Đăng ký Đăng nhập
Trang chủ Thể loại khác Chưa phân loại Hiết kế ăngten mạch dải...

Tài liệu Hiết kế ăngten mạch dải

.PDF
57
355
131

Mô tả:

Đồ án tốt nghiệp Thiết kế ăngten mạch dải LỜI NÓI ĐẦU Ngày nay chúng ta đang sống trong thời kì đất nước đi lên hiện đại hoá – công nghiệp hoá. Thời kì của khoa học kĩ thuật phát triển như vũ bão, thời kì của sự giao lưu mọi mặt trong mọi lĩnh vực của các quốc gia trên thế giới với nhau vì vậy chúng ta cần tiếp cận và sử dụng thông tin có giá trị về mặt thời gian và có chất lượng. Sức cạnh tranh của các ngành công nghiệp bắt nguồn từ việc tái tạo các giá trị và sản phẩm lớn hơn, trong đó việc thông tin liên lạc đóng vai trò cốt lõi cho sự phát triển của xã hội. Hiện nay thông tin đã xuất hiện nhiều hình thức và phương tiện, song thông tin vô tuyến điện luôn giữ vai trò quan trọng. Trong đó ăngten là một thiết bị không thể thiếu đối với bất kì hệ thống thông tin vô tuyến điện nào. Ăngten là một thiết bị bức xạ sóng điện từ hoặc thu sóng điện từ từ không gian bên ngoài. Ăngten được mắc trực tiếp hoặc gián tiếp với phide mạch ra của máy phát hoặc mạch vào của máy thu. Được sử dụng vào các mục đích khác nhau như thông tin chuyển tiếp radar, vô tuyến điều khiển yêu cầu ăngten có tính định hướng cao, nghĩa là sóng bức xạ chỉ tập trung vào một góc rất hẹp trong không gian. Đối với các đài phát thanh và vô tuyến truyền hình thì ăngten cần bức xạ đồng đều trong mặt phẳng ngang (mặt đất). Trong những năm gần đõy, ăngten mạch dải được tập trung nghiên cứu nhiều và đã đạt được nhiều thành tựu cả trong công nghệ và thực tiễn, nhất là trong lĩnh vực thông tin vô tuyến di dộng, thông tin vô tuyến mạng cục bộ WLAN ở dải siêu cao tần. Và ăngten mạch dải tỏ ra là một loại ăngten có nhiều tiện lợi và hiệu quả. Xuất phát từ yêu cầu thực tế kĩ thuật và hướng dẫn của thầy Đại tá – Tiến sĩ HOÀN ĐèNH THUYấN chọn đề tài đồ án: “Thiết kế ăngten mạch dải”. Mục đích nghiên cứu của đồ án là nghiên cứu lý thuyết, xây dựng mô hình tính toán ăngten mạch dải, trên cơ sở đó tính toán các đặc trưng và tham số của ăngten. Cao Thành Trung_ĐTVT K11 1 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Được sự hướng dẫn và giúp đỡ tận tình của các thầy cô ở khoa Vô tuyến điện tử, đặc biệt là sự chỉ bảo tận tình của thầy Đại tá – Tiến sĩ HOÀNG ĐèNH THUYấN em đã hoàn thành đồ án này. Qua đây em xin chân thành cảm ơn các thầy cô ở khoa Vô tuyến điện tử, cảm ơn thầy Đại tá – Tiến sĩ Hoàng Đỡnh Thuyờn đó chỉ bảo và hướng dẫn tận tình em trong quá trình học tập tại trường và trong quá trình làm đồ án. Sau đây em xin trình bày nội dung đồ án này. Cao Thành Trung_ĐTVT K11 2 Đồ án tốt nghiệp Thiết kế ăngten mạch dải PHẦN I ĐẶC TRƯNG VÀ THAM SỐ CỦA ĂNGTEN Ăngten là thiết bị dùng để bức xạ sóng điện từ hoặc thu nhận sóng từ không gian bên ngoài. Ăngten là bộ phận quan trọng không thể thiếu của bất kì hệ thống vô tuyến điện nào bởi vì trong hệ thống vô tuyến điện có sử dụng sóng điện từ. Một hệ thống liên lạc vô tuyến đơn giản gồm máy phát, máy thu, ăngten phát và ăngten thu. Hình dưới mô tả sơ đồ khối của hệ thống thông tin vô tuyến một chiều: Hệ thống cung cấp tín hiệu Hệ thống bức xạ Hệ thống gia công tín hiệu Ăng ten thu Ăngten phát Máy phát Hệ thống cảm thụ bức xạ Thiết bị điều chế a. Hệ thống phát Thiết bị xử lý Máy thu b. Hệ thống thu Theo hình vẽ dao động điện từ đã được điều chế do máy phát tạo ra truyền tới ăngten phát. Ăngten phát sẽ biến đổi năng lượng của dao động điện từ dưới dạng sóng liên kết thành năng lượng sóng điện từ tự do và bức xạ vào không gian theo hướng tới máy thu. Một phần năng lượng này sẽ tới ăngten thu của hệ thống thu va được biến đổi thành năng lượng của dao động điện từ xuất hiện trong ăngten thu. Dao động điện từ này được đưa tới máy thu. Trên hình vẽ sau mô tả sơ đồ khối của Radar. Trong trường hợp này sóng điện từ phát xạ bởi ăngten phát 2 truyền trong một chum tia hẹp tới mục tiêu 3 Cao Thành Trung_ĐTVT K11 3 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Một phần năng lượng của sóng phản xạ từ mục tiêu quay trở lại ăngten thu 4(đặt gần ăngten phát) kích thích trong ăngten thu một dao động điện từ và được đưa tới lối vào của máy thu 5. Từ những mô hình trên ta có thể định nghĩa như sau: - Ăngten phát là thiết bị dùng để biến đổi năng lượng của dao động điện từ liên kết từ máy phát đưa tới thành năng lượng của sóng điện từ tự do và phát xạ vào không gian theo một quy luật xác định. - Ăngten thu là thiết bị dùng để thu năng lượng của sóng điện từ tự do từ không gian bên ngoài tới theo một quy luật xác định và biến đổi năng lượng này thành năng lượng của dao động liên kết trong ăngten va cung cấp cho máy thu. Như vậy ăngten phát cũng như thu đều có quá trình biến đổi năng lượng. Trong quá trình đú cú sự tổn hao nhiệt do kim loại làm ăngten cũng như các chất điện môi cách điện không phải là lý tưởng. Ngoài ra ta còn thấy rằng khi phát cũng như thu ăngten phải có tính định hướng xác định phù hợp với yêu cầu của hệ thống vô tuyến đó. Ăngten được ứng dụng trong các hệ thống thông tin vô tuyến, vô tuyến truyền thanh, vô tuyến điều khiển từ xa,… Mặt khác để kích thích sóng điện từ trong các hệ thống định hướng như ống dẫn sóng, hốc cộng hưởng,… người ta cũng dựng cỏc kết cấu tương tự ăngten. Ngày nay, sự phát triển kĩ thuật trong các lĩnh vực radar, thông tin, điều khiển,… cũng đòi hỏi ăngten không chỉ đơn thuần làm nhiệm vụ bức xạ hay thu sóng điện từ mà còn tham gia vào quá trình gia công tín hiệu. Tất cả các chỉ tiêu kĩ thuật của ăngten có thể chia thành 2 nhóm phù hợp với 2 nhiệm vụ cơ bản của ăngten: - Biến đổi sóng điện từ liên kết thành sóng điện từ tự do phát xạ vào không gian và ngược lại. - Phát xạ có hướng hay thu có hướng sóng điện từ Cao Thành Trung_ĐTVT K11 4 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Toàn bộ các bài toán xác định các chỉ tiêu kĩ thuật(cỏc tham số và đặc trưng) của ăngten có thể được chia làm 2 nhóm: - Nhóm 1: gồm các bài toán tính trường trong vùng gần, việc giải bài toán này cho phép xác định các chỉ tiêu kĩ thuật đặc trưng cho tính chất biến đổi của ăngten như: trở vào, hiệu suất, dải tần công tác, công suất cực đại cho phép. - Nhóm 2: gồm các bài toán tính trường trong vùng xa. Việc giải bài toán này ta có thể xác định được những chỉ tiêu kĩ thuật đặc trưng cho tính định hướng của ăngten và trường của ăngten trong vùng xa như: đặc trưng hướng, đặc trưng pha, đặc trưng phân cực, hệ số tác dụng định hướng, công suất bức xạ. Ta có thể hiểu vùng xa của ăngten là vùng không gian bao gồm các điểm cách đủ xa ăngten sao cho tại đó chỉ tồn tại sóng tự do bức xạ từ ăngten ra phía vô cực. Tại vùng này không tồn tại năng lượng vụ cụng liên kết với ăngten, phần năng lượng này chỉ định vị trong vùng gần ăngten. Giả sử ăngten có kích thước là chiều dài L, khi đó một điểm cách ăngten một khoảng r được xem là thuộc vùng xa thì phải thoả mãn điều kiện: r ằ λ và r ằ Ở đây: r _ khoảng cách đến điểm quan sát λ _ bước sóng 1.1. Đặc trưng hướng của ăngten Từ lý thuyết trường ta đã biết: biên độ phức của cường độ trường của một nguồn phát xạ sóng điện từ tại một điểm tuỳ ý trong vùng xa có thể viết dưới dạng sau: Ё= f .ej .e-jkr (1.1) Trong đó: r, θ, φ là các toạ độ của điểm quan sát trong hệ toạ độ hình cầu: hình 1. Cao Thành Trung_ĐTVT K11 5 Đồ án tốt nghiệp Thiết kế ăngten mạch dải k= là số sóng IA là biên độ dòng tại một điểm nào đó trên ăngten f(θ,φ).e j (θ,φ) = (θ,φ) là một hàm phức phụ thuộc vào cấu trúc của ăngten; (θ,φ) là pha của trường. Hình 1. Đặc trưng hướng của ăngten Định nghĩa: Hàm f(θ,φ), tức mô đun của hàm (θ,φ) xác định sự phụ thuộc của biên độ cường độ trường của ăngten tại các điểm nằm trong vùng xa và cách đều ăngten vào hướng quan sát được gọi là đặc trưng hướng của ăngten. Biểu diễn hình học của đặc trưng hướng trong không gian của ăngten là một mặt cầu kín do đầu mút của bán kính vectơ trong hệ toạ độ cầu vẽ nên. Bán kính vectơ cú mụdun tỉ lệ với biên độ cường độ điện trường. Trong thực tế thường gặp các đặc trưng hướng có dạng đặc biệt như: - Đặc trưng hướng có dạng hình xuyến (hình 2.a) - Đặc trưng hướng có dạng hình kim (hình 2.b) - Đặc trưng hướng có dạng hình quạt (hình 2.c) - Đặc trưng hướng có dạng hình cosecant (hình 2.d) Cao Thành Trung_ĐTVT K11 6 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Hình 2. Một số dạng đặc trưng hướng Trường hợp ăngten phát sóng phân cực elip có thể biểu diễn dưới dạng tổng của 2 trường phân cực tuyến tính. Các vectơ điện của 2 trường này E θ. và Eφ. vuông góc nhau va lệch pha nhau một góc δ. Do đó đối với các ăngten phân cực elip ta phải phân biệt đặc trưng hướng theo thành phần θ và thành phần φ: fθ(θ,φ) và fφ(θ,φ) Để dễ dàng so sánh tính định hướng giữa các ăngten khác nhau, người ta đưa vào khái niệm đặc trưng hướng chuẩn hoá. Đó là tỉ số giữa giá trị của đặc trưng hướng f(θ,φ) theo hướng bất kì với giá trị cực đại fmax của nó. F(θ,φ) = (1.2) *) Các phương pháp mô tả đặc trưng hướng: - Đặc trưng hướng không gian (biểu diễn không gian của hàm f(θ,φ)) không tiện cho việc mô tả tính định hướng của ăngten, vì thế người ta thường dùng phương pháp mô tả đặc trưng hướng trên mặt phẳng. Ta gọi giao tuyến của đặc trưng hướng không gian với các mặt phẳng đi qua hướng phát xạ cực đại là đặc trưng hướng phẳng (hay giản đồ hướng). Từ nay nói tới đặc trưng hướng ta sẽ hiểu đó là đặc trưng hướng phẳng. Người ta thường mô tả đặc trưng hướng trong 2 mặt phẳng vuông góc (hình 1.3) Hình 1.3 Cao Thành Trung_ĐTVT K11 Hình 1.4 7 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Mặt phẳng chứa phương phát xạ cực đại và chứa vectơ gọi là mặt phẳng E Mặt phẳng chứa phương phát xạ cực đại và chứa vectơ gọi là mặt phẳng H Có thể vẽ đặc trưng hướng trong toạ độ cực hoặc toạ độ vuông góc. Đặc trưng hướng vẽ trong toạ độ cực cho ta thấy được tính định hướng của ăngten một cách trực quan nhất, còn đặc trưng hướng trong toạ độ vuông góc có thể biểu diễn chính xác hơn. Thông thường đặc trưng hướng có một số cực đại, ta nói đặc trưng hướng có nhiều cỏnh súng (hỡnh 1.4). Cỏnh cú hướng phát xạ cực đại với cường độ lớn nhất gọi là cỏnh chớnh, cỏc cỏnh còn lại gọi là cánh phụ (hoặc cánh bến). Nếu cánh phụ có cực đại ngược chiều với cỏnh chớnh gọi là cỏnh súng sau. Ngoài đặc trưng hướng theo cường độ trường, người ta cũn dựng đặc trưng hướng tính theo công suất Fp(θ,φ). Hàm Fp(θ,φ) mô tả sự phụ thuộc của mật độ dòng công suất tại các điểm cách đều ăngten vào hướng quan sát (hình 1.5a) Hình 1.5. Đặc trưng hướng theo decibel Cao Thành Trung_ĐTVT K11 8 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Vì mật độ dòng công suất tỉ lệ với bình phương của cường độ điện trường nên: Fp(θ,φ) = F2(θ,φ) (1.3) Người ta còn có thể biểu diễn đặc trưng hướng theo decibel (hình 1.5b). Với cách biểu diễn này mức của các cánh phụ nhỏ có thể được đánh giá trực quan dễ hơn: Fdb(θ,φ) = 10lgFp(θ,φ) = 20lgF(θ,φ) (1.4) Người ta gọi góc mở cỏnh súng chớnh theo mức nửa công suất (2θ 0,5) là góc giữa 2 phương ứng với giá trị Fp(θ,φ) = 0,5 hay F = 0,707. Từ (1.4) ta có: 2θ0,5 = 2θ-3db (1.5) Ăngten có đặc trưng hướng hình xuyến là ăngten vô hướng (trong một mặt phẳng) thường được dùng trong vô tuyến truyền tin, phát thanh, … Ăngten với đặc trưng hướng hình kim có tính định hướng gần như nhau trong 2 mặt phẳng chính (mặt phẳng E và mặt phẳng H). Các ăngten này thường được dùng trong các đài Radar để theo dõi mục tiêu trong cả 2 toạ độ góc. Ngoài ta chỳng cũn được dùng trong thông tin viba, vô tuyến thiên văn, … Ăngten có đặc trưng hướng hình quạt có mức độ định hướng khác nhau trong 2 mặt phẳng chính và nó thường được dùng để xác định 1 toạ độ góc của mục tiêu trong kĩ thuật Radar. 1.2. Đặc trưng pha của ăngten Đặc trưng pha của ăngten là mặt hình học tạo bởi các điểm trong vùng xa mà tại đó vectơ cường độ trường có cùng một giá trị pha. Ta cho biểu thức pha của cường độ trường trong (1.1) bằng hằng số: Ф(θ,φ) - kr(θ,φ) = const Từ đây ta tìm được biểu thức của đặc trưng pha: r(θ,φ) = Giá trị của const trong biểu thức này được xác định từ điều kiện: r = r 0 khi (θ,φ) = (0,0). Do đó: Cao Thành Trung_ĐTVT K11 9 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Ф(0,0) – kr0 = const r(θ,φ) = r0 + (1.6) Với (θ,φ) - (0,0) = Δ (θ,φ) Nếu biểu thức (1.6) biểu diễn một mặt cầu thì có thể xem ăngten như là một nguồn phát xạ điểm. Tâm của mặt cầu gọi là tâm phát xạ hay tâm pha. Trường hợp tổng quát đặc trưng pha không phải là mặt cầu và do đó ăngten không có tâm pha xác định. Cơ thể chứng minh được rằng các ăngten dây (chẳng hạn chấn tử) cú tõm pha nằm ở chính giữa ăngten chỉ trong trường hợp nếu phân bố biên độ của dũng trờn ăngten là hàm chẵn đối với điểm giữa và phân bố pha là không đổi hoặc là hàm lẻ so với điểm giữa của ăngten. Trong trường hợp ăngten không có tâm pha, ta có thể tiệm cận từng phần của mặt phẳng pha bằng các mặt cầu. Như vậy đối với mỗi phần ta có một tâm pha. Tập hợp cỏc tõm pha ứng với tất cả các khoảng có thể nằm trong một miền nào đó quanh chỗ đặt ăngten. Người ta thường biểu diễn hàm đặc trưng pha trong các mặt phẳng chính E và H. Trong không gian mỗi khi qua hướng phát xạ 0, pha của trường lại thay đổi đột ngột 1800. Vì thế đặc trưng pha phẳng của ăngten có nhiều cỏnh sóng có những chỗ nhảy bậc (hình 1.6. Đặc trưng pha của ăngten). 1.3. Đặc trưng phân cực của ăngten Trường của ăngten tại mỗi điểm trong vùng xa không chỉ được đặc trưng bởi biên độ và pha mà cả sự phân cực nữa, tức là hướng dao động của vectơ cường độ trường theo thời gian. Cao Thành Trung_ĐTVT K11 10 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Mặt phẳng phân cực là mặt phẳng chứa phương truyền sóng và vectơ cường độ điện trường. Sự phân cực của trường được xác định bởi loại ăngten và vị trí của nó trong không gian. Ví dụ trường của một ăngten dây thẳng là trường phân cực tuyến tính, tức là ở tại điểm quan sát vectơ dọc theo một đường thẳng. Nói khác đi, đầu mút của vectơ định hướng dao động trên một đường thẳng. Chấn tử đặt thẳng đứng trên mặt đất sẽ bức xạ sóng phân cực đứng (vectơ nằm trong mặt phẳng vuông góc với mặt đất – mặt phẳng đứng), chấn tử ngang bức xạ sóng phân cực ngang. Trong trường hợp tổng quát trường có đặc trưng phân cực elip, có thể xem nó là tổng của 2 trường phân cực tuyến tính có các vectơ điện vuông góc nhau và lệch pha nhau một góc và nào đó. Khi đó đầu mút của vectơ tổng vẽ trong không gian một hình elip sau một chu kì dao động. Xét tại một điểm trong không gian, elip này nằm trong mặt phẳng vuông góc với phương truyền như hình 1.7 Hình 1.7. Elip phân cực trong mặt phẳng vuông góc với phương truyền sóng Dưới đây ta sẽ chứng minh điều đó: giả sử cho trước giá trị tức thời của cường độ điện trường: (1.7) Từ biểu thức trên ta có: sinωt = (1.8) Thay (1.8) vào (1.7) ta có: Cao Thành Trung_ĐTVT K11 11 Đồ án tốt nghiệp Thiết kế ăngten mạch dải (1.9) Chuyển thừa số trong (1.9) sang vế trái, sau đó bình phương cả 2 vế ta được: (1.10) Biểu thức (1.10) là phương trình tổng quát của elip. Tuỳ theo giá trị của δ, Eθ, Eφ dạng của elip phân cực và vị trí của nó trong không gian có thể khác nhau. Ví dụ: - Khi δ = nπ (n: là số nguyên) trường phân cực tuyến tính - Khi δ = và Eθ = Eφ trường phân cực tròn. Để đánh giá tính phân cực ta đưa ra khái niệm về hệ số phân cực và đặc trưng phân cực. - Hệ số phân cực: tỉ số giữa bán trục nhỏ và bán trục lớn của elip gọi là hệ số phân cực và kí hiệu là - Đặc trưng phân cực: sự phụ thuộc của hệ số phân cực vào hướng tới điểm quan sát gọi là đặc trưng phân cực của ăngten: p = p(θ,φ) Ta có công thức tính hệ số phân cực: (1.11) Với . Từ đây ta thấy khi trường phân cực tuyến tính (δ = nπ) thì p = 0. Khi trường phân cực tròn (δ = ) thì p = 1. Trong trường hợp tổng quát 0 < p < 1 thì trường phân cực elip. Cao Thành Trung_ĐTVT K11 12 Đồ án tốt nghiệp Thiết kế ăngten mạch dải 1.4. Công suất phát xạ và hệ số tác dụng định hướng Để đánh giá giá trị định lượng tổng hợp tính chất định hướng của ăngten, người ta đưa ra tham số gọi là hệ số tác dụng định hướng của ăngten. Hệ số tác dụng định hướng (kí hiệu là D) chỉ rõ phải tăng công suất phát xạ của ăngten lên bao nhiêu khi thay ăngten định hướng đó bằng một ăngten vô hướng (giả định) sao cho vẫn giữ được giá trị cường độ trường tại điểm thu không đổi (hình 1.8). Cũng có thể gọi hệ số tác dụng định hướng là độ tăng ích về công suất phát xạ do tính định hướng của ăngten. (1.12) Hình 1.8. Cường độ trường tại điểm thu không đổi Theo (1.1) biên độ cường độ trường của ăngten định hướng trong vùng xa được xác định bằng biểu thức tổng quát: Edh = (1.13) Mật độ dòng công suất (giá trị biên độ của vectơ poyting) theo hướng đó: Π(θ,φ) = (1.14) Công suất phát xạ của ăngten định hướng trong toàn không gian: PΣdh = Trong hệ toạ độ cầu dS = r2sinθdθdφ, thay (1.13) và (1.14) ta có: Cao Thành Trung_ĐTVT K11 13 Đồ án tốt nghiệp Thiết kế ăngten mạch dải PΣdh = (1.15) Đối với ăngten vô hướng: PΣvh = Với điều kiện Edh = Evh (trong định nghĩa (1.12)) thì: PΣvh = (1.16) Thay (1.15) và (1.16) vào (1.12) ta có: D(θ,φ) = Chia tử và mẫu số của vế phải cho D(θ,φ) = (1.17) ta có: (1.18) Biểu thức (1.18) chỉ ra sự liên hệ giữa hệ số tác dụng định hướng và đặc trưng hướng. Từ hệ thức này ta thấy: hệ số tác dụng định hướng chỉ phụ thuộc vào đặc trưng hướng của ăngten và giá trị có giá trị cực đại theo hướng phát xạ cực đại (Fmax(θ,φ) = 1) Dmax = (1.19) Hệ số tác dụng định hướng của ăngten theo hướng bất kì có thể xác định theo công thức: D(θ,φ) = DmaxF2(θ,φ) (1.20) Trong một số trường hợp người ta còn định nghĩa: hệ số tác dụng định hướng là tỉ số của bình phương cường độ trường do ăngten định hướng tạo ra tại điểm quan sát trong vùng xa với bình phương cường độ trường do ăngten vô hướng tạo ra cũng tại điểm đó, nếu công suất phát xạ của 2 ăngten như nhau. Cao Thành Trung_ĐTVT K11 14 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Vậy: D(θ,φ) = (1.21) Nếu đặc trưng hướng của ăngten có tính đối xứng trục tức là không phụ thuộc φ. Khi đó, từ (1.15) ta có: Dmax = (1.22) Có thể xác định Dmax theo công thức gần đúng sau: Dmax = Ở đây: (2 (1.23) )E,H là độ rộng cỏnh súng tớnh theo mức nửa công suất, tính bằng độ, trong 2 mặt phẳng chính. A = 35000 ữ 45000 là hệ số phụ thuộc vào dạng của đặc trưng hướng. Hiện nay người ta có thể chế tạo được các ăngten có tính định hướng rất cao Dmax cỡ 106 ữ 107. Các chấn tử nguyên tố thường có D nhỏ, chẳng hạn lưỡng cực Hertz có F(θ,φ) = sinθ và D max = 1,5. Trong thực tế không có nguồn phát xạ nào hoàn toàn vô hướng với Dmax = 1. 1.5. Trở phát xạ của ăngten Khi giải bài toán về sự phát xạ của ăngten được làm từ các dây dẫn mảnh cú dũng IA người ta thường đưa vào khái niệm trở phát xạ của ăngten. Nếu xem ăngten là một giải phức: ZΣ = RΣ + jXΣ Tiêu thụ công suất của máy phát và biến công suất này thành năng lượng phát xạ vào không gian, thì công suất phát xạ vào không gian bằng: PΣ = (1.24) Trong đó: RΣ được gọi là trở phát xạ của ăngten. So sánh (1.24) với (1.15) ta có: Cao Thành Trung_ĐTVT K11 15 Đồ án tốt nghiệp Thiết kế ăngten mạch dải RΣ = (1.25) Ví dụ: xác định trở phát xạ của ăngten lưỡng cực Hertz có chiều dài l. Từ lý thuyết trường ta có biên độ cường độ trường của lưỡng cực Hertz có thể xác định theo biểu thức: E= (1.26) f(θ,φ) = (1.27) Vì vậy: Thay (1.27) vào (1.25) ta có: RΣ = (1.28) Vậy ăngten dây chỉ phát xạ năng lượng đáng kể khi kích thước không quá nhỏ so với bước sóng. Từ (1.28) ta thấy RΣ vào vị trí thiết diện tớnh dũng IA. Người ta thường tính theo dòng tại điểm bụng Ib. Nếu biết quy luật phân bố dòng IA = I(z) trên ăngten thì có thể tính được trở phát xạ đối với dòng I(z) tại thiết diện bất kì theo trở phát xạ tại điểm bụng. Từ đẳng thức về công suất phát xạ: (1.29) Giá trị RΣ(z) được xác định bởi trường của ăngten trong vùng xa, bởi đặc trưng phân bố dòng hay điện áp trên ăngten, và phụ thuộc vào tỉ số kích thước của ăngten trên bước sóng λ. Trong điều kiện lý tưởng (không có nhiễu, năng lượng phát xạ không bị hấp thụ trên đường truyền sóng), khi biết các giá trị của ăngten phát như PΣ, Dmax, F(θ,φ) ta có thể tính được cự ly truyền sóng theo giá trị E(θ,φ). Từ đây Cao Thành Trung_ĐTVT K11 16 Đồ án tốt nghiệp Thiết kế ăngten mạch dải ta đi tìm công thức truyền sóng lý tưởng (truyền sóng trong không gian tự do): theo (1.13) E(θ,φ) = Từ (1.24): IA = So sánh (1.17) và (1.25) ta có: D(θ,φ) = Theo (1.20): D(θ,φ) = DmaxF2(θ,φ) Suy ra: f(θ,φ) = Vậy ta có: E(θ,φ) = E(θ,φ) = (1.30) Biểu thức này là công thức truyền sóng lý tưởng (sự truyền sóng trong không gian tự do), biểu thức này còn cho ta quan hệ giữa cường độ trường và công suất phát xạ của một ăngten khi biết Dmax và đặc trưng hướng của nó. Công thức trên chỉ ra rằng việc tăng hệ số tác dụng định hướng tương đương với việc tăng công suất phát xạ. 1.6. Hiệu suất và hệ số khuếch đại Phần lớn công suất đưa vào ăngten được phát xạ ra không gian và tạo nên một phân bố cường độ trường xác định trong không gian thuộc vùng xa. Nhưng có một phần công suất bị tiêu hao (chủ yếu dưới dạng nhiệt năng) Cao Thành Trung_ĐTVT K11 17 Đồ án tốt nghiệp Thiết kế ăngten mạch dải ngay trên ăngten và các vật thể bao quanh nó. Mức độ sử dụng công suất đưa vào ăngten được xác định bằng hiệu suất của ăngten. Hiệu suất ηA của ăngten: là tỉ số giữa công suất do ăngten phát xạ PΣ (công suất hữu ích) và công suất đưa vào PA (gồm công suất phát xa PΣ và công suất tiêu hao Pth). ηA = với PA = PΣ + Pth (1.31) Đối với các đa số ăngten siêu cao tần ηA ≈ 0,9. Để đánh giá mức độ tăng ích công suất do tính định hướng và chú ý tới sự tiêu hao trên ăngten, người ta đưa ra khái niệm hệ số khuếch đại G trên ăngten. Hệ số khuếch đại G: là tỉ số giữa công suất phát xạ của ăngten vô hướng PΣvh và công suất đưa vào ăngten định hướng PAdh, với điều kiện các ăngten cùng tạo ra một giá trị cường độ điện trường tại điểm quan sát. G= G= (1.32) = = D. ηA (1.33) Như vậy hệ số khuếch đại luôn nhỏ hơn hệ số tác dụng định hướng. Chỉ trong trường hợp lý tưởng ηA = 1 thì G = D. Hệ số khuếch đại đặc trưng cho sự tăng ích về công suất một cách đầy đủ hơn so với hệ số tác dụng định hướng vỡ nó đánh giá được cả tính định hướng lẫn khả năng biến đổi năng lượng của ăngten (tức khả năng biến đổi năng lượng liên kết thành năng lượng phát xạ). Người ta thường quan tâm nhiều nhất tới hệ số khuếch đại theo phương phát xạc cực đại Gmax, vì vậy từ này ta hiểu G chính là giá trị Gmax. 1.7. Chiều dài hiệu dụng của ăngten Trong thời kì đầu của sự phát triển kĩ thuật ăngten người ta đưa vào khái niệm chiều dài hiệu dụng để đánh giá mức độ định hướng của các ăngten dây. Cao Thành Trung_ĐTVT K11 18 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Chiều dài hiệu dụng của một ăngten dây: là chiều dài của một lưỡng cực Hertz (có phân bố dòng đều) cú dũng bằng dòng tại điểm bụng I b của ăngten dây và cho cùng một giá trị cường độ điện trường theo hướng phát xạ cực đại tại điểm quan sát như ăngten dây. Từ (1.26) ta có trường theo hướng phát xạ cực đại của lưỡng cực Hertz là: Emax = (1.34) Từ (1.30) ta có trường theo hướng phát xạ cực đại của ăngten dây là: Emax = (1.35) Từ 2 biểu thức trên suy ra: λhd = = (1.36) Ý nghĩa của việc đưa khái niệm lhd là ta đã thay ăngten thực với chiều dài l có phân bố dòng không đều bằng một ăngten có chiều dài l hd có phân bố dòng đều. Hình 1.9. Chiều dài hiệu dụng của ăngten Từ (1.34) ta thấy cường độ trường của lưỡng cực Hertz tỉ lệ với đại lượng: Si = Ib.lhd Ta gọi Si là diện tích dòng. Với ăngten có phân bố dòng không đều thì: Si = Từ 2 biểu thức này, ta tính được lhd theo phân bố dòng λhd = Cao Thành Trung_ĐTVT K11 (1.37) 19 Đồ án tốt nghiệp Thiết kế ăngten mạch dải Khái niệm lhd chỉ có ý nghĩa đối với các ăngten tương đối ngắn so với λ, khi mà hàm phân bố dòng Iz không đổi dấu trên suốt chiều dài l. 1.8. Trở vào của ăngten Lối vào của ăngten là thiết diện mà tại đó kết thúc đường dây phide, ta đã biết ăngten phát là tải của phide, nó được đặc trưng bởi công suất thuần, công suất kháng, công suất giới hạn và trở vào. Trở vào của ăngten là tỉ số giữa điện áp và dòng tại lối vào của ăngten: Zv = = Rv + jXv (1.38) Cần phải biết trở vào của ăngten để thực hiện sự phối hợp với phide. Từ lý thuyết đường dây ta biết: để phối hợp trở kháng giữa ăngten và phide có trở sóng ρf cần thoả mãn điều kiện: Rv = ρf , Xv = 0 Công suất ăngten tiêu thụ gồm công suất phát xạ và công suất tiêu hao. Tương tự như trở phát xạ, ta cũng đưa vào khái niệm trở tiêu hao R th, trở này tiêu tán công suất tiêu hao. Do đó: PA = và Rv = RΣv + Rthv Vì: ηA = nên ηA = Như vậy thành phần hoạt của trở vào gồm trở phát xạ và trở tiêu hao tính ở lối vào của ăngten. Nếu ăngten có hiệu suất cao thì R v ≈ RΣv. Theo quan điểm xét chế độ hoạt động của phide thì RΣv tương đương với thành phần hoạt của trở tải phide. Nhưng về bản chất RΣv chỉ thuần tuý là một tải điện động tương đương. Nó phản ánh kết quả tương tác ngược của trường phát xạ trong vùng xa lên ăngten. Trong khi đó thì để tính trở tiêu hao R th ta cần phải biết giá trị trường hoặc dòng ngay trên ăngten. Nguyên nhân tồn tại thành phần kháng X v của trở vào chính là do sự tồn Cao Thành Trung_ĐTVT K11 20
- Xem thêm -

Tài liệu liên quan