Tài liệu Khảo sát hàm số và các bài toán liên quan

  • Số trang: 56 |
  • Loại file: PDF |
  • Lượt xem: 221 |
  • Lượt tải: 0
dangvantuan

Đã đăng 62328 tài liệu

Mô tả:

Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 CHUYÊN ĐỀ KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN Mục Lục Đề mục Trang A. KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ………………………………………. B. CÁC BÀI TOÁN LIÊN QUAN………………………………………………… Bài toán 1: Các bài toán liên quan tới phương trình tiếp tuyến…………………………………….. 2 Bài toán 1.1………………………………………………………………………………………….. 2 Bài toán 1.2………………………………………………………………………………………….. 10 Bài toán 2: Các bài toán liên quan tới cực trị………………………………………………………… 15 Bài toán 2.1………………………………………………………………………………………….. 15 Bài toán 2.2………………………………………………………………………………………….. 19 Bài toán 2.3………………………………………………………………………………………….. 26 Bài toán 3: Bài toán giao điểm………………………………………………………………………… 28 Bài toán 3.1………………………………………………………………………………………….. 28 Bài toán 3.2………………………………………………………………………………………….. 41 Bài toán 3.3………………………………………………………………………………………….. 44 Bài toán 4: Bài toán tìm điểm…………………………………………………………………………. 49 Bài toán 5: Các bài toán về tính đơn điệu của hàm số……………………………………………….. 52 Bài toán 5.1………………………………………………………………………………………….. 52 Bài toán 5.2………………………………………………………………………………………….. 53 1 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 CHUYÊN ĐỀ 1: KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN A. KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ B. CÁC BÀI TOÁN LIÊN QUAN Bài toán 1: Các bài toán liên quan tới phương trình tiếp tuyến Cơ sở lí thuyết: * Cho hàm số y  f ( x) có đồ thị (C), phương trình tiếp tuyến của (C) tại điểm M 0 ( x0 , y0 )  (C ) là : y  f '( x0 )( x  x0 )  y0 (*) ( M 0 gọi là tiếp điểm). * Hai đồ thị hàm số y  f ( x) và y  g ( x) tiếp xúc với nhau khi và chỉ khi hệ phương trình sau có nghiệm :  f ( x)  g ( x )   f '( x )  g '( x ) (2*) Nghiệm của (2*) là hoành độ tiếp điểm của hai đồ thị. Nhận xét : Với kiến thức cơ bản trên, giúp ta giải quyết hai lớp câu hỏi liên quan tới việc viết phương trình tiếp tuyến (tại điểm và đi qua điểm). Cụ thể : +) Với câu hỏi tại điểm, để viết được phương trình (*) ta cần 3 yếu tố x0 , y0 và f '( x0 ) . Ứng với điều này sẽ có 3 cách ra đề : cho biết x0 , cho biết y0 hoặc cho biết f '( x0 ) dưới các cách phát biểu khác nhau, và điều này sẽ được diễn đạt thông qua Bài toán 1.1. +) Với câu hỏi đi qua điểm sẽ được phát biểu qua Bài toán 1.2 . Bài toán 1.1 Nội dung bài toán : Cho hàm số y  f ( x ) có đồ thị là (C ) . Viết phương trình tiếp tuyến của đồ thị (C ) : 1. Tại điểm có hoành độ là a . 2. Tại điểm có tung độ là b . 3. Có hệ số góc là k . 4. Song song với đường thẳng y  ax  b . 5. Vuông góc với đường thẳng y  ax  b . 6. Tạo với trục hoành ( Ox ) một góc bằng  . 7. Cắt các trục Ox, Oy lần lượt tại hai điểm A, B sao cho OB  kOA . 2 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Cách giải chung: Gọi M 0 ( x0 ; y0 ) là tiếp điểm của tiếp tuyến cần lập. Khi đó phương trình tiếp tuyến tại M 0 ( x0 ; y0 ) có dạng: y  f '( x0 )( x  x0 )  y0 (*)  f '( x0 )  f '(a) 1. Với x0  a   , thay vào (*) ta được phương trình cần lập.  y0  f (a) 2. Với y0  b  f ( x0 )  b (2) . Giải phương trình (2) tìm x0 và suy ra f '( x0 ) . Sau đó thay các thông số tìm được vào (*) ta được phương trình cần lập. 3. Tiếp tuyến có hệ số góc k , suy ra f '( x0 )  k (3). Giải phương trình (3) tìm x0 và suy ra y0 . Sau đó thay vào (*) ta được phương trình cần lập. 4. Tiếp tuyến song song với đường thẳng y  ax  b , suy ra f '( x0 )  a (4). Giải phương trình (4) tìm được x0 và suy ra y0 . Sau đó thay vào (*) ta được phương trình (kiểm tra lại tính song song) và kết luận. 5. Tiếp tuyến vuông góc với đường thẳng y  ax  b , suy ra f '( x0 )   1 (5). a Giải phương trình (5) tìm được x0 và suy ra y0 . Sau đó thay vào (*) ta được phương trình cần lập. 6. Tiếp tuyến tạo với trục hoành một góc  , suy ra f '( x0 )   tan  (6). Giải phương trình (6) tìm được x0 và suy ra y0 . Sau đó thay vào (*) ta được phương trình cần lập. 7. Tiếp tuyến cắt trục Ox, Oy lần lượt tại A, B sao cho OB  kOA , khi đó gọi  là góc tạo bởi tiếp tuyến và trục hoành ta có: tan   OB k OA Suy ra f '( x0 )   tan    k (7) Giải phương trình (7) tìm được x0 và suy ra y0 . Sau đó thay vào (*) ta được phương trình cần lập. 3 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Nhận xét: *) Ngoài cách phát biểu tường minh như ý 1, 2 ta có thể gặp những câu hỏi tương tự như sau: – Viết phương trình tiếp tuyến của đồ thị (C ) tại giao điểm của (C ) với trục hoành (với đường thẳng y  ax  b , với đường cong y  g ( x ) …). – Viết phương trình tiếp tuyến của đồ thị (C ) tại điểm thoả mãn điều kiện cho trước. *) Các ý 3, 4, 5, 6, 7 thực chất là dữ kiện cho biết f '( x0 ) nhưng được phát biểu dưới nhiều cách diễn đạt khác nhau. Ví dụ 1. Cho hàm số y  f ( x)  x 3  6 x 2  9 x  1 có đồ thị (C ) . Viết phương trình tiếp tuyến của đồ thị (C ) : 2. Tại điểm có tung độ bằng 15 . 1. Tại điểm có hoành độ bằng 2 . 3. Tại giao điểm của đồ thị (C ) với đường thẳng y  4 x  1 . 4. Tại điểm có hoành độ x0 , biết f ''( x0 )  0 và chứng minh rằng tiếp tuyến khi đó là tiếp tuyến của (C ) có hệ số góc nhỏ nhất. Giải: Ta có y '  f '( x )  3 x 2  12 x  9 . Gọi M 0 ( x0 ; y0 ) là tiếp điểm của tiếp tuyến cần lập.  f '(2)  3 1. Với x0  2   , suy ra phương trình tiếp tuyến cần lập: y  3( x  2)  3 hay y  3x  9  y0  f (2)  3 2. Với y0  15  x03  6 x02  9 x0  1  15  x03  6 x02  9 x0  16  0  ( x0  1)( x02  7 x0  16)  0  x0  1  f '(1)  24 Vậy phương trình tiếp tuyến cần lập là: y  24 x  9 3. Phương trình hoành độ giao điểm của (C ) với đường thẳng y  4 x  1 là: x  0  y 1 x  6 x  9 x  1  4 x  1  x( x  6 x  5)  0   x  1  y  5  x  5  y  21 +) Với M 0 (0;1)  f '(0)  9 , suy ra phương trình tiếp tuyến: y  9 x  1 3 2 2 +) Với M 0 (1;5)  f '(1)  0 , suy ra phương trình tiếp tuyến: y  5 +) Với M 0 (5; 21)  f '(5)  24 , suy ra phương trình tiếp tuyến: y  24 x  99 4 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3  f '(2)  3 4. Ta có y ''  f ''( x )  6 x  12 , khi đó f ''( x0 )  0  6 x0  12  0  x0  2    y0  f (2)  3 Suy ra phương trình tiếp tuyến cần lập: y  3x  9 Hệ số góc tiếp tuyến của đồ thị (C ) tại điểm có hoành độ x bằng : y '( x )  f '( x)  3x 2  12 x  9  3( x  2) 2  3  3 , x   , suy ra y '( x) min  3 khi x  2  x0 Vậy tiếp tuyến của (C ) tại điểm có hoành độ x0 thỏa mãn f ''( x0 )  0 có hệ số góc nhỏ nhất (đpcm). Ví dụ 2. Cho hàm số y   x 4  x 2  6 có đồ thị là (C ) . Viết phương trình tiếp tuyến của đồ thị (C ) : 2. Song song với đường thẳng 3x  2 y  2  0 . 1. Có hệ số góc là 6 . 3. Vuông góc với đường thẳng y  1 x3. 6 4. Tạo với trục hoành ( Ox ) một góc bằng  , biết tan   5. Cắt các trục Ox, Oy lần lượt tại hai điểm A, B sao cho OB  36OA . Giải: Ta có y '  4 x 3  2 x . Gọi M 0 ( x0 ; y0 ) là tiếp điểm của tiếp tuyến cần lập. 1. Tiếp tuyến có hệ số góc là 6 , suy ra: y '( x0 )  6  4 x03  2 x0  6  ( x0  1)(2 x02  2 x0  3)  0  x0  1  y0  y ( 1)  4 Vậy phương trình tiếp tuyến cần lập là: y  6 x  10 . 3 2. Đường thẳng 3x  2 y  2  0 được viết lại thành: y   x  1 2 3 3 Khi đó tiếp tuyến song song với đường thẳng y   x  1 , suy ra: y '( x0 )   2 2  4 x03  2 x0   3 1  1  91  8 x03  4 x0  3  0  (2 x0  1)(4 x02  2 x0  3)  0  x0   y0  y    2 2  2  16 3 1  91 3 103 Tiếp tuyến cần lập là: y    x    hay y   x  (thỏa mãn điều kiện song song). 2 2  16 2 16 5 9 16 Nguyễn Thanh Tùng 0947141139 – 0925509968 3. Do tiếp tuyến vuông góc với đường thẳng y  htpp://www.facebook.com/giaidaptoancap3 1 x  3 , suy ra: y '( x0 )  6 6  4 x03  2 x0  6  2 x03  x0  3  0  ( x0  1)(2 x02  2 x0  3)  0  x0  1  y0  y (1)  4 Khi đó phương trình tiếp tuyến: y  6( x  1)  4 hay y  6 x  10 . 4. Do tiếp tuyến tạo với trục hoành ( Ox ) một góc bằng  , nên suy ra: y '( x0 )   tan    +) Với y '( x0 )   9 9 9 1  1  1503  4 x03  2 x0    4 x03  2 x0   0  x0   y0  y    16 16 16 4  4  256 Tiếp tuyến cần lập : y   +) Với y '( x0 )  9 16 9 1  1503 9 1539 hay y   x  x  16  4  256 16 256 9 9 9 1  1  1503  4 x03  2 x0   4 x03  2 x0   0  x0    y0  y     16 16 16 4  4  256 Tiếp tuyến cần lập : y  9  1  1503 9 1539 hay y  x  x  16  4  256 16 256 5. Gọi  là góc tạo bởi tiếp tuyến cần lập và trục hoành, khi đó tiếp tuyến cắt các trục Ox, Oy lần lượt tại hai OB 36OA điểm A, B , ta được: tan     36  y '( x0 )   tan   36 OA OA +) Với y '( x0 )  36  4 x03  2 x0  36  4 x03  2 x0  36  0  x0  2  y0  y (2)  14 Tiếp tuyến cần lập : y  36( x  2)  14 hay y  36 x  58 +) Với y '( x0 )  36  4 x03  2 x0  36  4 x03  2 x0  36  0  x0  2  y0  y (2)  14 Tiếp tuyến cần lập : y  36( x  2)  14 hay y  36 x  58 . Ví dụ 3. Cho hàm số y  (3m  1) x  m 2  m có đồ thị (Cm ) và m là tham số . xm 1. Với m  1 , viết phương trình tiếp tuyến của (C1 ) song song với đường thẳng y  4 x  16 . 2. Tìm m để tiếp tuyến của (Cm ) tại giao điểm của đồ thị (Cm ) với trục hoành song song với đường thẳng d : y  x 1 . 6 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Giải: 1. Với m  1 ta có (C1 ) : y  4 4x , suy ra y '  x 1 ( x  1) 2 Gọi M 0 ( x0 ; y0 ) là tiếp điểm của tiếp tuyến cần lập. Khi đó tiếp tuyến tại M 0 ( x0 ; y0 ) song song với đường thẳng y  4 x  16 nên suy ra: y '( x0 )  4   x  0  y0  0 4  4  ( x0  1) 2  1   0 2 ( x0  1)  x0  2  y0  8 +) Với M 0 (0; 0) , phương trình tiếp tuyến: y  4 x (thỏa mãn) +) Với M 0 (2;8) , phương trình tiếp tuyến: y  4 x  16 (loại). Vậy phương trình tiếp tuyến cần lập là y  4 x . 2. Ta có: y '   m2  m  4m 2 và (Cm ) cắt trục hoành tại điểm M  ;0  . Do tiếp tuyến của (Cm ) tại M song ( x  m) 2  3m  1  2  m2  m  1  3m  1  song với đường thẳng d : y  x  1 nên: y '   1  m  1 hoặc m   .  1   5  2m   3m  1  +) Với m  1  M (1;0) , phương trình tiếp tuyến là: y  x  1 (loại). 1 3 3  +) Với m    M  ; 0  , phương trình tiếp tuyến là: y  x  (thỏa mãn) 5 5 5  Vậy m   1 là giá trị cần tìm. 5 Nhận xét: Như vậy qua Ví dụ 3 ta nhận thấy, khi gặp dạng câu hỏi viết phương trình tiếp tuyến của đồ thị hàm số y  f ( x ) song song với đường thẳng y  ax  b , việc sử dụng dữ kiện f '( x0 )  a chỉ là điều kiện cần nhưng chưa đủ . Do đó sau khi giải ra kết quả ta cần có bước kiểm tra lại điều kiện song song. Ví dụ 4. Cho hàm số y  x có đồ thị (C ) và gốc tọa độ O . x 1 1. Viết phương trình tiếp tuyến của (C ) , biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân . 2. Tìm tọa độ điểm M thuộc (C), biết tiếp tuyến của (C) tại M cắt hai trục Ox , Oy lần lượt tại A, B sao cho 1 tam giác OAB có diện tích bằng . 8 7 Nguyễn Thanh Tùng Giải: Ta có y '  0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 1 ( x  1) 2 1. Gọi M 0 ( x0 ; y0 ) là tiếp điểm của tiếp tuyến cần lập. Do tam giác OAB cân và vuông tại O nên OA  OB , suy ra: y '( x0 )  1 Mà y '( x0 )  x  0 1 1 1  0  0, x0  1  y '( x0 )  1  2 2 ( x0  1) ( x0  1)  x0  2 +) Với x0  0  y0  y (0)  0 (loại do M 0 (0; 0)  O ) +) Với x0  2  y0  y (2)  2 , suy ra phương trình tiếp tuyến: y  1.( x  2)  2 hay y  x  4 (thỏa mãn). Vậy tiếp tuyến cần lập là: y  x  4 . m   2. Vì M  (C ) nên M  m;  . Phương trình tiếp tuyến của (C ) tại M là:  m 1 y 1 m 1 m2 ( x  m )   y  x  (d ) (m  1) 2 m 1 (m  1)2 (m  1) 2  1 m2 y  x   x  m2  Do d  Ox   A  tọa độ điểm A là nghiệm của hệ:   A( m 2 ; 0) (m  1) 2 (m  1) 2   y  0 y  0   x  0 1 m2 x   m2  y   2 2 Do d  Oy   B  tọa độ B là nghiệm của hệ:  (m  1) (m  1)   m 2  B  0; 2   (m  1)  x  0  y  (m  1) 2   2 Theo giả thiết: S OAB  m2   1  1 1 m2 1   OA.OB    m 2 .       8 4 (m  1)2 4  m 1   2  2  2m 2  m  1  0 1  1  1   2  m  1 hoặc m    M  1;  hoặc M   ; 1  2  2  2   2m  m  1  0  1  1  Vậy có hai điểm M thỏa mãn yêu cầu bài toán là M  1;  và M   ; 1  .  2  2  8 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Ví dụ 5. Cho hàm số y  x 3  3mx 2  3(m  1) x  1 có đồ thị (Cm ) và m là tham số thực. 1. Tìm m biết tiếp tuyến của đồ thị (Cm ) tại điểm K song song với đường thẳng 3 x  y  0 và K là điểm thuộc đồ thị (Cm ) có hoành độ bằng 1 . 2. Với m  2 . Tìm hai điểm phân biệt M , N thuộc đồ thị (C2 ) sao cho tiếp tuyến của đồ thị (C2 ) tại M và N song song với nhau và thỏa mãn: a. Độ dài MN  2 5 , đồng thời M , N có tọa độ nguyên. b. Đường thẳng MN vuông góc với đường thẳng x  y  2015  0 . Giải: 1. Ta có y '  3x 2  6mx  3(m  1) . Do K  (Cm ) và có hoành độ bằng 1 , suy ra K ( 1; 6m  3) Khi đó tiếp tuyến tại K có phương trình: y  y '(1)( x  1)  6m  3  y  (9m  6) x  3m  3 (  ) 9m  6  3 1 Do  song song với đường thẳng 3 x  y  0 (hay y  3x ) khi và chỉ khi:  m 3 3m  3  0 1 Vậy giá trị cần tìm là m   . 3 2. Với m  2 ta có đồ thị (C2 ) : y  x 3  6 x 2  9 x  1 , suy ra y '  3 x 2  12 x  9 3 2 M  (C2 )  M  a; a  6a  9a  1 Do  với a  b  3 2  N  (C2 )  N  b; b  6b  9b  1 Tiếp tuyến của đồ thị (C2 ) tại M và N song song với nhau nên suy ra: y '(a )  y '(b)  3a 2  12a  9  3b 2  12b  9  (a  b)( a  b  4)  0  a  b  4 (do a  b  0 ) Do đó a  b  4 ta có: y N  yM  b3  a 3  6(b 2  a 2 )  9(b  a )  (b  a ) (a  b) 2  ab  6(a  b)  9  (b  a)(1  ab)  Suy ra MN   b  a;(b  a )(1  ab)  a. Với MN  2 5  MN 2  20  (b  a )2  (b  a )2 (1  ab)2  20 ( kết hợp với a  b  4 ) 9 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 2  (a  b) 2 1  1  ab    20  (16  4ab) (ab) 2  2ab  2   20    (ab)3  6(ab) 2  10ab  3  0  ab  3 (do a, b   ) ab  3 a  1 a  3 Khi đó ta có hệ:  hoặc   a  b  4 b  3 b  1 Vậy M (1;5), N (3;1) hoặc M (3;1), N (1;5)   b. Do b  a  0 nên MN   b  a;(b  a )(1  ab)  cùng phương với vecto uMN  (1;1  ab)  Đường thẳng d : x  y  2015  0 có vecto chỉ phương ud  (1; 1)   a  0  b  4 Do đó MN  d  uMN .ud  0  1  1  ab  0  ab  0   b  0  a  4 Vậy M (0;1), N (4;5) hoặc M (4;5), N (0;1) . Bài toán 1.2 Nội dung bài toán : Cho hàm số y  f ( x ) có đồ thị là (C ) . Viết phương trình tiếp tuyến của đồ thị (C ) đi qua điểm M 0 ( x0 ; y0 ) . Cách giải chung: +) Đường thẳng  có hệ số góc k đi qua M 0 ( x0 ; y0 ) có phương trình : y  k ( x  x0 )  y0  f ( x )  k ( x  x0 )  y0 (1) +)  là tiếp tuyến của (C) khi và chỉ khi hệ sau có nghiệm :  (2)  f '( x)  k +) Thay (2) vào (1) ta được phương trình : f ( x)  f '( x )( x  x0 )  y0 (*) Giải phương trình (*) ta tìm được x , sau đó thay vào (2) suy ra được k Khi đó ta viết được phương trình tiếp tuyến cần lập. Chú ý : Do các tiếp tuyến của các đồ thị hàm số trong chương trình phổ thông luôn có hệ số góc (trường hợp phương trình tiếp tuyến không có hệ số góc là x  a không có ), nên ta được phép gọi luôn phương trình có hệ số góc k như cách trình bày trên. 10 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Ví dụ 1. Cho hàm số y  x 4  x 2  3 (C ) . Viết phương trình tiếp tuyến của đồ thị (C ) đi qua điểm M (1; 1) . Giải: +) Đường thẳng  có hệ số góc k đi qua M (1; 1) có phương trình : y  k ( x  1)  1  x 4  x 2  3  k ( x  1)  1 (1)  +) là tiếp tuyến của (C) khi và chỉ khi hệ sau có nghiệm :  3 (2) 4 x  2 x  k +) Thay (2) vào (1) ta được phương trình : x 4  x 2  3  (4 x 3  2 x)( x  1)  1  3x 4  4 x 3  x 2  2 x  2  0  ( x  1) 2 (3 x 2  2 x  2)  0  x  1 Thay x  1 vào (2) suy ra k  6 . Vậy phương trình tiếp tuyến cần lập là y  6 x  7 . Nhận xét : Ở Bài toán 1.1 khi viết phương trình tiếp tuyến tại điểm thì điểm đó luôn thuộc đồ thị, trong khi Bài toán 1.2 thì điểm đi qua có thể thuộc hoặc không thuộc đồ thị . Ở ví dụ trên điểm mà tiếp tuyến cần lập đi qua M (1; 1) khá đặc biệt khi M  (C ) . Do đó trong trường hợp này rất nhiều bạn sẽ đi viết phương trình giống như Bài toán 1.1 (nghĩa là chuyển về bài toán viết phương trình tiếp tuyến tại điểm M (1; 1) ) và cũng cho ra kết quả tương tự. Song cách làm đó sẽ không được điểm tuyệt đối (nếu bạn không chứng minh thêm tính duy nhất của tiếp tuyến). Vì vậy việc trình bày theo Bài toán 1.2 là sự lựa chọn hợp lí nhất. Để hiểu rõ hơn chúng ta chuyển qua Ví dụ 2. Ví dụ 2 (B – 2008). Cho hàm số y  4 x 3  6 x 2  1 (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết rằng tiếp tuyến đó đi qua điểm M ( 1; 9) . Giải: +) Đường thẳng  có hệ số góc k đi qua M ( 1; 9) có phương trình : y  k ( x  1)  9 3 2 4 x  6 x  1  k ( x  1)  9 (2) +)  là tiếp tuyến của đồ thị hàm số (1) khi và chỉ khi hệ sau có nghiệm :  2 (3) 12 x  12 x  k +) Thay (3) vào (2) ta được phương trình : 4 x3  6 x 2  1  (12 x 2  12 x)( x  1)  9  x  1  4 x  3 x  6 x  5  0  ( x  1) (4 x  5)  0   x  5  4 3 2 2 11 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Với x  1  k  24 , phương trình tiếp tuyến là : y  24 x  15 Với x  5 15 15 21  k  , phương trình tiếp tuyến là : y  x  4 4 4 4 Nhận xét : Trong Ví dụ 2 ta cũng nhận thấy điểm M thuộc đồ thị. Song nếu viết phương trình tiếp tuyến theo góc nhìn của Bài toán 1.1 (viết phương trình tiếp tuyến tại điểm M ) thì ta chỉ thu được phương trình y  24 x  15 và thiếu đi một phương trình. Lí do là vì khi sử dụng Bài toán 1.1 thì tiếp tuyến luôn tiếp xúc với đồ thị tại điểm M , trong khi ở Bài toán 1.2 nếu M thuộc đồ thị thì tiếp tuyến có thể tiếp xúc hoặc không tiếp xúc với đồ thị tại M ( do tiếp tuyến chỉ cần đi qua điểm M ). Do đó ta được 2 phương trình tiếp tuyến như trên. Vì vậy khi câu hỏi trong đề bài là viết phương trình tiếp tuyến đi qua điểm thì ta sẽ giải theo cách giải của Bài toán 1.2. Ví dụ 3. Cho hàm số y  x 3  3x  2 có đồ thị là (C ) . Tìm các điểm M trên đường thẳng y  4 , sao cho từ M kẻ được ba tiếp tuyến tới (C ) , trong đó có hai tiếp tuyến vuông góc với nhau. Giải: Gọi M ( m; 4) thuộc được thẳng y  4 Khi đó phương trình tiếp tuyến (d ) có hệ số góc k đi qua M có dạng: y  k ( x  m)  4  x 3  3 x  2  k ( x  m)  4 (1) (d ) là tiếp tuyến của (C ) khi hệ sau có nghiệm:  2 (2) 3 x  3  k Thay (2) vào (1) ta được phương trình: x 3  3x  2  (3x 2  3)( x  m)  4  2 x3  3mx 2  3m  2  0  ( x  1)  2 x 2  (3m  2) x  3m  2   0  x  1  2  h( x)  2 x  (3m  2) x  3m  2  0 (3) Để có ba tiếp tuyến kẻ từ M tới (C ) thì phương trình (3) phải có hai nghiệm phân biệt khác 1 , hay :   (3a  2)(3a  6)  0 2   a   ;     2;   \ 1 (*)  3   f (1)  6a  6  0 y  4 Với x  1   , suy ra phương trình tiếp tuyến là y  4 . Do tiếp tuyến này không vuông góc với bất  y '(1)  0 kì một tiếp tuyến nào khác. Nên để có hai tiếp tuyến vuông góc với nhau thì phương trình (3) phải có hai nghiệm phân biệt x1 , x2 thỏa mãn: y '( x1 ). y '( x2 )  1  9( x12  1)( x22  1)  1  0 12 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3  9  ( x1 x2 ) 2  ( x1  x2 ) 2  2 x1 x2  1  1  0 (2*) Thay x1  x2  x1 x2  3m  2 28 vào (2*) ta có: 9(3m  2  1)  1  0  m   , thỏa mãn điều kiện (*) 2 27  28  Vậy M   ; 4  là điểm cần tìm.  27  Ví dụ 4. Cho hàm số y  x 3  3 x 2  3 có đồ thị là (C ) . Tìm trên đồ thị (C ) những điểm mà qua đó kẻ được đúng một tiếp tuyến tới (C ) . Giải: Gọi M ( m; m3  3m 2  3)  (C ) Khi đó phương trình tiếp tuyến (d ) có hệ số góc k đi qua M có dạng: y  k ( x  m)  m3  3m2  3 3 2 3 2  x  3 x  3  k ( x  m)  m  3m  3 (1) (d ) là tiếp tuyến của (C ) khi hệ sau có nghiệm:  2 (2) h( x)  3 x  6 x  k Thay (2) vào (1) ta được phương trình: x 3  3 x 2  3  (3x 2  6 x )( x  m)  m3  3m 2  3 x  m  ( x  m) (2 x  m  3)  0   x  3 m  2 2 Để (d ) là tiếp tuyến duy nhất qua M của (C ) thì xảy ra các khả năng sau: +) Khả năng 1: m  3 m  m  1  M (1;1) 2 3m  +) Khả năng 2 : h(m)  h   (*) và hai tiếp tuyến trùng nhau.  2  Điều kiện (*)  m 2  2m  1  0  m  1  M (1;1) Vậy M (1;1) là điểm cần tìm. Ví dụ 5. Cho hàm số y  x 4  2 x 2  3 có đồ thị là (C ) . Tìm các điểm thuộc trục tung mà từ đó kẻ được một tiếp tuyến duy nhất đến (C ) . 13 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Giải: Gọi M (0; m)  Oy Khi đó phương trình tiếp tuyến (d ) có hệ số góc k đi qua M có dạng : y  kx  m  x 4  2 x 2  3  kx  m (1) (d ) là tiếp tuyến của (C ) khi hệ sau có nghiệm:  3 (2) 4 x  4 x  k Thay (2) vào (1) ta được phương trình: 3 x 4  2 x 2  m  3  0 (3) Đặt t  x 2 với t  0 , lúc này (3) có dạng : 3t 2  2t  m  3  0 (4) Nhận thấy với mỗi nghiệm t  t0  0 của (4) cho ta nghiệm x  x0   t0 . Suy ra k  4(t0  1). t0 . Do đó (d ) là tiếp tuyến duy nhất qua M khi (4) có duy nhất một nghiệm t  0 thỏa mãn: t  0 4(t  1). t  4(t  1). t  (t  1). t  0   t  1 +) Với t  0 , thay vào (4) ta được m  3 , khi đó (4) có nghiệm t  0 và t  2 (loại) 3 +) Với t  1 , thay vào (4) ta được m  4 , khi đó (4) có nghiệm t  1 và t   Vậy M (0; 4) là điểm cần tìm. 14 1 (thỏa mãn yêu cầu) 3 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Bài toán 2: Các bài toán liên quan tới cực trị Bài toán 2.1 Nội dung bài toán : Viết phương trình đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y  f ( x, m)  ax 3  bx 2  cx  d . Cách giải chung: Bước 1: Tính y '  3ax 2  2bx  c ; y '  0  3ax 2  2bx  c  0 (*) Bước 2: Đồ thị hàm số có 2 điểm cực trị khi phương trình (*) có hai nghiệm phân biệt x1 , x2  m  D . +) Nếu nghiệm x1 , x2 đẹp (  '  b 2  3ac  u 2 : có dạng bình phương) Ta có hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) , suy ra phương trình AB . +) Nếu nghiệm x1 , x2 “không đẹp” , chia y cho y ' ( làm nháp) và viết thành: y  u ( x). y ' px  q  A( x ; y )  y  u ( x1 ). y '( x1 )  px1  q  px1  q Gọi  1 1 là hai điểm cực trị  y '( x1 )  y '( x2 )  0 , khi đó  1  B ( x2 ; y2 )  y2  u ( x2 ). y '( x2 )  px2  q  px2  q Suy ra phương trình AB : y  px  q . Ví dụ 1 (A – 2002). Cho hàm số: y   x 3  3mx 2  3(1  m2 ) x  m3  m 2 (1) ( với m là tham số thực). Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (1). Giải: Ta có y '  3x 2  6mx  3(1  m 2 )  x  m 1 Cách 1: y '  0  x 2  2mx  m2  1  0   1 . Vì x1  x2 nên hàm số đạt cực trị tại x1 , x2 .  x2  m  1 Khi đó ta có hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) với 2 2   y1  y (m  1)   m  3m  2  A(m  1;  m  3m  2)   AB  (2; 4)   2 2  y2  y (m  1)   m  3m  2  B (m  1;  m  3m  2) Suy ra phương trình đi qua hai điểm cực trị A, B là: x  m  1 y  m 2  3m  2   y  2 x  m2  m . 2 4 15 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Cách 2: Với y '  0  x 2  2mx  m 2  1  0 có  '  m2  (m 2  1)  1  0 Nên hàm số đạt cực trị tại x1 , x2 . Ta có y '( x1 )  y '( x2 )  0 Mặt khác: y   x 3  3mx 2  3(1  m2 ) x  m3  m 2  1  x  m   3x 2  6mx  3  3m 2   2 x  m 2  m 3 2 1  y1  2 x1  m  m 2   x  m  y ' 2 x  m  m   2 3  y2  2 x2  m  m Vậy phương trình đi qua hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) là: y  2 x  m 2  m Ví dụ 2. Cho hàm số y  2 x 3  3(m  1) x 2  m . Tìm m để đồ thị hàm số có điểm cực đại, cực tiểu A, B sao cho ba điểm A, B, I (3;1) thẳng hàng. x  0 Giải: Ta có y '  6 x 2  6(m  1) x . Khi đó y '  0  6 x ( x  m  1)  0   1  x2  m  1 Hàm số có cực đại, cực tiểu khi và chỉ khi x1  x2  0  m  1  m  1  y1  y (0)  m  A(0; m) Cách 1: Ta có   3 2 3 2  y2  y (m  1)   m  3m  2m  1  B (m  1;  m  3m  2m  1)     AI  (3;1  m) Suy ra  . Do A, B , I thẳng hàng nên AI , BI cùng phương, tương đương: 3 2  BI  (4  m; m  3m  2m) 4  m m3  3m 2  2m 4m  (do m  1 )   2m  m 2 3 1 m 3  3m 2  7 m  4  0  m  1 (loại) hoặc m  4 (thỏa mãn). 3 m 1  1 2 2 Cách 2: Ta có y   x    6 x  6(m  1) x   (m  1) x  m 3 6   2 m 1  1  y1  (m  1) x1  m 2  x y '  ( m  1) x  m . Với y '( x )  y '( x )  0    1 2 2 6  3  y2   (m  1) x2  m 16 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Khi đó phương trình đi qua hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) là : y  (m  1)2 x  m Do A, B, I (3;1) thẳng hàng nên I  AB  1  3(m  1) 2  m  3m 2  7 m  4  0  m  1 (loại) hoặc m  4 4 (thỏa mãn). Vậy m  . 3 3 Ví dụ 3 (B – 2013). Cho hàm số y  2 x 3  3(m  1) x 2  6mx (1). Tìm m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho đường thẳng AB vuông góc với đường thẳng y  x  2 . x 1 Giải: Ta có y '  6 x 2  6(m  1) x  6m ; y '  0  x 2  (m  1) x  m  0   1  x2  m Hàm số có hai cực trị khi và chỉ khi x1  x2  m  1 (*)   y1  y (1)  3m  1  A(1;3m  1) Cách 1: Ta có    AB  (m  1; (m  1)3 )  3 2 3 2  B(m; m  3m )  y2  y (m)  m  3m   Do m  1 nên AB cùng phương với vecto u AB  (1; (m  1)2 )  Đường thẳng d : y  x  2  x  y  2  0 có vecto chỉ phương ud  (1;1)   m  0 Khi đó AB  d  AB.ud  0  1  (m  1)2  0   (thỏa mãn (*) ) m  2 Cách 2: Ta có y  2 x 3  3(m  1) x 2  6mx  (2 x  m  1)  x 2  (m  1) x  m   (m  1) 2 x  m(m  1) 1  (2 x  m  1) y ' ( m  1) 2 x  m( m  1) . 6  y   (m  1)2 x1  m(m  1) Với y '( x1 )  y '( x2 )  0   1 2  y2  (m  1) x2  m(m  1) Vậy phương trình đường thẳng đi qua hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) là : y  (m  1) 2 x  m(m  1) m  0 Do AB vuông góc với đường thẳng y  x  2 nên: (m  1) 2  1   (thỏa mãn điều kiện (*) ) m  2 Vậy giá trị m cần tìm là m  0 hoặc m  2 . 17 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Ví dụ 4. Cho hàm số y  x 3  3 x 2  2 có đồ thị là (C ) và đường tròn (T ) có phương trình: ( x  m) 2  ( y  m  1)2  5 . Tìm m để đường thẳng đi qua hai điểm cực trị của (C ) tiếp xúc với đường tròn (T ) Giải: x  0  y  2 Ta có: y '  3x 2  6 x ; y '  0  3 x( x  2)  0    x  2  y  2  Vậy ta có hai điểm cực trị: A(0; 2) và B (2; 2)  AB  (2; 4)  2(1; 2) Khi đó phương trình đi qua 2 điểm cực trị là : x y2  hay 2 x  y  2  0 (  ) 1 2 Đường tròn (C ) có tâm I ( m; m  1) và bán kính R  5 (  ) tiếp xúc với (C ) khi và chỉ khi: d ( I ;  )  R  Vậy m  2 hoặc m   2m  m  1  2 22  12 4 là đáp số của bài toán. 3 18 m  2  5  3m  1  5   4 m   3  Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3 Bài toán 2.2 Nội dung bài toán : Tìm m để hàm số y  f ( x, m) có n cực trị thỏa mãn điều kiện (*) cho trước Cách giải chung: Trường hợp 1: Tìm m để hàm số bậc ba: y  f ( x, m)  ax 3  bx 2  cx  d có 2 ( n  2) cực trị thỏa mãn điều kiện (*) cho trước. Bước 1: y '  3ax 2  2bx  c  Ax 2  Bx  C ; y '  0  Ax 2  Bx  C  0 (1) A  0 Hàm số có 2 cực trị  (1) có hai nghiệm phân biệt    m D   0 M ( x1; y1 ) Bước 2: +) Gọi  là hai điểm cực trị với  N ( x2 ; y2 ) B   x1  x2   A (2)  x x  C  1 2 A (Nếu cần biểu diễn y1 , y2 theo m thì sử dụng Bài toán 2.1 ) +) Cắt nghĩa điều kiện (*) (có thể sử dụng (2) hoặc kết hợp các kiến thức hình học phẳng…) thiết lập được : mD Kết luận. g ( m)  0 (hoặc ( g (m)  0, g (m)  0...)  m  Chú ý: Do số cực trị của hàm bậc ba chỉ có thể là 2 hoặc không có. Do đó nếu đề bài yêu cầu tìm m để hàm số có cực trị, được hiểu là tìm m để hàm số có 2 cực trị (một cực đại và một cực tiểu). Ví dụ 1 (D – 2012). Cho hàm số y  2 3 2 x  mx 2  2(3m2  1) x  3 3 (C ) , m là tham số thực. Tìm m để hàm số (C ) có hai điểm cực trị x1 và x2 sao cho x1 x2  2( x1  x2 )  1 . Giải: +) Ta có y '  2 x 2  2mx  2(3m 2  1)  0 ; y '  0  x 2  mx  3m 2  1  0 (1) Hàm số có hai cực trị x1 , x2  (1) có hai nghiệm phân biệt x1 , x2   '  13m 2  4  0  m  2 13 2 13 hoặc m   13 13 19 Nguyễn Thanh Tùng 0947141139 – 0925509968 htpp://www.facebook.com/giaidaptoancap3  x1  x2  m +) Với x1 , x2 là nghiệm của (1) nên  (2) . Ta có: x1 x2  2( x1  x2 )  1 (*) . 2 x x  1  3 m  1 2 Thay (2) vào (*) ta được: 1  3m2  2m  1  m(3m  2)  0  m  0 (loại) hoặc m  Vậy m  2 (thỏa mãn). 3 2 là giá trị cần tìm. 3 Ví dụ 2 (B – 2012). Cho hàm số y  x 3  3mx 2  3m 3 (C ) , m là tham số thực. Tìm m để đồ thị hàm số (C ) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 48.  x1  0  y1  3m3 Giải: +) Ta có y '  3x  6mx ; y '  0  3 x( x  2m)  0   3  x2  2m  y2   m 2 Đồ thị hàm số (C ) có hai điểm cực trị  x1  x2  m  0 3  A(0;3m3 )  Oy OA  3 m +) Ta có hai điểm cực trị:   3  B(2m; m ) d ( B, OA)  d ( B, Oy )  2 m 1 Theo đề ra ta có: S OAB  48  .d ( B, OA).OA  48  3m 4  48  m  2 (thỏa mãn ) . Vậy m  2 . 2 Ví dụ 3. Cho hàm số y   x 3  (2m  1) x 2  (m2  3m  2) x  4 . Xác định m để đồ thị hàm số có các điểm cực đại và cực tiểu nằm về hai phía của trục tung. Giải: Ta có y '  3 x 2  2(2m  1) x  (m 2  3m  2) Suy ra y '  0  3 x 2  2(2m  1) x  (m 2  3m  2)  0 (1) +) Để đồ thị hàm số các các điểm cực đại, cực tiểu thì phương trình (1) phải có hai nghiệm phân biệt, khi đó:  '  (2m  1) 2  3(m 2  3m  2)  0  m 2  13m  5  0  m  13  3 21 13  3 21 hoặc m  2 2 +) Hàm số có hai điểm cực trị A( x1 ; y1 ), B ( x2 ; y2 ) với x1 , x2 là nghiệm của (1) Khi đó hai điểm A( x1 ; y1 ), B ( x2 ; y2 ) nằm về hai phía của trục tung khi và chỉ khi: x1 x2  0  m 2  3m  2  0  1  m  2 , kết hợp với (2) ta được đáp số: 1  m  2 20 (2)
- Xem thêm -