nếu tất cả các máy chủ đều đang bận thì một khách hàng đến vào thời điểm đó sẽ chiếm một vị trí trong hàng đợi. Ở đây không có tổn thất nhưng khách hàng phải đợi một khoảng thời gian nhất định trước khi được phục vụ. Lúc này mối quan tâm sẽ chuyển sang kích thước của bộ đệm và chính sách được sử dụng trong hàng đợi. Ở đây, đồ án sẽ chỉ xem xét vấn đề mô hình hoá lưu lượng còn mô hình hoá hệ thống phải dựa trên các hệ thống cụ thể. Báo cáo sẽ tìm hiểu các nguyên lí dự đoán lưu lượng được sử dụng trong mô hình hoá lưu lượng cũng như các thông số để thực hiện mô hình hoá. 2.1.1 Mô hình lưu lượng dữ liệu và thoại cổ điển a) Mô hình lưu lượng thoại Lưu lượng thoại có thể được mô hình hoá nhờ sử dụng mô hình Erlang. Đây là mô hình tổn thất hoàn toàn. Giả thiết rằng tổng lưu lượng là α thì:   xh trong đó λ biểu thị tốc độ cuộc gọi đến và h biểu thị thời gian chiếm (gọi) trung bình (thời gian dịch vụ). Đơn vị của cường độ lưu lượng là Erlang (erl). Lưu lượng một erlang có nghĩa rằng trung bình thì kênh luôn bị chiếm. Nghẽn trong mô hình Erlang xảy ra khi cuộc gọi bị tổn thất. Có hai đại lượng nghẽn là nghẽn cuộc gọi và nghẽn thời gian. Nghẽn cuộc gọi là xác suất một cuộc gọi (một khách hàng) thực hiện cuộc gọi khi tất cả các kênh đều đã bị chiếm. Nghẽn thời gian là xác suất mà tất cả các Nguyễn Thế Cương, D2001VT 9 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM kênh bị chiếm trong một khoảng thời gian bất kì. Rõ ràng là nghẽn cuộc gọi, Bc, thể hiện QoS tốt hơn từ quan điểm của khách hàng. Giả sử có một hệ thống tổn thất M/G/n/n, trong đó n là số kênh trên một tuyến nối, cuộc gọi đến tuân theo quá trình Poisson với tốc độ λ và các thời gian chiếm cuộc gọi là phân bố độc lập và bằng nhau theo phân bố h thì mối quan hệ giữa nghẽn cuộc gọi, mức độ tập trung lưu lượng và thời gian chiếm trung bình được cho bởi biểu thức nghẽn Erlang như sau: n Bc = Erlang (n,α) = n! n  i 0 i i! b) Mô hình lưu lượng dữ liệu Lưu lượng dữ liệu có thể được mô tả nhờ sử dụng các mô hình hàng đợi. Lưu lượng dữ liệu được biểu diễn bởi tốc độ đến của gói tin λ, chiều dài gói tin trung bình L, và thời gian truyền dẫn gói tin 1/μ. Giả sử rằng R hệ thống biểu diễn tốc độ tuyến nối hay nói cách khác là số đơn vị dữ liệu trong một đơn vị thời gian thì thời gian truyền dẫn gói tin sẽ là L/R. Khi đó tổng số lưu lượng sẽ được thể hiện bởi tải lưu lượng ρ:  .L    R Từ quan điểm của người sử dụng thì đặc tính quan trọng là QoS. QoS được biểu diễn bởi Pz, là xác suất một gói tin phải đợi lâu hơn một giá trị tham chiếu z. Giả thiết một hệ thống hàng đợi M/M/1, có các gói tin đến tuân theo quá trình Poisson với tốc độ λ và chiều dài gói tin phân bố độc lập và bằng nhau theo phân bố luỹ thừa L thì mối quan hệ giữa khả năng tải lưu lượng hệ thống, QoS được cho bởi công thức sau: 1, L  R (   1)  Pz  Wait(R,  , L, z)   L  R   exp  -     z , L  R(   1) R    L  2.1.2 Các mô hình lưu lượng dữ liệu lí thuyết Lưu lượng LAN Ethernet đã được nghiên cứu một cách chính xác dựa trên hàng trăm triệu gói tin Ethernet bao gồm cả thời gian đến và chiều dài của chúng. Các nghiên cứu đó đã chỉ ra rằng lưu lượng Ethernet dường như biến đổi rất nhiều do sự xuất hiện của tính bùng nổ trong các dải thời gian từ micro giây tới miligiây, giây, phút, giờ và ngày. Nghiên cứu cũng chỉ ra rằng lưu lượng Ethernet có tính tự tương quan thống kê. Điều này có nghĩa là lưu lượng sẽ trông giống nhau trong tất cả các dải Nguyễn Thế Cương, D2001VT 10 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM thời gian và có thể sử dụng một tham số duy nhất là tham số Hurst để miêu tả đặc tính phân mảnh. Các đặc tính lưu lượng Ethernet này không thể diễn tả nếu sử dụng các mô hình lưu lượng cổ điển như là mô hình Poisson. Lưu lượng WAN Internet cũng đã được nghiên cứu ở cả hai mức đo là mức gói tin và mức kết nối. Nghiên cứu đã chỉ ra rằng tại mức gói tin, phân bố thời gian đến giữa các gói tin TELNET là không tăng nhanh theo hàm luỹ thừa như các mô hình cổ điển. Còn tại mức kết nối đối với các phiên TELNET tích cực thì tốc độ đến kết nối tuân theo quá trình Poisson (với tốc độ cố định theo từng tiếng đồng hồ). Tuy nhiên, nghiên cứu cũng chỉ ra rằng tại mức kết nối, đối với các kết nối trong phiên khởi tạo người sử dụng (FTP, HTTP) và máy khởi tạo thì tốc độ đến kết nối có tính bùng nổ, đôi khi là tương quan và không tuân theo quá trình Poisson. Để thể hiện được tính bùng nổ của lưu lượng dữ liệu Internet thì có thể cần phải sử dụng các phân bố số mũ con như là các phân bố Log-normal, Weibull, Pareto. Đối với các quá trình có phụ thuộc dải dài thì các quá trình tự tương quan như là chuyển động Brownian phân mảnh có thể được sử dụng. 2.1.3 Một mô hình tham chiếu băng thông Kĩ thuật lưu lượng vòng kín có thể được thực hiện dựa trên phản hồi và tham chiếu băng thông. Kĩ thuật lưu lượng vòng kín dựa trên phản hồi sẽ được trình bày trong phần 4.2. Tham chiếu băng thông là một công cụ hữu ích cho kĩ thuật lưu lượng. Các dự đoán băng thông trong tương lai có thể được sử dụng để khởi tạo tái cấu hình mức mạng. Nhờ việc dự đoán băng thông của dòng lưu lượng, có thể xác định được các đòi hỏi về dung lượng của tuyến nối IP/WDM và do vậy sẽ quyết định có thực hiện tái cấu hình hay không. Dòng lưu lượng IP là một dòng các gói tin IP đơn hướng (của cùng một lớp lưu lượng) giữa hai đầu cuối. Các đầu cuối có thể là các bộ định tuyến liền kề trong trường hợp các dòng lưu lượng IP là lưu lượng chạy trên tuyến nối nằm giữa hai bộ định tuyến. Tương ứng như thế, các đầu cuối cũng có thể không phải là các bộ định tuyến liền kề. Một dòng lưu lượng IP là đơn hướng và điều này sẽ dẫn tới tính không đối xứng của lưu lượng giữa các đầu cuối. Cho trước một dòng lưu lượng thì điều ta mong muốn là xác định các tính chất và ước lượng được băng thông của nó. Mặc dù phương pháp dưới đây có thể áp dụng cho nhiều kiểu lưu lượng nhưng nó được hi vọng là sẽ có khả năng ước lượng được tải mong muốn của kết nối IP và sau đó các ước lượng này sẽ được sử dụng để thực hiện các quyết định tái cấu hình. Khoảng thời gian dự đoán xác định độ lớn thời gian dự đoán trong tương lai. Khoảng thời gian cho tái cấu hình mức mạng được xác định bởi nhiều yếu tố. Người ta Nguyễn Thế Cương, D2001VT 11 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM mong muốn tái cấu hình mức mạng có khả năng phản ứng trước các thay đổi trong xu hướng lưu lượng (chẳng hạn như các thay đổi tải trong một ngày). Mặt khác khoảng thời gian tái cấu hình ít nhất cũng phải bằng thời gian của một thủ tục tái cấu hình. Khoảng thời gian tái cấu hình bao gồm các thành phần sau:  Thời gian để thực hiện một dự đoán  Thời gian để tính toán một mô hình mới  Thời gian để dịch chuyển từ mô hình hiện tại tới mô hình mới Thời gian để thực hiện dự đoán băng thông phụ thuộc vào độ phức tạp tính toán của mô hình dự đoán. Thời gian để tính toán mô hình mới phụ thuộc vào độ phức tạp của các thuật toán hay giải pháp dựa trên kinh nghiệm để thực hiện việc thiết kế mô hình đó. Còn thời gian để dịch chuyển từ cấu hình hiện tại sang cấu hình mới lại phụ thuộc vào chu trình dịch chuyển được sử dụng. Giả thiết rằng chu trình dịch chuyển bao gồm một chuỗi các thiết lập và loại bỏ từng tuyến nối IP/WDM riêng rẽ. Khi đó thời gian dịch chuyển sẽ bằng tổng thời gian để thiết lập và loại bỏ các tuyến nối IP/WDM với thời gian để các giao thức định tuyến ổn định sau mỗi thay đổi mô hình. Dựa trên các nhận xét trên, người ta thừa nhận một khoảng thời gian tái cấu hình nhất định. Đây là khoảng thời gian xác định tính thường xuyên thực hiện tái cấu hình mức mạng. Thời gian này được gọi là khoảng thời gian thô (khác với khoảng thời gian mịn - thời gian cho các phép đo lưu lượng). Khoảng thời gian thô là một thông số có thể thay đổi được tuỳ theo thiết kế. Ảnh hưởng của các giá trị khác nhau của thông số thời gian thô đã được đánh giá. Dự đoán băng thông cho dòng lưu lượng trong khoảng thời gian kế tiếp phụ thuộc vào một số yếu tố sau:  Giờ trong ngày và ngày trong tuần: tồn tại mối tương quan giữa ngày trong tuần và giờ trong ngày với độ lớn lưu lượng Internet.  Các mối tương quan từ các mẫu thời gian trước đó: độ lớn lưu lượng trong quá khứ gần sẽ ảnh hưởng tới độ lớn lưu lượng trong tương lai.  Quá trình đến của lưu lượng: không thể chỉ dự đoán các quá trình này là các quá trình Poisson. Cần phải tính đến các đặc tính tự tương quan của dòng lưu lượng trong đó. Mục đích là tìm kiếm một mô hình thông số dựa trên kinh nghiệm để có thể dự đoán được băng thông lưu lượng trong khoảng thời gian kế tiếp. Mô hình sẽ tận dụng các thông tin đo đạc lưu lượng và giả thiết rằng quá trình đến của lưu lượng là quá trình tự tương quan. Mô hình dưới đây đã được đề xuất bởi A. Neidhardt và J. Hodge Nguyễn Thế Cương, D2001VT 12 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM tại Bellcore và được dùng để dự đoán dung lượng của một ATM VPC mang lưu lượng IP và được mở rộng trong dự án NGI Supernet NC&M tại Bellcore/Telcordia. Quá trình chuyển động phân mảnh Brownian Quá trình chuyển động phân mảnh Brownian (FBM) là một quá trình tự tương quan được mô tả bởi ba thông số là: tốc độ đến trung bình m, tham số dao động a và thông số Hurst, H. Một mạng IP/WDM có thể mô hình hoá tốc độ đến như FBM để xem xét đến sự dao động của tổng lưu lượng mịn hoá trong khoảng thời gian thô. FBM được định nghĩa như sau: A(t) = mt + am Z(t) trong đó    t   Trong đó Z(t) là quá trình chuyển động phân mảnh Brownian bình thường hoá với các tính chất sau:  Z(t) đồng biến  Z(0) = 0 và E[Z(t)] = 0 với mọi t  E[Z(t)]2 = t 2H với mọi t  Z(t) có tính liên tục  Z(t) có tính Gauss Sự biến thiên của Z(t) được thể hiện bởi: V[A(t)] = am t 2H Hãy xem xét một hàng đợi với quá trình đến FBM như trên và với tốc độ dịch vụ C. Hệ thống này có bốn thông số: m là tốc độ đến trung bình, a là tham số biến thiên của quá trình đến, H là thông số tự tương quan và C là tốc độ dịch vụ. Xác xuất tràn dòng của hàng đợi trên hay chính là P(Q>B) trong đó B là kích thước bộ đệm được cho bởi công thức gần đúng sau: 1 P(Q  B)  exp(  (am) 1 (C  m) 2 H H 2 H (1  H ) 2(1 H ) B 2(1 H ) ) 2 Giả thiết rằng người ta cần xác xuất tràn dòng ở trên bị chặn nghĩa là: z2 ) 2 thì biểu thức cho tốc độ dịch vụ của hàng đợi C sẽ có dạng như sau: P(Q > B)  exp (- 1 1  1 1  1 C  m  m 2 H  z 2 H a 2 H B 1 H H (1  H ) 1 H       Các nguyên lí tham chiếu lưu lượng Nguyễn Thế Cương, D2001VT 13 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM Nguyên lí đầu tiên là băng thông lưu lượng trong khoảng thời gian kế tiếp phụ thuộc nhiều vào lưu lượng đã thấy trong dòng lưu lượng của cùng khoảng thời gian đó của tuần trước đó. Nguyên lí này phản ánh mô hình độ lớn lưu lượng phụ thuộc lớn vào giờ trong ngày và ngày trong tuần được quan sát thấy trong các tuyến nối. Do vậy, độ lớn lưu lượng trung bình trong khoảng thời gian kế tiếp sẽ gần như giống hệt như độ lớn đã xuất hiện trong cùng thời điểm của ngày, của cùng thứ hôm đó của tuần trước đó. Và điều này có thể được biểu diễn bởi biểu thức: F0  F h, d  Trong đó F[h,d] là lưu lượng quan sát thấy tại giờ h của ngày d trong tuần trước đó. Giả sử rằng tốc độ phát triển của lưu lượng từ tuần này sang tuần khác được mô hình bởi một hàm có thông số γ. Cũng giả thiết rằng hàm tăng trưởng này là hàm mũ: F1  F0 e F 0 Trong đó γ là thông số mô hình được ước lượng từ các phép đo lưu lượng. Giả thiết rằng W0 và W1 là tổng lưu lượng đo được trong hai tuần liền trước trong dòng lưu lượng thì có thể xác định γ từ phương trình sau: W1  W0 e w 0 Nguyên lí thứ hai là dự đoán băng thông lưu lượng trong khoảng thời gian kế tiếp sẽ khác với lưu lượng đã được quan sát thực tế trong cùng một cách mà phép dự đoán trong khoảng thời gian liền trước đó đã thực hiện. Cho A(h-1) là độ lớn lưu lượng thực tế đo được trong khoảng thời gian (h-1). Giả thiết F(h-1) là độ lớn lưu lượng dự đoán cho khoảng thời gian (h-1) thì:  A(h  1)    F (h  1)   (1   )  là tỉ lệ để xem xét sự khác nhau giữa giá trị dự đoán và giá    trị thực tế trong khoảng thời gian liền trước. Do đó:  A(h  1)  F2  F1   F (h  1)   (1   )     trong đó ρ có thể được chọn bằng cách làm phù hợp với dữ liệu đã đo được trước đó. Ví dụ như người ta có thể chọn giá trị ρ sao cho sai số do tỉ lệ được cho bởi:  A(h) A(h  1)   F (h)   F (h  1)    là nhỏ nhất cho dữ liệu trong quá khứ. Nói cách khác, có thể chọn ρ sao cho tối thiểu hoá giá trị: Nguyễn Thế Cương, D2001VT 14 Đồ án tốt nghiệp đại học Chương II. Kĩ thuật lưu lượng IP/WDM 2  A(h) A(h  1)  E  F (h  1)   F ( h)  trong đó E là toán tử dự đoán. Nó sẽ cho kết quả là:  A(h) A(h  1)  E   F (h) F (h  1)   2  A(h  1)  E   F (h  1)  Giả thiết rằng một quá trình đến FBM với tốc độ trung bình F2, kích thước bộ định tuyến là B và xác xuất tổn thất gói tin sẽ bị chặn trên bởi  thì điều kiện cho dung lượng sẽ được biểu diễn bởi: 1 2H 2 F3  F2  F  (a, H , B, z ) 1  21H 21H 11H 1 H trong đó  (a, H , B, z )   z a B H (1  H )       Dưới đây, đồ án sẽ trình bày hai phương pháp dùng để ước lượng các thông số a và H từ lưu lượng đo được. Phương pháp đầu tiên giả định rằng đã có các kết quả đo độ lớn lưu lượng cho mỗi một trong N khoảng thời gian mịn liên tiếp t. Biểu thị độ lớn lưu lượng cho mỗi khoảng i là T(i). Khi đó giá trị ước lượng độ lớn lưu lượng trung bình sẽ là: N m  T (i) i 1 N và giá trị ước lượng của phương sai sẽ là: N Vt   (T (i)  m) 2 i1 N 1 Các giá trị đo có thể được tổng hợp thành k khối không chồng lấn với kích thước mỗi khối là kt và có phương sai là Vkt. Khi cho trước hai giá trị ước lượng phương sai Vt và Vkt thì các giá trị a và H là hoàn toàn có thể xác định được. Trong phương pháp thứ hai, thông số H có thể ước lượng từ các điểm sai khác thời gian như sau. Cho một vệt thời gian Xk, k = 1, 2,…., chúng ta sẽ có một vệt thời gian tổng hợp Xk(m), k = 1, 2,… bằng cách lấy trung bình từ các chuỗi Xk ban đầu nhờ các khối không chồng lấn có độ lớn m. Nghĩa là: 1  X kmm1  ...  X km  m Sau đó đối với các quá trình phụ thuộc dải dài thì ta sẽ có: X k( m )  Nguyễn Thế Cương, D2001VT 15
- Xem thêm -

Tài liệu liên quan