Tài liệu Hàm khoảng cách và một số ứng dụng (lv00979)

  • Số trang: 79 |
  • Loại file: PDF |
  • Lượt xem: 247 |
  • Lượt tải: 0
nguyetha

Đã đăng 8490 tài liệu

Mô tả:

LỜI CẢM ƠN Luận văn được hoàn thành tại trường Đại học Sư phạm Hà Nội 2 dưới sự hướng dẫn của thầy giáo PGS. TS. Nguyễn Năng Tâm. Sự giúp đỡ và hướng dẫn tận tình song rất nghiêm túc của thầy trong suốt quá trình thực hiện luận văn này đã giúp tác giả trưởng thành hơn rất nhiều trong cách tiếp cận một vấn đề mới. Tác giả xin bày tỏ lòng biết ơn, lòng kính trọng sâu sắc nhất đối với thầy. Tác giả xin trân trọng cảm ơn Ban giám hiệu trường Đại học Sư phạm Hà Nội 2, phòng Sau đại học, các thầy cô giáo trong nhà trường và các thầy cô giáo dạy cao học chuyên ngành Toán giải tích đã giúp đỡ, tạo điều kiện thuận lợi cho tác giả trong suốt quá trình học tập. Tác giả xin chân thành cảm ơn các đồng nghiệp cùng gia đình, người thân, bạn bè đã giúp đỡ, động viên và tạo điều kiện thuận lợi để tác giả hoàn thành khóa học Thạc sĩ và hoàn thành luận văn này. Hà Nội, ngày 20 tháng 11 năm 2013 Tác giả Nguyễn Thị Thanh Hà LỜI CAM ĐOAN Luận văn được hoàn thành tại trường Đại Học Sư phạm Hà Nội 2 dưới sự hướng dẫn của PGS. TS. Nguyễn Năng Tâm. Tôi xin cam đoan luận văn là công trình nghiên cứu của riêng tôi. Trong quá trình nghiên cứu và hoàn thành luận văn tôi đã kế thừa những thành quả khoa học của các nhà khoa học và đồng nghiệp với sự trân trọng và biết ơn. Tôi xin cam đoan rằng các thông tin trích dẫn trong luận văn đã được chỉ rõ nguồn gốc. Hà Nội, ngày 20 tháng 11 năm 2013 Tác giả Nguyễn Thị Thanh Hà Mục lục Lời cảm ơn i Lời cam đoan ii Bảng ký hiệu v Mở đầu 1 1 Một số kiến thức chuẩn bị 3 1.1 Một số khái niệm về không gian . . . . . . . . . . . . . 3 1.2 Hàm liên tục, hàm Lipschitz, hàm khả vi . . . . . . . . . 5 1.3 Một số khái niệm dưới vi phân 8 . . . . . . . . . . . . . . 2 Hàm khoảng cách và một số ứng dụng 12 2.1 Hàm khoảng cách . . . . . . . . . . . . . . . . . . . . . 12 2.2 Tính chất . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Tính khả vi địa phương . . . . . . . . . . . . . . . . . . 18 2.4 Đạo hàm theo hướng, dưới vi phân Clarke . . . . . . . . 35 3 Dưới Gradient của hàm khoảng cách có nhiễu và ứng dụng 42 iii 3.1 Một số khái niệm cơ bản . . . . . . . . . . . . . . . . . 42 3.2 Dưới gradient tựa Fréchet của hàm khoảng cách . . . . 47 3.3 Dưới gradient qua giới hạn của các hàm khoảng cách . . 55 3.4 Ứng dụng để nghiên cứu tính ổn định Lipschitz . . . . . 65 Kết luận 70 Tài liệu tham khảo 71 iv BẢNG KÝ HIỆU N Tập số tự nhiên R Tập số thực R̄ R ∪ {−∞; +∞} hx∗ , xi x∗ (x) X∗ Không gian đối ngẫu của X X ∗∗ Không gian đối ngẫu thứ hai của X τ Tôpô τw Tôpô yếu τw∗ Tôpô yếu* k.k Chuẩn δf (x, h) Vi phân cấp một của f với gia lượng h F : X ⇒ Y Ánh xạ đa trị F gphF Đồ thị của F epif Trên đồ thị domF Miền hữu hiệu của F X ×Y Tích đề các của X và Y intA Phần trong của A Ā Bao đóng của A f 0 (x; d) Đạo hàm theo hướng của f tại x theo hướng d f − (x; d) Đạo hàm theo hướng Contigent của f tại x theo hướng d f 0 (x; d) Đạo hàm theo hướng Clarke của f tại x theo hướng d ∂f (x) ∂ˆε ϕ(x) Dưới vi phân Clarke của f tại x ∂ˆF ϕ(x) ∂ˆ+ ϕ(x) Dưới vi phân Fréchet của ϕ tại x ∂p ϕ(x) Dưới vi phân gần kề của ϕ tại x ε - dưới građient Fréchet của ϕ tại x Dưới vi phân dưới Fréchet của ϕ tại x ∂ ∞ ϕ(x) Dưới vi phân suy biến của ϕ tại x ∂≥ f (x) Dưới vi phân phải của f tại x ∂≥∞ f (x) Dưới vi phân phải suy biến của f tại x DFz (.) Đạo hàm Contigent của F Db Fz (.) Đạo hàm gần kề của F CF z (.) Đạo hàm Clarke của F D∗F Đối đạo hàm của F dC (x) Khoảng cách từ x đến tập C TC (x) Nón tiếp tuyến của C tại x NC (x) Nón pháp tuyến của C tại x SC (x) Tập các pháp tuyến kề của C tại x N̂ε (x, C) ε - pháp tuyến của C tại x N̂ (x, C) Nón pháp tuyến cơ sở KC (x) Nón contigent của tiếp tuyến của C tại x PC (x) Hình chiếu x trên C B Hình cầu đơn vị trong X B∗ Hình cầu đơn vị trong X ∗ S Mặt cầu đơn vị đóng trong X S∗ Mặt cầu đơn vị đóng trong X ∗ δC (x) Hàm chỉ của tập C tại x I Ánh xạ đồng nhất l.s.c Nửa liên tục dưới  Kết thúc chứng minh vi MỞ ĐẦU 1. Lý do chọn đề tài Trong thực tiễn cũng như trong lý thuyết chúng ta thường gặp những bài toán đòi hỏi phải khảo sát những ánh xạ liên quan đến những hàm khoảng cách. Một lớp các hàm không trơn bản chất được tạo ra nhờ hàm khoảng cách d(x; C) := inf kx − yk y∈C (I) trong đó x ∈ E là điểm, C ⊂ E là tập cố định trong không gian Banach E với chuẩn k.k. Một lớp hàm khoảng cách tổng quát hơn được tạo nên bởi ρ(z, x) := inf kx − yk = d(x, F (z)) (II) y∈F(z) trong đó F là ánh xạ đa trị từ không gian Banach Z vào không gian Banach X . Rõ ràng, hàm trong (II) có hai biến, biểu thị khoảng cách từ x đến tập chuyển động F (z), là một mở rộng của hàm khoảng cách quen biết (I) ứng với (II) khi F (z) ≡ C . Những hàm dạng (I), (II) đóng vai trò đáng lưu ý trong giải tích biến phân, tối ưu hóa và ứng dụng của chúng. Sau khi được học những kiến thức về Toán giải tích, với mong muốn tìm hiểu sâu hơn về những kiến thức đã học, mối quan hệ và ứng dụng của chúng, tôi đã chọn đề tài nghiên cứu “ Hàm khoảng cách và một số ứng dụng ”. 2. Mục đích nghiên cứu Nắm được các thuộc tính của hàm khoảng cách và một số ứng dụng của chúng trong giải tích biến phân, tối ưu hóa. 2 3. Nhiệm vụ nghiên cứu Nghiên cứu về tính liên tục, tính khả vi, tính dưới khả vi của hàm khoảng cách. Nghiên cứu về ứng dụng của hàm khoảng cách trong giải tích và tối ưu. 4. Đối tượng và phạm vi nghiên cứu Hàm khoảng cách trong không gian Hilbert và trong không gian Banach. Một số ứng dụng của hàm khoảng cách. 5. Phương pháp nghiên cứu Nghiên cứu lý thuyết: Thu thập tài liệu, đọc và phân tích, tổng hợp để được một nghiên cứu tổng quan về hàm khoảng cách. 6. Dự kiến đóng góp mới Tổng quan về hàm khoảng cách và một số ứng dụng của hàm khoảng cách. Chương 1 Một số kiến thức chuẩn bị Chương 1 sẽ trình bày là một số khái niệm cơ bản về các không gian và ánh xạ làm công cụ để trình bày các chương sau. 1.1 Một số khái niệm về không gian Định nghĩa 1.1.1. Cho X là một tập khác rỗng. Một họ τ những tập con của X được gọi là một tôpô trên X nếu thỏa mãn (i) φ, X ∈ τ . (ii) Giao của một số hữu hạn các phần tử thuộc τ thì thuộc τ . (iii) Hợp của một họ tùy ý các phần tử thuộc τ thì thuộc τ . Khi đó (X, τ ) được gọi là một không gian tôpô, và mỗi phần tử U ∈ τ là một tập mở trong X . Một không gian metric với họ các tập mở là một không gian tôpô. Định nghĩa 1.1.2. Cho không gian tôpô (X, τ ). Một họ V ⊆ τ được gọi là một cơ sở lân cận của x0 ∈ X nếu với mọi lân cận U của x0 , đều tồn tại V ∈ V sao cho x0 ∈ V ⊆ U . Định nghĩa 1.1.3. Không gian tôpô (X, τ ) được gọi là không gian tôpô tuyến tính nếu: 3 4 (i) Mọi x, y ∈ X , mọi lân cận W của x + y , tồn tại lân cận U của x, lân cận V của y sao cho U + V ⊂ W . (ii) Mọi λ ∈ R, mọi x ∈ X , mọi lân cận W của λx, tồn tại ε > 0, và lân cận V của x sao cho µV ⊂ W, ∀µ ∈ (λ − ε, λ + ε). Định nghĩa 1.1.4. Cho X là không gian véc tơ. Tập A ⊂ X được gọi là lồi nếu với mọi cặp điểm x, y ∈ A, ∀λ ∈ (0, 1) có λx + (1 − λ)y ∈ A. Định nghĩa 1.1.5. Cho (X, τ ) là một không gian tôpô tuyến tính, nếu tồn tại một cơ sở lân cận gốc gồm toàn tập lồi thì τ được gọi là tôpô (tuyến tính) lồi địa phương và X được gọi là không gian tôpô tuyến tính lồi địa phương. Định nghĩa 1.1.6. Cho (X, τ ) là một không gian tôpô lồi địa phương Hausdorff và f : X → [ − ∞, ∞] là một phiếm hàm trên X. epif := {(x, γ) ∈ X× R |f (x) ≤ γ} là trên đồ thị của f . f được gọi là hàm lồi nếu epif là tập lồi. Định nghĩa 1.1.7. Một tập K ⊂ X được gọi là nón nếu mọi điểm k ∈ K và λ > 0 ta có λk ∈ K và nếu K là một tập lồi thì nó được gọi là nón lồi. Định nghĩa 1.1.8. Cho X là một không gian tôpô tuyến tính, tập các phiếm hàm tuyến tính liên tục trên X được gọi là không gian liên hợp (hay không gian đối ngẫu) của X , kí hiệu X ∗ . Với mỗi x∗ ∈ X ∗ , v ∈ X , ta kí hiệu hx∗ , vi = x∗ (v). Định nghĩa 1.1.9. Không gian định chuẩn X được gọi là không gian phản xạ nếu X = X ∗∗ . Định nghĩa 1.1.10. Tôpô lồi địa phương yếu nhất trên X đảm bảo sự liên tục của tất cả các phiếm hàm f ∈ X ∗ được gọi là tôpô yếu trên X , kí hiệu τw . 5 Định nghĩa 1.1.11. Tôpô tuyến tính yếu nhất trên X ∗ đảm bảo sự liên tục của ∀x ∈ X được gọi là tôpô yếu* trên X ∗ , kí hiệu τw∗ . Định nghĩa 1.1.12. Ta gọi không gian định chuẩn là không gian tuyến tính X trên trường R cùng với một ánh xạ k.k : X → R gọi là chuẩn thỏa mãn các tiên đề: (i) kxk ≥ 0, ∀x ∈ X; kxk = 0 ⇔ x = θ. (ii) kαxk = |α| kxk ; ∀x ∈ X, ∀α ∈ R. (iii) kx + yk ≤ kxk + kyk ; ∀x, y ∈ X . Kí hiệu (X, k.k). Định nghĩa 1.1.13. Không gian định chuẩn (X, k.k) được gọi là không gian Banach nếu X với metric d(x, y) = kx − yk là một không gian đủ. Định nghĩa 1.1.14. Cho X là không gian tuyến tính trên R, ta gọi tích vô hướng trên không gian X mỗi ánh xạ h., .i : X×X → R thỏa mãn các tiên đề (i) (∀x, y, z ∈ X) hx + y, zi = hx, zi + hy, zi. (ii) (∀x, y ∈ X) (∀α ∈ R) hαx, yi = α hx, yi. (iii) (∀x ∈ X) hx, xi > 0 nếu x 6= θ, hx, xi = 0 nếu x = θ. Định nghĩa 1.1.15. Không gian tuyến tính X được gọi là không gian Hilbert nếu trên đó được trang bị một tích vô hướng h., .i sao cho với p kxk = hx, xi thì X là một không gian Banach. 1.2 Hàm liên tục, hàm Lipschitz, hàm khả vi Cho (X, τX ) và (Y, τY ) là 2 không gian tôpô, ánh xạ f : X → Y . 6 Định nghĩa 1.2.1. f được gọi là liên tục tại x0 ∈ X nếu với mọi lân cận U của f (x0 ) đều tồn tại một lân cận V của x0 sao cho f (V ) ⊂ U . Định nghĩa 1.2.2. Cho(X, d) là không gian metric, f : X → X , được gọi là thỏa mãn điều kiện Lipschitz nếu tồn tại hằng số dương L sao cho với ∀x, y ∈ X có |f (x) − f (y)| ≤ Ld(x, y). Định nghĩa 1.2.3. Cho hai không gian định chuẩn X, Y . Một ánh xạ f : X → Y được gọi là khả vi tại x ∈ X nếu tồn tại một toán tử liên tục L : X → Y sao cho f (x + h) − f (x) = L(h) + r(h), r(h) → 0 khi khk → 0. khk L(h) được gọi là vi phân cấp 1 của f tại x với gia lượng h, kí hiệu trong đó r(h) = o(khk), nghĩa là δf (x, h). Toán tử L được gọi là đạo hàm cấp 1 (theo nghĩa Frechet) của f tại x, kí hiệu f 0 (x) δf (x, h) = f 0 (x).h, f 0 (x).h là trị của toán tử f 0 (x) tại h, hay viết [f 0 (x)](h). Định nghĩa 1.2.4. Cho X, Y là hai tập hợp bất kỳ. Cho F : X ⇒ Y là ánh xạ từ X vào tập hợp gồm toàn bộ các tập con của Y (được ký kiệu là 2Y ). Ta nói F là ánh xạ đa trị từ X vào Y . Tức là với mỗi x ∈ X thì F (x) là một tập con của Y . Định nghĩa 1.2.5. Đồ thị gphF , miền hữu hiệu domF và miền ảnh rgeF của ánh xạ đa trị F : X ⇒ Y tương ứng được xác định bằng các công thức: gphF = {(x, y) ∈ X × Y : y ∈ F (x)} , domF = {x ∈ X : F (x) 6= ∅} , rgeF = {y ∈ Y : ∃x ∈ X sao cho y ∈ F (x)}. 7 Định nghĩa 1.2.6. Cho F : X ⇒ Y là ánh xạ đa trị, X và Y là các không gian tôpô 1) Nếu gphF là tập đóng trong không gian tôpô tích X × Y , thì F được gọi là ánh xạ đóng (hoặc ánh xạ có đồ thị đóng). 2) Nếu X và Y là các không gian tuyến tính tôpô và nếu gphF là tập lồi trong không gian tích X × Y , thì F được gọi là ánh xạ đa trị lồi. 3) Nếu F (x) là tập đóng với mọi x ∈ X , thì F được gọi là ánh xạ có giá trị đóng. 4) Nếu Y là không gian tuyến tính tôpô và nếu F (x) là tập lồi với mọi x ∈ X , thì F được gọi là ánh xạ có giá trị lồi. Định nghĩa 1.2.7. Cho F : X ⇒ Y là ánh xạ đa trị từ không gian tôpô X vào không gian tôpô Y 1) F được gọi là nửa liên tục trên tại x ∈ domF nếu với mọi tập mở V ⊂ Y thỏa mãn F (x) ⊂ V tồn tại lân cận mở U của x sao cho F (x) ⊂ V, ∀x ∈ U . Nếu F là nửa liên tục trên tại mọi điểm thuộc domF , thì F được gọi là nửa liên tục trên ở trong X . 2) F được gọi là nửa liên tục dưới tại x ∈ domF nếu với mọi tập mở V ⊂ Y thỏa mãn F (x) ∩ V 6= φ tồn tại lân cận mở U của x sao cho F (x) ∩ V 6= φ, ∀x ∈ U ∩ dom. Nếu F là nửa liên tục dưới tại mọi điểm thuộc domF , thì F được gọi là nửa liên tục dưới ở trong X . 3) F được gọi là liên tục tại x ∈ domF nếu F đồng thời là nửa liên tục trên và nửa liên tục dưới tại x. Nếu F là liên tục tại mọi điểm thuộc domF , thì F được gọi là liên tục ở trên X . 8 Định nghĩa 1.2.8. Cho X ,Y là các không gian định chuẩn và cho ánh xạ đa trị F : X ⇒ Y . Giả sử x ∈ int(domF ). Ta nói F là Lipschitz địa phương tại (hoặc gần) x, nếu tồn tại l > 0 và δ > 0 sao cho: F (x2 ) ⊂ F (x1 ) + l kx2 − x1 k B Y , với ∀x1 , x2 ∈ B(x, δ). Trong đó B Y là hình cầu đơn vị đóng trong Y. Định nghĩa 1.2.9. Ta nói F là Lipschitz trên địa phương tại x ∈ domF nếu tồn tại l > 0 và δ > 0 sao cho F (x) ⊂ F (x) + l kx − xk B Y với mọi x ∈ B(x, δ). Định nghĩa 1.2.10. Ta nói F là giả Lipschitz gần điểm (x, y) ∈ gphF nếu tồn tại l > 0, δ > 0 và µ > 0 sao cho F (x2 ) ∩ B(y, µ) ⊂ F (x1 ) + l kx2 − x1 k B Y với mọi x1 , x2 ∈ B(x, δ). 1.3 Một số khái niệm dưới vi phân Định nghĩa 1.3.1. Cho f : X → R. Đạo hàm theo hướng của f tại một điểm x ∈ X theo hướng d ∈ X được cho bởi f 0 (x; d) := lim t↓0 f (x + td) − f (x) t khi giới hạn này tồn tại. Định nghĩa 1.3.2. Đạo hàm theo hướng contigent của f tại x theo hướng d được cho bởi f − (x; d) := lim inf u→d t↓0 f (x + tu) − f (x) . t 9 Định nghĩa 1.3.3. Giả sử rằng f là Lipschitzian địa phương. Khi đó, đạo hàm theo hướng Clarke của f tại x theo hướng d được cho bởi f 0 (x; d) := lim sup y→x t↓0 f (y + td) − f (y) . t Với X ∗ là không gian đối ngẫu của X . Định nghĩa 1.3.4. Dưới vi phân Clarke của f tại x được cho bởi ∂f (x) := {x∗ ∈ X ∗ : hx∗ , di ≤ f 0 (x; d) ∀d ∈ X}. Định nghĩa 1.3.5. Cho X là không gian Banach, ϕ : X → R là hàm nhận giá trị trong tập số thực suy rộng, hữu hạn tại x. Với mỗi ε ≥ 0, đặt   ∗ ϕ(x) − ϕ(x) − hx , x − xi ∗ ∗ ≥ −ε . ∂ˆε ϕ(x̄) := x ∈ X : lim inf x→x kx − xk Các phần tử của tập hợp ở vế trái của công thức này được gọi là các ε dưới gradient Fréchet của ϕ tại x, tập ∂ˆε ϕ(x̄) được gọi là ε - dưới gradient Fréchet của ϕ tại x. Tập hợp ∂ˆF ϕ(x̄) = ∂ˆ0 ϕ(x̄) được gọi là dưới vi phân Fréchet dưới hay dưới vi phân Fréchet của ϕ tại x. ˆ ˆ Mọi ε > 0 thì ∂ϕ(x̄) ⊂ ∂ˆε ϕ(x̄). Tập ∂ˆ+ ϕ(x̄) = −∂(−ϕ)(x̄) được gọi là dưới vi phân Fréchet trên của ϕ tại x. Định nghĩa 1.3.6. Véc tơ x∗ ∈ X ∗ được gọi là dưới gradient gần kề của ϕ tại x nếu tồn tại ε ≥ 0 sao cho ϕ(x) − ϕ(x) − hx∗ , x − xi lim inf ≥ −ε. x→x kx − xk2 Tức là tồn tại ε > 0 và δ > 0 sao cho ϕ(x) − ϕ(x) ≥ hx∗ , x − xi − εkx − xk2 , với mọi x ∈ B(x, δ). Tập hợp ∂p ϕ(x̄) gồm tất cả các dưới gradient gần kề của ϕ tại x được gọi là dưới vi phân gần kề của ϕ tại x. 10 Định nghĩa 1.3.7. Tập hợp ∂L ϕ(x̄) := Lim sup ∂ˆε ϕ(x) được gọi là dưới ϕ x →x̄ ε↓0 vi phân qua giới hạn (hay dưới vi phân Mordukhovich). ϕ Tức là: x∗ ∈ ∂ϕ(x) khi và chỉ khi tồn tại các dãy xk → x, εk → 0+ và w∗ x∗k → x∗ . Định nghĩa 1.3.8. Tập hợp ∂ ∞ ϕ(x̄) := lim sup λ∂ˆε ϕ(x) được gọi là dưới x→x̄ ε,λ↓0 vi phân qua giới hạn suy biến hay dưới vi phân suy biến của ϕ tại x. Định nghĩa 1.3.9. Ta nói rằng f là khả vi chặt tại một điểm x ∈ X nếu ∃v ∈ X ∗ sao cho hv, di = lim y→x t↓0 f (y + td) − f (y) , ∀d ∈ X . t Định nghĩa 1.3.10. Cho X ,Y là hai không gian định chuẩn, ánh xạ đa trị F : X ⇒ Y . Đạo hàm contigent (đạo hàm Bowligand), kí hiệu: DFz (.) : X ⇒ Y của F tại điểm z = (x, y) ∈ gphF là ánh xạ đa trị có đồ thị trùng với nón tiếp tuyến Bonligand TgphF (z), tức là DFz (u) = {v ∈ Y : (u, v) ∈ TgphF (z)} với mọi u ∈ X . Nếu F ≡ f là ánh xạ đơn trị, thì ta viết Dfx (.) thay cho DF(x,f (x)) (.). Định nghĩa 1.3.11. Cho X ,Y là hai không gian định chuẩn, ánh xạ đa trị F : X ⇒ Y . Đạo hàm gần kề Db Fz (.) : X ⇒ Y của F tại điểm z = (x, y) ∈ gphF là ánh xạ đa trị có đồ thị trùng với nón tiếp tuyến b TgphF (z), tức là: n o b D Fz (u) = v ∈ Y : (u, v) ∈ TgphF (z) b với mọi u ∈ X . Nếu F ≡ f là ánh xạ đơn trị, thì ta viết Db fx (.) thay cho Db F(x,f (x)) (.). Định nghĩa 1.3.12. Cho X ,Y là hai không gian định chuẩn, ánh xạ đa trị F : X ⇒ Y . Đạo hàm Clarke (đạo hàm tiếp tuyến làm tròn) 11 CFz (.) : X ⇒ Y của F tại điểm z = (x, y) ∈ gphF là ánh xạ đa trị có đồ thị trùng với hình nón tiếp tuyến Clarke CgphF (z), tức là: CFz (u) = {v ∈ Y : (u, v) ∈ CgphF (z)}, với mọi u ∈ X . Định nghĩa 1.3.13. Xét ánh xạ đa trị F : X ⇒ Y giữa các không gian Banach. Đặt domF := {x ∈ X : F (x) ≥ φ}, và gphF := {(x, y) ∈ X×Y : y ∈ F (x)}. Đối đạo hàm Fréchetz của F tại (x̄, ȳ) ∈ gphF và đối đạo hàm qua giới hạn (hay đối đạo hàm Mordukhovich) của F tại (x, y) tương ứng được cho bởi các công thức D̂∗ F (x̄, ȳ)(y ∗ ) := {x∗ ∈ X ∗ : (x∗ , −y ∗ ) ∈ N̂gphF (x̄, ȳ) } D̂∗ F (x̄, ȳ)(y ∗ ) := {x∗ ∈ X ∗ : (x∗ , −y ∗ ) ∈ NgphF (x̄, ȳ) }. Kết luận Chương 1 đã trình bày là một số khái niệm cơ bản về các không gian và ánh xạ làm công cụ để trình bày các chương sau. Chương 2 Hàm khoảng cách và một số ứng dụng Chương 2 dành cho việc trình bày định nghĩa khoảng cách từ môt điểm đến một tập cố định, các tính chất và một số ứng dụng của nó. 2.1 Hàm khoảng cách Định nghĩa 2.1.1. Cho không gian Banach X với chuẩn k.k; C là một tập con cố định trong X , khoảng cách từ một điểm x ∈ X đến C . Kí hiệu: dC (x) hay d(x; C). dC (x) = inf kx − yk. y∈C (I) Nếu C là đóng thì x ∈ C nếu dC (x) = 0. Ví dụ 2.1.1. Cho C = [a, b] ⊂ R. Khoảng cách từ một điểm x ∈ R đến C  khi x ∈ [a, b], 0 dC (x) = a − x khi x < a,  x − b khi x > b. Ví dụ 2.1.2. Khoảng cách từ điểm x = (x0 , y0 ) đến hình tròn B tâm (a, b), bán kính r ( dB (x) = 0qkhi x ∈ B, (x0 − a)2 + (y0 − b)2 − r khi x ∈ / B. 12 13 2.2 Tính chất Định lý 2.2.1. Nếu C là tập lồi thì dC (·) là hàm lồi. Chứng minh. Cho x, y trong X và λ ∈ (0, 1) . Lấy ε > 0, chọn cx , cy trong C sao cho kcx − xk ≤ dC (x) + ε, kcy − yk ≤ dC (y) + ε, và cho c trong C xác định bởi: c = λcx + (1 − λ)cy thì dC (λx + (1 − λ)y) ≤ kc − λx − (1 − λ)yk ≤ λ kcx − xk + (1 − λ) kcy − yk ≤ λdC (x) + (1 − λ)dC (y) + ε. Vì ε là tùy ý, nên định lí được chứng minh. Theo [10 mệnh đề 2.2.7], ξ là dưới gradient của dC tại x ; đó là dC (y) − dC (x) ≥ hξ, y − xi , ∀y ∈ X . Do đó hξ, c − xi ≤ 0, ∀c ∈ C . Hệ quả 2.2.1. Nếu C là lồi thì v ∈ TC (x) khi và chỉ khi d0C (x; v) = d0C (x; v) = 0. Chứng minh. Do C là tập lồi nên dC là lồi (định lý 2.2.1) và theo [10 mệnh đề 2.3.6.] suy ra d0C và d0C là trùng nhau. Hệ quả được chứng minh. Mệnh đề 2.2.1. Hàm dC thỏa mãn điều kiện Lipschitz tổng quát dưới đây trên X |dC (x) − dC (y)| ≤ kx − yk. Chứng minh. Lấy bất kỳ ε > 0, theo định nghĩa, tồn tại điểm c ∈ C sao cho dC (y) ≥ ky − ck − ε. Ta có 14 dC (x) ≤ kx − ck ≤ kx − yk + ky − ck ≤ kx − yk + dC (y) + ε. Do ε là tùy ý, và từ lập luận đó có thể lặp lại với sự thay đổi vai trò của x và y ta có điều phải chứng minh. Định nghĩa 2.2.1. Với x ∈ / C , phép chiếu từ x đến C , kí hiệu PC (x), được định nghĩa bởi PC (x) := {x̄ ∈ C : kx − x̄k = dC (x) }. Định nghĩa 2.2.2. Giả sử x là một điểm trong C . Một véc tơ v trong X là tiếp tuyến đến C tại x nếu d0C (x, v) = 0. Tập tất cả các tiếp tuyến với C tại x, kí hiệu là TC (x). TC (x) := {v ∈ X : d0C (x; v) = 0}. Theo hệ quả trực tiếp của [10 mệnh đề 2.1.2], TC (x) là một nón lồi, đóng trong X (đặc biệt, TC (x) luôn chứa O ). Định nghĩa 2.2.3. Nón pháp tuyến đến C tại x được tạo bởi sự đối cực với Tc (x), kí hiệu NC (x). NC (x) = {ξ ∈ X ∗ : hξ, vi ≤ 0, ∀v ∈ TC (x)}. Mệnh đề 2.2.2. Cho f là Lipschitz với hằng số K trên tập S . Cho x ∈ C ⊂ S và giả sử rằng f đạt tới cực tiểu trên C tại x. Khi đó với bất kỳ K̂ ≥ K , hàm g(y) = f (y)+ K̂dC (y) đạt cực tiểu trên S tại x. Nếu K̂ > K và C là đóng, thì với bất kỳ điểm cực tiểu của g nào khác trên S cũng phải nằm trên C . Chứng minh. Ta chứng minh khẳng định đầu tiên bằng cách giả sử ngược lại. Khi đó có một điểm y trong S và ε > 0 sao cho f (y) + K̂dC (y) < f (x) − K̂ε. Cho c là điểm trong C sao cho ky − ck ≤ dC (y) + ε. Khi đó f (c) ≤ f (y) + K̂ ky − ck ≤ f (y) + K̂(dC (y) + ε) < f (x).
- Xem thêm -