Tài liệu Hệ mã hóa công khai rsa

  • Số trang: 23 |
  • Loại file: PDF |
  • Lượt xem: 201 |
  • Lượt tải: 0
tranphuong

Đã đăng 59174 tài liệu

Mô tả:

Báo cáo cuối kì Hệ mã hóa công khai RSA Tóm nội dung báo cáo Giới thiệu………………………………………………Trang 2 Hệ mã hóa công khai…………………………………..Trang 3 Chuẩn bị toán học……………………………………....Trang 5 Hệ mã hóa công khai RSA……………………………..Trang 7 1. Giới thiệu 2. Cách tạo khóa 3. Mã hóa 4. Giải mã 5. Tính bảo mật 6. Quá trình tạo khóa 7. Tốc độ 8. Các cách xâm nhập V. Chữ kí điện tử…………………………………………Trang 15 VI. Chương trình cài đặt thuật toán……………………….Trang 16 VII. Nhận xét đánh giá……………………………………..Trang 23 VIII. Tài liệu tham khảo…………………………………….Trang 23 I. II. III. IV. . Hệ mã hóa công khai RSA Trang 1 Báo cáo cuối kì Hệ mã hóa công khai RSA I.Giới thiệu Trong mọi lĩnh vực kinh tế, chính trị, xã hội, quân sự… luôn có nhu cầu trao đổi thông tin giữa các cá nhân, các công ty, tổ chức, hoặc giữa các quốc gia với nhau. Ngày nay, với sự phát triển của công nghệ thông tin đặt biệt là mạng internet thì việc truyền tải thông tin đã dể dàng và nhanh chóng hơn. 1.1 Mô hình trao đổi thông tin qua mạng theo cách thông thường. Và vấn đề đặt ra là tính bảo mật trong quá trình truyền tải thông tin, đặt biệt quan trọng đối với những thông tin liên quan đến chính trị, quân sự, hợp đồng kinh tế… Vì vậy nghành khoa học nghiên cứu vế mã hóa thông tin được phát triển. Việc mã hóa là làm cho thông tin biến sang một dạng khác khi đó chỉ có bên gửi và bên nhận mới đọc được, còn người ngoài dù nhận được thông tin nhưng cũng không thể hiểu được nôi dung. 1.2 Mô hình trao đổi thông tin theo phương pháp mã hóa. Hệ mã hóa công khai RSA Trang 2 Báo cáo cuối kì Hệ mã hóa công khai RSA Như chúng ta thấy ở mô hình 1.1: Việc trao đổi thông tin được thực hiện qua các bước sau: - Tạo ra thông tin cần gửi đi. - Gửi thông tin này cho đối tác. Ở mô hình 1.2: Việc trao đổi thông tin được thực hiện: - Tạo thông tin cần gửi Mã hóa và gửi thông tin đã được mã hóa đi. Đối tác nhận và giải mã thông tin Đối tác có được thông tin ban đầu của người gửi. Với 2 thao tác mã hóa và giải mã ta đã đảm bảo thông tin được gửi an toàn và chính xác. Chúng ta có nhiều phương pháp để mã hóa thông tin: Ở đây ta tìm hiểu về hệ mã hóa công khai RSA. II. Hệ mã hóa công khai 1. Tìm hiểu về hệ mã hóa công khai: a. Phân biệt mã hóa bí mật và mã hóa công khai: Mã hóa bí mật: thông tin sẻ được mã hóa theo một phương pháp ứng với một key, key này dùng để lập mã và đồng thời cũng để giải mã. Vì vậy key phải được giữ bí mật, chỉ có người lập mã và người nhận biết được, nếu key bị lộ thì người ngoài sẽ dể dàng giải mã và đọc được thông tin. Mã hóa bí mật Mã hóa công khai: sử dụng 2 key public key private key. Public key: Được sử dụng để mã hoá những thông tin mà ta muốn chia sẻ với bất cứ ai. Chính vì vậy ta có thể tự do phân phát nó cho bất cứ ai mà ta cần chia sẻ thông tin ở dạng mã hoá. Hệ mã hóa công khai RSA Trang 3 Báo cáo cuối kì Hệ mã hóa công khai RSA Privite key: Đúng như cái tên, Key này thuộc sở hữu riêng tư của bạn(ứng với public key) và nó được sử dụng để giải mã thông tin. Chỉ mình bạn sở hữu nó, Key này không được phép và không lên phân phát cho bất cứ ai. Nghĩa là mỗi người sẽ giữ 2 key 1 dùng để mã hóa, key này được công bố rộng rãi, 1 dùng để giải mã, key này giữ kín. Khi ai đó có nhu cầu trao đổi thông tin với bạn, sẻ dùng public key mà bạn công bố để mã hóa thông tin và gửi cho bạn, khi nhận được bạn dùng private key để giải mã. Những người khác dù có nhận được thông tin nhưng không biết được private key thì cũng không thể giải mã và đọc được thông tin. Mô hình mã hóa công khai b. Cơ sờ lý thuyết cho hình thức mã hóa công khai: Hàm một phía. Một hàm một phía là hàm mà dễ dàng tính toán ra quan hệ một chiều nhưng rất khó để tính ngược lại. Ví như : biết giả thiết x thì có thể dễ dàng tính ra f(x), nhưng nếu biết f(x) thì rất khó tính ra được x. Trong trường hợp này “khó” có nghĩa là để tính ra được kết quả thì phải mất hàng triệu năm để tính toán, thậm chí tất cả máy tính trên thế giới này đều tính toán công việc đó. Vậy thì hàm một phía tốt ở những gì ? Chúng ta không thể sử dụng chúng cho sự mã hoá. Một thông báo mã hoá với hàm một phía là không hữu ích, bất kỳ ai cũng không giải mã được. Đối với mã hoá chúng ta cần một vài điều gọi là cửa sập hàm một phía.(khóa) Hộp thư là một ví dụ rất tuyệt về hàm một phía cũng như hình thức mã hóa này. Bất kỳ ai cũng có thể bỏ thư vào thùng. Bỏ thư vào thùng là một hành động công cộng. Mở thùng thư không phải là hành động công Hệ mã hóa công khai RSA Trang 4 Báo cáo cuối kì Hệ mã hóa công khai RSA cộng. Nó là việc khó khăn, khi bạn không có chìa khóa ứng với thùng thư. Hơn nữa nếu bạn có điều bí mật (chìa khoá), nó thật dễ dàng mở hộp thư. Hệ mã hoá công khai có rất nhiều điều giống như vậy. III. Chuẩn bị toán học: Trước hết, chúng ta sẽ nhắc lại những khái niệm toán học cơ bản cần thiết cho việc hiểu RSA. 1- Số nguyên tố (prime) số nguyên tố là những số nguyên chỉ chia chẵn được cho 1 và cho chính nó mà thôi. Ví dụ : 2, 3, 5, 7, 11, 13, 17, 23... 2- Khái niệm nguyên tố cùng nhau (relatively prime or coprime) Với hai số nguyên dương a và b . Ta ký hiệu GCD (a,b) : Ước chung lớn nhất của a và b ( Greatest Common Divisor) Để đơn giản ta ký hiệu GCD(a,b) =(a,b) Ví dụ : (4,6)=2 (5,6)=1 Hai số a và b gọi là nguyên tố cùng nhau khi (a,b)=1 Ví dụ : 9 và 10 nguyên tố cùng nhau vì (9,10)=1 3-Khái niệm modulo Với m là một số nguyên dương .Ta nói hai số nguyên a va b là đồng dư với nhau modulo m nếu m chia hết hiệu a-b ( Viết là m|(a-b) ) Ký hiệu a ≡ b ( mod m) Như vậy a ≡ b (mod m ) khi và chỉ khi tồn tại số nguyên k sao cho a = b +km Ví dụ : 13 ≡ 3 ( mod 10 ) vì 13= 3 + 1*10 Hệ mã hóa công khai RSA Trang 5 Báo cáo cuối kì Hệ mã hóa công khai RSA 4-Phi – Hàm EULER Định nghĩa : Phi – Hàm Euler Φ(n) có giá trị tại n bằng số các số không vượt quá n và nguyên tố cùng nhau với n Ví dụ : Φ(5) = 4 , Φ(6) = 2 ,Φ(10) = 4 5-Một số định lý cơ bản Định lý Euler : nếu m là số nguyên dương và P nguyên tố cùng nhau với m thì P^Φ(m) ≡ 1 (mod m ) Vậy nếu m và p nguyên tố cùng nhau . Ta đặt s = Φ(m) thì P^s ≡ 1 (mod m) Suy ra với a= 1 + k*s Ta có : P^a ≡ P*(P^s)^k ≡ P*1^k(mod m) ≡ P (mod m) với e là số nguyên dương nguyên tố cùng nhau với s ,tức là (e,s)=1 Khi đó tồn tại một nghịch đảo d của e modulo s tức là e*d ≡ 1 (mod s) e*d = 1 + k*s⌠ Đặt E(P) ≡ C ≡ P^e(mod m) Đặt D(C) ≡ C^d (mod m) Ta thấy D(C) ≡ C^d ≡ P^e*d ≡ P^(1 + k*s )≡ P (mod m) Ví dụ : m = 10 , P = 9 ta có (10,9)=1 s = Φ(10) = 4 e = 7 ta có (7,4) = 1 nghịch đảo của 7 modulo 4 la d = 3 vì 7*3 =1 + 5*4 Lúc đó ta có E(P) ≡ C ≡ P^e ≡ 9 ^ 7 ≡ 4.782.969 ≡ 9 (mod 10) => C=9 D(C) ≡ C^d ≡ 9^3 ≡ 729 ≡ 9(mod 10) Vậy D chính la hàm ngược của E đây là cơ sở cho việc xây dựng thuật toán RSA mà chúng ta sẽ bàn kỹ ở phần sau Hệ mã hóa công khai RSA Trang 6 Báo cáo cuối kì Hệ mã hóa công khai RSA Tính Φ (m ) khi biết m . Chúng ta có định lý sau đây : Giả sử m = p1^a1*p2^a2*… *pk^ak .Khi đó Φ(m) =( p1^a1 – p1^(a1-1) )* … * (pk^ak – pk^(ak-1) ) Ví dụ : m= 10 Ta phân tích 10 =2*5 => Φ(10) =( 2^1 – 2^0) *(5^1 – 5^0) = 1*4 = 4 IV. Hệ mã hóa RSA: 1. Giới thiệu RSA được Rivest, Shamir và Adleman phát triển, là một thuận toán mật mã hóa khóa công khai. Nó đánh dấu một sự tiến hóa vượt bậc của lĩnh vực mật mã học trong việc sử dụng khóa công khai. RSA đang được sử dụng phổ biến trong thương mại điện tử và được cho là đảm bảo an toàn với điều kiện độ dài khóa đủ lớn. Thuật toán được Ron Rivest, Adi Shamir và Len Adleman mô tả lần đầu tiên vào năm 1977 tại Học viện Công nghệ Massachusetts (MIT). Tên của thuật toán lấy từ 3 chữ cái đầu của tên 3 tác giả. Trước đó, vào năm 1973, Clifford Cocks, một nhà toán học người Anh làm việc tại GCHQ, đã mô tả một thuật toán tương tự. Với khả năng tính toán tại thời điểm đó thì thuật toán này không khả thi và chưa bao giờ được thực nghiệm. Tuy nhiên, phát minh này chỉ được công bố vào năm 1997 vì được xếp vào loại tuyệt mật. RSA là một thí dụ điển hình về một đề tài toán học trừu tượng lại có thể áp dụng thực tiễn vào đời sống thường nhật . Khi nghiên cứu về các số nguyên tố, ít có ai nghĩ rằng khái niệm số nguyên tố lại có thể hữu dụng vào lãnh vực truyền thông. 2. Cách tạo khóa: Hệ mã hóa công khai RSA Trang 7 Báo cáo cuối kì Hệ mã hóa công khai RSA Chúng ta cần tạo ra một cặp khóa lập mã và giải mã theo phương pháp sau: 1. Chọn 2 số nguyên tố lớn và với , lựa chọn ngẫu nhiên và độc lập. 2. Tính: . 3. Tính: giá trị hàm số Ơle . 4. Chọn một số tự nhiên e sao cho và là số nguyên tố cùng nhau với . 5. Tính: d sao cho . Một số lưu ý: • • • • Các số nguyên tố thường được chọn bằng phương pháp thử xác suất. Các bước 4 và 5 có thể được thực hiện bằng giải thuật Euclid mở rộng (xem thêm: số học môđun). Bước 5 có thể viết cách khác: Tìm số tự nhiên sao cho cũng là số tự nhiên. Khi đó sử dụng giá trị . Từ bước 3, PKCS#1 v2.1 sử dụng thay cho ). Khóa công khai bao gồm: • • n, môđun, và e, số mũ công khai (cũng gọi là số mũ mã hóa). Khóa bí mật bao gồm: • • n, môđun, xuất hiện cả trong khóa công khai và khóa bí mật, và d, số mũ bí mật (cũng gọi là số mũ giải mã). Một dạng khác của khóa bí mật bao gồm: • • • p and q, hai số nguyên tố chọn ban đầu, d mod (p-1) và d mod (q-1) (thường được gọi là dmp1 và dmq1), (1/q) mod p (thường được gọi là iqmp) Dạng này cho phép thực hiện giải mã và ký nhanh hơn với việc sử dụng định lý số dư Trung Quốc (tiếng Anh: Chinese Remainder Theorem Hệ mã hóa công khai RSA Trang 8 Báo cáo cuối kì Hệ mã hóa công khai RSA CRT). Ở dạng này, tất cả thành phần của khóa bí mật phải được giữ bí mật. Ở đây, p và q giữ vai trò rất quan trọng. Chúng là các phân tố của n và cho phép tính d khi biết e. Nếu không sử dụng dạng sau của khóa bí mật (dạng CRT) thì p và q sẽ được xóa ngay sau khi thực hiện xong quá trình tạo khóa. *Chuyển đổi thông tin: Trước khi thực hiện mã hóa, ta phải thực hiện việc chuyển đổi thông tin (chuyển đổi từ M sang m) sao cho không có giá trị nào của M tạo ra văn bản mã không an toàn. Nếu không có quá trình này, RSA sẽ gặp phải một số vấn đề sau: • • • Nếu m = 0 hoặc m = 1 sẽ tạo ra các bản mã có giá trị là 0 và 1 tương ứng Khi mã hóa với số mũ nhỏ (chẳng hạn e = 3) và m cũng có giá trị nhỏ, giá trị me cũng nhận giá trị nhỏ (so với n). Như vậy phép môđun không có tác dụng và có thể dễ dàng tìm được m bằng cách khai căn bậc e của c (bỏ qua môđun). RSA là phương pháp mã hóa xác định (không có thành phần ngẫu nhiên) nên kẻ tấn công có thể thực hiện tấn công lựa chọn thông tin bằng cách tạo ra một bảng tra giữa thông tin và bản mã. Khi gặp một bản mã, kẻ tấn công sử dụng bảng tra để tìm ra thông tin tương ứng. Trên thực tế, ta thường gặp 2 vấn đề đầu khi gửi các bản tin ASCII ngắn với m là nhóm vài ký tự ASCII. Một đoạn tin chỉ có 1 ký tự NULL sẽ được gán giá trị m = 0 và cho ra bản mã là 0 bất kể giá trị của e và N. Tương tự, một ký tự ASCII khác, SOH, có giá trị 1 sẽ luôn cho ra bản mã là 1. Với các hệ thống dùng giá trị e nhỏ thì tất cả ký tự ASCII đều cho kết quả mã hóa không an toàn vì giá trị lớn nhất của m chỉ là 255 và 2553 nhỏ hơn giá trị n chấp nhận được. Những bản mã này sẽ dễ dàng bị phá mã. Để tránh gặp phải những vấn đề trên, RSA trên thực tế thường bao gồm một hình thức chuyển đổi ngẫu nhiên hóa m trước khi mã hóa. Quá trình chuyển đổi này phải đảm bảo rằng m không rơi vào các giá trị không an toàn. Sau khi chuyển đổi, mỗi thông tin khi mã hóa sẽ cho ra một trong số khả năng trong tập hợp bản mã. Điều này làm giảm tính khả thi của phương pháp tấn công lựa chọn thông tin (một thông tin sẽ có thể tương ứng với nhiều bản mã tuỳ thuộc vào cách chuyển đổi). Hệ mã hóa công khai RSA Trang 9 Báo cáo cuối kì Hệ mã hóa công khai RSA Một số tiêu chuẩn, chẳng hạn như PKCS, đã được thiết kế để chuyển đổi thông tin trước khi mã hóa bằng RSA. Các phương pháp chuyển đổi này bổ sung thêm bít vào M. Các phương pháp chuyển đổi cần được thiết kế cẩn thận để tránh những dạng tấn công phức tạp tận dụng khả năng biết trước được cấu trúc của thông tin. Phiên bản ban đầu của PKCS dùng một phương pháp đặc ứng (ad-hoc) mà về sau được biết là không an toàn trước tấn công lựa chọn thông tin thích ứng (adaptive chosen ciphertext attack). Các phương pháp chuyển đổi hiện đại sử dụng các kỹ thuật như chuyển đổi mã hóa bất đối xứng tối ưu (Optimal Asymmetric Encryption Padding - OAEP) để chống lại tấn công dạng này. Tiêu chuẩn PKCS còn được bổ sung các tính năng khác để đảm bảo an toàn cho chữ ký RSA (Probabilistic Signature Scheme for RSA - RSA-PSS). 3. Mã hóa Giả sử có đoạn thông tin M cần gửi. Đầu tiên chuyển M thành một số m n . ( => P^e > n với mọi P ) . Vì Nếu P^e < n thì C = P^e ( với e công khai ). Như vậy để giải mã , ta chỉ cần tính căn bậc e của C ( tính theo cách thông thường ) . Cũng vì lý do đó , ta cũng nên chọn cách nhóm sao cho P đủ lớn . Nhưng P không được vượt quá n vì nếu P > n thì : Khi giải mã một khối C : ta có D(C) ≡ P(mod n) ≡ P1 ( mod n) ( với P1 < n < P ) Ta không tìm được giá trị P ban đầu Ví dụ: Ta thực hiện mã hóa: “aw“ Trước tiên ta thực hiện chuyển aw -> 0123: Sau đó mã hóa nó theo công thức đã trình bày ở trên ta được: (0123 ^ 17) mod 3233 = 855 Vậy 855 là thông tin dạng mã, để đọc được ta cần gải mã nó: (855 ^ 2735) mod 3233 = 123: Khi nhận được thông tin góc dạng số ta đưa nó về đúng format: 123 -> 0123 Sau đó chuyển về dạng kí tự: 0123 -> aw Ở đây chúng ta mã hóa đoạn văn bản theo từng khối, Văn bản dược chia nhỏ và mã hóa theo thứ tự, Khi giải mã ta cũng thực hiện gải mã theo từng khối và đúng thứ tự. Một điểm cần lưu ý: trong quá trình tính toán ta gặp (855^2735) mod 3233 855^2735 là một số rất lớn: 855^2735 = 50432888958416068734422899127394466631453878360035509315554967564501 Hệ mã hóa công khai RSA Trang 19 Báo cáo cuối kì Hệ mã hóa công khai RSA 05562861208255997874424542811005438349865428933638 493024645144150785 17209179665478263530709963803538732650089668607477 182974582295034295 04079035818459409563779385865989368838083602840132 509768620766977396 67533250542826093475735137988063256482639334453092 594385562429233017 51977190016924916912809150596019178760171349725439 279215696701789902 13430714646897127961027718137839458696772898693423 652403116932170892 69617643726521315665833158712459759803042503144006 837883246101784830 71758547454725206968892599589254436670143220546954 317400228550092386 36942444855973333063051607385302863219302913503745 471946757776713579 54965202919790505781532871558392070303159585937493 663283548602090830 63550704455658896319318011934122017826923344101330 116480696334024075 04695258866987658669006224024102088466507530263953 870526631933584734 81094876156227126037327597360375237388364148088948 438096157757045380 08107946980066734877795883758289985132793070353355 127509043994817897 90548993381217329458535447413268056981087263348285 463816885048824346 58897839333466254454006619645218766694795528023088 412465948239275105 77049113329025684306505229256142730389832089007051 511055250618994171 23177795157979429711795475296301837843862913977877 661298207389072796 76720235011399271581964273076407418989190486860748 124549315795374377 12441601438765069145868196402276027766869530903951 314968319097324505 45234594477256587887692693353918692354818518542420 923064996406822184 49011913571088542442852112077371223831105455431265 307394075927890822 60604317113339575226603445164525976316184277459043 201913452893299321 61307440532227470572894812143586831978415597276496 357090901215131304 15756920979851832104115596935784883366531595132734 467524394087576977 78908490126915322842080949630792972471304422194243 906590308142893930 29158483087368745078977086921845296741146321155667 865528338164806795 45594189100695091965899085456798072392370846302553 545686919235546299 57157358790622745861957217211107882865756385970941 907763205097832395 71346411902500470208485604082175094910771655311765 297473803176765820 58767314028891032883431850884472116442719390374041 315564986995913736 51621084511374022433518599576657753969362812542539 006855262454561419 25880943740212888666974410972184534221817198089911 953707545542033911 96453936646179296816534265223463993674233097018353 390462367769367038 05342644821735823842192515904381485247388968642443 703186654199615377 91396964900303958760654915244945043600135939277133 952101251928572092 59788751160195962961569027116431894637342650023631 004555718003693586 05526491000090724518378668956441716490727835628100 970854524135469660 84481161338780654854515176167308605108065782936524 108723263667228054 00387941086434822675009077826512101372819583165313 969830908873174174 74535988684298559807185192215970046508106068445595 364808922494405427 66329674592308898484868435865479850511542844016462 352696931799377844 30217857019197098751629654665130278009966580052178 208139317232379013 23249468260920081998103768484716787498919369499791 482471634506093712 56541225019537951668976018550875993133677977939527 822273233375295802 63122665358948205566515289466369032083287680432390 611549350954590934 06676402258670848337605369986794102620470905715674 470565311124286290 73548884929899835609996360921411284977458614696040 287029670701478179 49024828290748416008368045866685507604619225209434 980471574526881813 18508591501948527635965034581536416565493160130613 304074344579651083 Hệ mã hóa công khai RSA Trang 20
- Xem thêm -