Tài liệu Góp phần bồi dưỡng một số yếu tố năng lực toán học cho học sinh thông qua việc khai thác các bài tập trong chương trình thpt luận văn thạc sỹ giáo dục học

  • Số trang: 114 |
  • Loại file: DOC |
  • Lượt xem: 76 |
  • Lượt tải: 0
tructuyentailieu

Tham gia: 25/05/2016

Mô tả:

1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC VINH TRẦN DUY THÀNH GÓP PHẦN BỒI DƯỠNG MỘT SỐ YẾU TỐ NĂNG LỰC TOÁN HỌC CHO HỌC SINH THÔNG QUA VIỆC KHAI THÁC CÁC BÀI TẬP TRONG CHƯƠNG TRÌNH THPT LUẬN VĂN THẠC SỸ GIÁO DỤC HỌC Vinh, 2011 2 MỞ ĐẦU 1. LÝ DO CHỌN ĐỀ TÀI: Trong giai đoạn hiện nay, trước thời cơ và thách thức mới, để tránh nguy cơ tụt hậu, việc rèn luyện cho HS khả năng tự học, khả năng sáng tạo ngày càng cần thiết và cấp bách. Để đạt được điều đó, một vấn đề quan trọng cần thiết phải đổi mới phương pháp dạy học nhằm tích cực hoá hoạt động học tập của học sinh, làm cho HS học tập trong hoạt động và bằng hoạt động. Để hoàn thành trách nhiệm của mình trước cộng đồng và nâng cao cuộc sống cá nhân, con người cần có một số năng lực nhất định. Năng lực cá nhân chỉ có thể được hình thành và phát triển thông qua hoạt động, trong đó hoạt động học tập có ý nghĩa quan trọng hàng đầu. Yêu cầu then chốt đó đã được phản ánh trong phần mục tiêu của nền giáo dục nước nhà. Do vậy, mục tiêu giáo dục trước hết phải là năng lực suy nghĩ, năng lực hành động của người học. Năng lực này được phát triển trên nền tảng một hệ thống kiến thức cơ bản, vững chắc. Mặt khác, năng lực cá nhân không tự phát triển mà nền giáo dục có trách nhiệm phát hiện và góp phần phát triển năng lực đó. Nói một cách khác, năng lực được hình thành qua các biện pháp phát hiện và nuôi dưỡng nó của bản thân ngành giáo dục nói riêng và toàn xã hội nói chung. Về phía cá nhân, mỗi người phải học tập suốt đời; thời gian học tập ở nhà trường thì có hạn mà kiến thức cần có (dù là tối thiểu) lại tăng lên không ngừng, điều quan trọng là năng lực của chính họ được bồi dưỡng một cách thường xuyên và liên tục thông qua từng môn học cụ thể (Trần Kiều, Thông tin khoa học giáo dục, số 48/1995). Việc phát triển năng lực toán học ở HS là một nhiệm vụ đặc biệt quan trọng của thầy giáo vì hai lý do: Thứ nhất, Toán học có một vai trò to lớn trong sự phát triển của các ngành khoa học, kỹ thuật; sự nghiệp cách mạng cần thiết có một đội ngũ những người có năng lực toán học. Thứ hai, như Nghị quyết Đại hội Đảng Cộng sản Việt Nam lần IV đã ghi rõ: “Trên cơ sở 3 những đòi hỏi tất yếu của cộng đồng của quyền làm chủ tập thể phải bảo đảm sự phát triển phong phú của nhân cách, bồi dưỡng và phát huy sở trường và năng khiếu của cá nhân”. Nhà trường là nơi cung cấp cho HS những cơ sở đầu tiên của Toán học, không ai khác chính thầy giáo là những người hoặc chăm sóc, vun xới cho những mầm mống năng khiếu Toán học của HS, hoặc làm thui chột chúng [26, tr. 130]. Bồi dưỡng năng lực toán học cho HS là một vấn đề thu hút sự quan tâm của các nhà Toán học, các nhà khoa học giáo dục, các giáo viên dạy Toán ở nhiều nước trên thế giới, kể cả Việt Nam. Tuy nhiên, cho đến nay vẫn chưa có được định nghĩa thống nhất về năng lực nói chung và năng lực toán học nói riêng. Có rất nhiều ý kiến khác nhau đề cập tới những thành tố của năng lực toán học mà trong số đó có nhiều tác giả nổi tiếng chẳng hạn như V. A. Krutecxki, A. N. Kôlmôgôrôv, A. I. Marcusêvich, B. V. Gơnhedencô, ... Chương trình Toán ở trường THPT có nhiều tiềm năng thuận lợi cho việc bồi dưỡng một số thành tố của năng lực toán học, bởi vì, Đại số và Giải tích cũng như Hình học có nhiều chủ đề mà trong đó nổi bật lên một số kĩ năng trong quá trình giải quyết nó. Đã có những công trình đề cập đến bồi dưỡng năng lực toán học, chẳng hạn Luận án "Xây dựng hệ thống bài tập số học nhằm bồi dưỡng một số yếu tố năng lực toán học cho học sinh khá, giỏi đầu cấp THCS" của Trần Đình Châu, nhưng công trình này chỉ chủ yếu nói về cách thức xây dựng hệ thống bài tập nhằm bồi dưỡng một số yếu tố năng lực toán học cho HS đầu cấp THCS trong dạy học Số học. Đến nay, việc nghiên cứu việc bồi dưỡng năng lực toán học cho HS trung học phổ thông vẫn còn nhiều vấn đề khó khăn và vướng mắc. 4 Vì những lý do trên đây mà chúng tôi chọn đề tài nghiên cứu của Luận văn là: “Góp phần bồi dưỡng một số yếu tố năng lực toán học cho HS thông qua việc khai thác các bài tập trong chương trình THPT”. 2. MỤC ĐÍCH NGHIÊN CỨU: Mục đích của Luận văn là nghiên cứu việc bồi dưỡng một số yếu tố năng lực toán học cho HS trung học phổ thông trong việc khai thác các bài tập ở chương trình THPT. 3. NHIỆM VỤ NGHIÊN CỨU: Luận văn có nhiệm vụ giải đáp các câu hỏi khoa học sau: 3.1. Có những quan điểm nào về cấu trúc của năng lực toán học? 3.2. Từ việc tổng hợp các quan điểm nói ở 3.1, sẽ chọn ra một số yếu tố nào để bồi dưỡng cho HS trung học phổ thông trong dạy học nhằm khai thác các bài toán trong chương trình THPT? 3.3. Những căn cứ nào làm cơ sở để chọn lọc các thành tố mà ta sẽ xem xét vấn đề bồi dưỡng? 3.4. Những biện pháp nào sẽ được sử dụng để bồi dưỡng các yếu tố đó? 3.5. Thực nghiệm sư phạm. 4. PHƯƠNG PHÁP NGHIÊN CỨU: Luận văn sử dụng các phương pháp sau đây trong quá trình nghiên cứu: 4.1. Nghiên cứu lý luận: tìm hiểu, nghiên cứu các tài liệu về các vấn đề liên quan đến đề tài Luận văn. 4.2. Điều tra quan sát: thực trạng về năng lực toán học của học sinh trung học phổ thông. 4.3. Thực nghiệm sư phạm: tổ chức thực nghiệm sư phạm để xem xét tính khả thi và hiệu quả của các biện pháp sư phạm đã đề xuất. 5. GIẢ THUYẾT KHOA HỌC: Nếu dựa vào những cơ sở lý luận và thực tiễn thì có thể xác định được một số yếu tố năng lực toán học cần phải bồi dưỡng; đồng thời, nếu xác định 5 được một số biện pháp sư phạm thích hợp thì có thể góp phần bồi dưỡng cho HS trung học phổ thông những yếu tố này trong quá trình dạy Toán. 6. ĐÓNG GÓP CỦA LUẬN VĂN: 6.1. Góp phần làm rõ thêm về sơ đồ cấu trúc năng lực toán học của học sinh; 6.2. Đã nêu lên được những khó khăn, những sai lầm phổ biến của học sinh khi đứng trước các vấn đề toán học – mà việc giải quyết các vấn đề đó đòi hỏi một sự thể hiện về các yếu tố năng lực toán học; 6.3. Đưa ra được những biện pháp sư phạm nhằm góp phần phát triển bốn năng lực thành tố cho học sinh THPT trong dạy học môn Toán; 6.4. Luận văn có thể được sử dụng làm tài liệu tham khảo cho giáo viên Toán nhằm góp phần nâng cao hiệu quả dạy học môn Toán ở trường trung học phổ thông. 7. CẤU TRÚC CỦA LUẬN VĂN: Luận văn, ngoài phần Mở đầu, Kết luận và Tài liệu tham khảo, có 3 chương: CHƯƠNG 1: TỔNG QUAN CÁC QUAN ĐIỂM VỀ CẤU TRÚC NĂNG LỰC TOÁN HỌC 1.1. Khái niệm năng lực. 1.2. Khái niệm năng lực toán học. 1.3. Các quan điểm về cấu trúc năng lực toán học. 1.4. Một số nhận định. 1.5. Kết luận Chương 1. CHƯƠNG 2: “GÓP PHẦN BỒI DƯỠNG MỘT SỐ YẾU TỐ NĂNG LỰC TOÁN HỌC CHO HS THÔNG QUA VIỆC KHAI THÁC CÁC BÀI TẬP TRONG CHƯƠNG TRÌNH THPT”. 6 2.1. Các điểm tựa để xác định các yêú tố. 2.2. Các yêú tố năng lực cần bồi dưỡng cho học sinh. 2.3. Góp phần bồi dưỡng một số yêú tố của năng lực toán học. 2.4. Kết luận chương 2. CHƯƠNG 3: THỰC NGHIỆM SƯ PHẠM . 3.1. Mục đích thực nghiệm. 3.2. Tổ chức và nội dung thực nghiệm. 3.3. Đánh giá kết quả thực nghiệm. 3.4. Kết luận. 7 CHƯƠNG I TỔNG QUAN CÁC QUAN ĐIỂM VỀ CẤU TRÚC CỦA NĂNG LỰC TOÁN HỌC 1.1. Khái niệm năng lực Kết quả nghiên cứu của các công trình tâm lý học và giáo dục học cho thấy, từ nền tảng là các khả năng ban đầu, trẻ em bước vào hoạt động. Qua quá trình hoạt động mà dần hình thành cho mình những tri thức, kỹ năng, kỹ xảo cần thiết và ngày càng phong phú, rồi từ đó nảy sinh những khả năng mới với mức độ mới cao hơn. Đến một lúc nào đó, trẻ em đủ khả năng bên trong để giải quyết những hoạt động ở những yêu cầu khác xuất hiện trong học tập và cuộc sống thì lúc đó học sinh sẽ có được một năng lực nhất định. Dưới đây là một số cách hiểu về năng lực: +) Định nghĩa 1: Năng lực là phẩm chất tâm lý tạo ra cho con người khả năng hoàn thành một loại hoạt động nào đó với chất lượng cao [56]. +) Định nghĩa 2: Năng lực là một tổ hợp những đặc điểm tâm lý của con người, đáp ứng được yêu cầu của một hoạt động nhất định và là điều kiện cần thiết để hoàn thành có kết quả một số hoạt động nào đó [1]. +) Định nghĩa 3: Năng lực là những đặc điểm cá nhân của con người đáp ứng yêu cầu của một loại hoạt động nhất định và là điều kiện cần thiết để hoàn thành xuất sắc một số loại hoạt động nào đó (Dẫn theo[2]). Như vậy, cả ba định nghĩa đó đều có điểm chung là: năng lực chỉ nảy sinh và quan sát được trong hoạt động giải quyết những yêu cầu mới mẻ, và do đó nó gắn liền với tính sáng tạo, tuy nó có khác nhau về mức độ (định nghĩa 3 gắn với mức độ hoàn thành xuất sắc). Mọi năng lực của con người được biểu lộ ở những tiêu chí cơ bản như tính dễ dàng, nhẹ nhàng, linh hoạt, thông minh, tính nhanh nhẹn, hợp lý, sáng tạo và độc đáo trong giải quyết nhiệm vụ ... 8 Phần lớn các công trình nghiên cứu tâm lý học và giáo dục học đều thừa nhận rằng con người có những năng lực khác nhau vì có những tố chất riêng, tức là sự thừa nhận sự tồn tại của những tố chất tự nhiên của cá nhân thuận lợi cho sự hình thành và phát triển của những năng lực khác nhau. 1.2. Khái niệm năng lực toán học Theo V. A. Krutecxki [33, tr. 13] năng lực toán học được hiểu theo 2 ý nghĩa, 2 mức độ: Một là, theo ý nghĩa năng lực học tập (tái tạo) tức là năng lực đối với việc học Toán, đối với việc nắm giáo trình Toán học ở trường phổ thông, nắm một cách nhanh và tốt các kiến thức, kỹ năng, kỹ xảo tương ứng. Hai là, theo ý nghĩa năng lực sáng tạo (khoa học), tức là năng lực hoạt động sáng tạo Toán học, tạo ra những kết quả mới, khách quan có giá trị lớn đối với xã hội loài người. Giữa hai mức độ hoạt động toán học đó không có một sự ngăn cách tuyệt đối. Nói đến năng lực học tập Toán không phải là không đề cập tới năng lực sáng tạo. Có nhiều em học sinh có năng lực, đã nắm giáo trình Toán học một cách độc lập và sáng tạo, đã tự đặt và giải các bài toán không phức tạp lắm; đã tự tìm ra các con đường, các phương pháp sáng tạo để chứng minh các định lý, độc lập suy ra các công thức, tự tìm ra các phương pháp giải độc đáo những bài toán không mẫu mực ... Với mức độ học sinh trung bình và khá, Luận văn chỉ chủ yếu tiếp cận NLTH theo góc độ thứ nhất (năng lực học Toán). Sau đây là một số định nghĩa về NLTH: Định nghĩa 1: Năng lực học tập Toán học là các đặc điểm tâm lý cá nhân (trước hết là các đặc điểm hoạt động trí tuệ) đáp ứng yêu cầu hoạt động toán học và giúp cho việc nắm giáo trình Toán một cách sáng tạo, giúp cho việc nắm một cách tương đối nhanh, dễ dàng và sâu sắc kiến thức, kỹ năng và kỹ xảo toán học [33, tr. 14]. 9 Định nghĩa 2: Những năng lực học Toán được hiểu là những đặc điểm tâm lý cá nhân (trước hết là những đặc điểm hoạt động trí tuệ) đáp ứng yêu cầu của hoạt động toán học, và trong những điều kiện vững chắc như nhau thì là nguyên nhân của sự thành công trong việc nắm vững một cách sáng tạo Toán học với tư cách là một môn học, đặc biệt nắm vững tương đối nhanh, dễ dàng và sâu sắc kiến thức, kỹ năng, kỹ xảo trong lĩnh vực Toán học [26, tr. 126]. Nói đến HS có năng lực toán học là nói đến HS có trí thông minh trong việc học Toán. Tất cả mọi HS đều có khả năng và phải nắm được chương trình trung học, nhưng các khả năng đó khác nhau từ HS này qua HS khác. Các khả năng này không phải cố định, không thay đổi: Các năng lực này không phải nhất thành bất biến mà hình thành và phát triển trong quá trình học tập, luyện tập để nắm được hoạt động tương ứng; vì vậy, cần nghiên cứu để nắm được bản chất của năng lực và các con đường hình thành, phát triển, hoàn thiện năng lực. Tuy nhiên, ở mỗi người cũng có khác nhau về mức độ NLTH. Do vậy, trong dạy học Toán, vấn đề quan trọng là chọn lựa nội dung và phương pháp thích hợp để sao cho mọi đối tượng HS đều được nâng cao dần về mặt NLTH. Về vấn đề này nhà Toán học Xôviết nổi tiếng, Viện sĩ A. N. Kôlmôgôrôv cho rằng: “Năng lực bình thường của HS trung học đủ để cho các em đó tiếp thu, nắm được Toán học trong trường trung học với sự hướng dẫn tốt của thầy giáo hay với sách tốt”. 1.3. Các quan điểm về cấu trúc năng lực toán học 1.3.1. Quan điểm của V. A. Krutecxki V. A. Krutecxki – nguyên Phó Viện trưởng Viện nghiên cứu Tâm lý học thuộc Viện Hàn lâm khoa học giáo dục Liên Xô trước đây, đã nghiên cứu tâm lý năng lực toán học với công trình đồ sộ “Tâm lý năng lực toán học” – Luận án Tiến sĩ của ông được Hội đồng bác học Liên Xô đánh giá rất cao. Công trình là kết quả của việc nghiên cứu lý luận và thực tiễn, có tiến hành thực 10 nghiệm hết sức công phu, được tiến hành từ năm 1955 đến 1968. Ông đã nghiên cứu sâu sắc về mặt lý luận, tham khảo hơn 747 tài liệu trong và ngoài nước. Về mặt thực tiễn, Ông đã quan sát tự nhiên; theo dõi sự phát triển của HS có năng khiếu về Toán; thực nghiệm trên 157 HS giỏi, trung bình và kém; nghiên cứu tình trạng học tập (qua tài liệu) về các bộ môn của khoảng 1000 HS từ lớp VII đến lớp X; tiến hành tọa đàm với 62 giáo viên dạy Toán; phỏng vấn bằng giấy đối với 56 giáo viên Toán; phỏng vấn bằng giấy đối với 21 nhà Toán học; nghiên cứu và phân tích tiểu sử của 84 nhà toán học và vật lý học nổi tiếng trong và ngoài nước ... . Chính vì độ tin cậy trên về những kết luận khoa học của V. A. Krutecxki nên Luận văn sẽ kế thừa kết quả và là điểm tựa quan trọng về cơ sở khoa học của đề tài. Kết quả chủ yếu và quan trọng nhất là Ông đã chỉ ra cấu trúc năng lực toán học của học sinh bao gồm những thành phần sau (dựa theo quan điểm của Lý thuyết thông tin): * Về mặt thu nhận thông tin toán học Đó là năng lực tri giác hình thức hoá tài liệu Toán học, năng lực nắm cấu trúc hình thức của bài toán. * Về mặt chế biến thông tin toán học 1) Năng lực tư duy lôgic trong lĩnh vực các quan hệ số lượng và không gian, hệ thống ký hiệu số và dấu. Năng lực tư duy bằng các ký hiệu toán học; 2) Năng lực khái quát hóa nhanh và rộng các đối tượng, quan hệ toán học và các phép toán; 3) Năng lực rút gọn quá trình suy luận toán học và hệ thống các phép toán tương ứng. Năng lực tư duy bằng các cấu trúc rút gọn; 4) Tính linh hoạt của quá trình tư duy trong hoạt động toán học; 5) Khuynh hướng vươn tới tính rõ ràng đơn giản, tiết kiệm, hợp lý của lời giải; 11 6) Năng lực nhanh chóng và dễ dàng sửa lại phương hướng của quá trình tư duy, năng lực chuyển từ tiến trình tư duy thuận sang tiến trình tư duy đảo (trong suy luận toán học). * Về mặt lưu trữ thông tin toán học Trí nhớ toán học (trí nhớ khái quát về các: quan hệ toán học; đặc điểm về loại; sơ đồ suy luận và chứng minh; phương pháp giải toán; nguyên tắc, đường lối giải toán). * Về thành phần tổng hợp khái quát Khuynh hướng toán học của trí tuệ. Các thành phần nêu ở trên có quan hệ mật thiết lẫn nhau, ảnh hưởng lẫn nhau và hợp thành hệ thống định nghĩa một cấu trúc toàn vẹn của năng lực toán học. Sơ đồ triển khai của cấu trúc NLTH có thể được biểu thị bằng một công thức khác, cô đọng hơn: Năng lực toán học được đặc trưng bởi tư duy khái quát, gọn, tắt và linh hoạt trong lĩnh vực các quan hệ toán học, hệ thống ký hiệu số và dấu, và bởi khuynh hướng toán học của trí tuệ [33, tr. 170]. Cùng với cấu trúc nói trên, V. A. Krutecxki cũng đưa ra những gợi ý về phương pháp bồi dưỡng NLTH cho HS. Nghiên cứu quan điểm của V. A. Krutecxki về năng lực toán học, có thể thấy một số vấn đề quan trọng sau: +) Về mặt lý luận 1) Theo V. A. Krutecxki thì nói đến HS có NLTH là nói đến HS có trí thông minh trong việc học toán; 2) Vấn đề năng lực chính là vấn đề khác biệt cá nhân. Khi nói về năng lực tức là giả định rằng có sự khác biệt về những mặt nào đó giữa các cá nhân, chẳng hạn về NLTH. Điều quan trọng năng lực không chỉ là bẩm sinh mà còn được phát sinh và phát triển trong hoạt động, trong đời sống của mỗi cá nhân; 12 3) Khi nói đến năng lực tức là nói đến năng lực trong một loại hoạt động nhất định của con người. Năng lực toán học cũng vậy, nó chỉ tồn tại trong hoạt động toán học và chỉ trên cơ sở phân tích hoạt động toán học mới thấy được biểu hiện của năng lực toán học; 4) Hiệu quả hoạt động trong một lĩnh vực nào đó của con người thường phụ thuộc vào một tổ hợp năng lực. Kết quả học tập Toán cũng không nằm ngoài quy luật đó, ngoài ra còn phụ thuộc vào một số yếu tố khác, chẳng hạn niềm say mê, thái độ chăm chỉ trong học tập, sự khuyến khích hỗ trợ của giáo viên, của gia đình và xã hội. Nghiên cứu về nguồn gốc của năng lực và tài năng mặc dầu còn nhiều trường phái khác nhau, nhưng các nhà tâm lý học đã dần dần đi đến thống nhất trên một số quan điểm cơ bản sau: - Thứ nhất: Những tố chất bẩm sinh - di truyền là điều kiện cần thiết ban đầu cho sự phát triển năng lực. - Thứ hai: Năng lực của con người có nguồn gốc xã hội, mang bản chất xã hội - lịch sử. Thứ ba: Năng có nguồn gốc từ hoạt động, là sản phẩm của hoạt động. * Về mặt thực tiễn 1) Trong lĩnh vực đào tạo con người phải nghiên cứu NL của mỗi người trong lĩnh vực đào tạo, phải biết những phương pháp tốt nhất để bồi dưỡng năng lực đó; 2) Năng lực toán học là năng lực tạo thành các mối liên tưởng khái quát, tắt, linh hoạt, ngược và hệ thống của chúng dựa trên tài liệu toán học. Các năng lực đã nêu biểu hiện với các mức độ khác nhau ở các em HS giỏi, trung bình, kém. ở các em năng khiếu và giỏi thì các mối liên tưởng đó được tạo thành ngay tức khắc sau một số ít bài tập, ở các em trung bình thì muốn hình thành các mối liên tưởng phải cần cả một hệ thống bài tập và phải có sự rèn luyện. 13 1.3.2. Quan điểm của A. N. Kôlmôgôrôv Trong cuốn sách Về nghề nghiệp của nhà Toán học, A. N. Kôlmôgôrôv đã chỉ ra rằng, năng lực ghi nhớ máy móc một số lượng lớn các sự kiện, công thức, cộng và nhân nhẩm hàng dãy dài các số có nhiều chữ số không quan hệ đến NLTH. Trong thành phần các năng lực toán học, ông nêu ra: 1) Năng lực biến đổi thành thạo các biểu thức chữ phức tạp, năng lực tìm kiếm các cách hay để giải các phương trình không phù hợp với qui tắc giải thông thường, hoặc như các nhà Toán học gọi là năng lực tính toán hay năng lực “angôrit”; 2) Trí tưởng tượng hình học hoặc “trực giác hình học”; 3) Nghệ thuật suy luận lôgic, được phân nhỏ hợp lý, tuần tự. Có thể nói rằng tiêu chuẩn của sự trưởng thành lôgic cần thiết cho nhà Toán học là hiểu nguyên nhân quy nạp toán học và có kỹ năng vận dụng nó một cách đúng đắn. Ông còn nhấn mạnh rằng: các khía cạnh khác nhau của năng lực toán học thường được gặp trong các tổ hợp khác nhau và các năng lực này thường bộc lộ rất sớm và đòi hỏi phải luyện tập liên tục. 1.3.3. Quan điểm của A. I. Marcusêvich Viện sĩ A. I. Marcusêvich đã chỉ ra 6 phẩm chất sau đây của trí tuệ và tính cách cần được giáo dục cùng với việc dạy Toán: 1) Có kỹ năng biết tách ra cái bản chất của vấn đề và loại bỏ các chi tiết không cơ bản (kỹ năng trừu tượng hoá); 2) Kỹ năng xây dựng được sơ đồ của hiện tượng sao cho trong đó chỉ giữ lại những gì cần thiết cho việc giải thích vấn đề về mặt Toán học, đó chính là các quan hệ thuộc, thứ tự, số lượng và độ đo, phân bố không gian (kỹ năng sơ đồ hoá); 3) Kỹ năng rút ra các hệ quả lôgic từ các tiên đề đã cho (tư duy suy diễn); 14 4) Kỹ năng phân tích vấn đề đã cho thành các trường hợp riêng, kỹ năng phân biệt được khi nào chúng bao quát được mọi khả năng, khi nào chúng chỉ là các ví dụ chứ không bao quát hết mọi khả năng; 5) Kỹ năng vận dụng các kết quả rút ra được từ các suy luận lý thuyết cho các vấn đề cụ thể và đối chiếu các kết quả đó với các kết quả dự kiến, kỹ năng đánh giá ảnh hưởng của việc thay đổi các điều kiện đến độ tin cậy của các kết quả; 6) Khái quát hoá các kết quả nhận được và đặt ra những vấn đề mới ở dạng khái quát. 1.3.4. Quan điểm của X. I. Svacxbuốc X. I. Svacxbuốc sau khi khái quát hoá ý kiến của các nhà Toán học, đã nghiên cứu các yếu tố sau đây trong sự phát triển Toán học: 1) Các biểu tượng không gian; 2) Tư duy trừu tượng; 3) Chuyển thành sơ đồ toán học; 4) Tư duy suy diễn; 5) Phân tích, xem xét các trường hợp riêng; 6) Áp dụng các kết luận; 7) Tính phê phán; 8) Ngôn ngữ toán học; 9) Kiên trì khi giải toán. 1.3.5. Quan điểm của B. V. Gơnhedencô Viện sĩ B. V. Gơnhedencô trong một loạt bài báo đăng trên Tạp chí “Toán học trong nhà trường” trong các năm từ 1962 đến 1965 đã đưa ra các tính chất sau đây của tư duy toán học: 1) Năng lực nhìn thấy được tính không rõ ràng của suy luận, thấy được sự thiếu vắng các mắt xích cần thiết của chứng minh; 2) Có thói quen lý giải lôgic một cách đầy đủ; 15 3) Chia nhỏ một cách rõ ràng tiến trình suy luận; 4) Sự cô đọng; 5) Sự chính xác của kí hiệu. 1.3.6. Quan điểm của UNESCO Theo quan điểm của Tổ chức UNESCO thì 10 yếu tố cơ bản của NLTH đó là: 1) Năng lực phát biểu và tái hiện định nghĩa, kí hiệu, các phép toán và các khái niệm; 2) Năng lực tính nhanh, cẩn thận, và sử dụng các kí hiệu; 3) Năng lực dịch chuyển dữ kiện kí hiệu; 4) Năng lực biểu diễn dữ kiện bằng các kí hiệu; 5) Năng lực theo dõi một hướng suy luận hay chứng minh; 6) Năng lực xây dựng một chứng minh; 7) Năng lực áp dụng quan niệm cho bài toán toán học; 8) Năng lực áp dụng cho bài toán không toán học; 9) Năng lực phân tích bài toán và xác định các phép toán có thể áp dụng; 10) Năng lực tìm cách khái quát hoá toán học. 1.3.7. Quan điểm của một số tác giả khác 1.3.7.1. Quan điểm của E. L. Thorndike So với các tác giả đề cập ở trên, khi nghiên cứu về năng lực toán học của học sinh, E. L. Thorndike đã đi sâu vào lĩnh vực Đại số. Theo E. L. Thorndike, những thành tố của năng lực Đại số gồm: 1) Năng lực hiểu và thiết lập công thức; 2) Năng lực biểu diễn các tương quan số lượng thành công thức; 3) Năng lực biến đổi công thức; 4) Năng lực thiết lập các phương trình biểu diễn các quan hệ số lượng đã cho; 16 5) Năng lực giải phương trình; 6) Năng lực thực hiện các phép biến đổi đại số đồng nhất; 7) Năng lực biểu diễn bằng đồ thị phụ thuộc hàm của hai đại lượng. 1.3.7.2. Quan điểm của G. Tômac G. Tômac đưa ra cấu trúc năng lực toán học bao gồm các thành tố sau: 1) Năng lực trừu tượng hóa; 2) Năng lực suy luận lôgic; 3) Tri giác đặc thù; 4) Có kỹ năng sử dụng các công thức; 5) Năng lực trực giác; 6) Trí tưởng tượng toán học. 1.3.7.3. Quan điểm của Pellery 1) Nhìn thấy những quan hệ, những điều cần phải phân biệt (chẳng hạn giả thiết và kết luận); 2) Lưu trữ và dịch chuyển (qua lời, đồ thị và kí hiệu); 3) Năng lực theo dõi một số hướng suy luận; 4) Năng lực hiểu bài toán; 5) Năng lực theo dõi những con đường giải toán; 6) Khái quát hoá, mở rộng bằng tương tự. Tìm một mô hình thích hợp (trong các mô hình đã biết); 7) Xây dựng một mô hình toán học có thể giải bài toán; 8) Xây dựng một thuật toán để giải toán. 1.4. Một số nhận định Ở mục 1.3 chúng tôi đã trình bày các quan điểm về cấu trúc năng lực toán học của HS của các nhà khoa học khác nhau. Xem xét, so sánh các quan điểm chúng tôi nhận ra giữa các quan điểm đều có chung một số thành tố năng lực toán học (có thể cách diễn đạt ở mỗi quan điểm có khác nhau). Chẳng hạn, năng lực phân chia trường hợp riêng đều có trong các quan điểm 17 của A. N. Kôlmôgôrôv, X. I. Svacxbuốc, B. V. Gơnhedencô, ...; năng lực suy luận lôgic có trong quan điểm của V. A. Krutecxki, A. N. Kôlmôgôrôv, X. I. Svacxbuốc, B. V. Gơnhedencô, ...; năng lực khái quát hóa có trong các quan điểm của V. A. Krutecxki, A. I. Marcusêvich, ..., năng lực diễn đạt các vấn đề toán học theo những cách khác nhau có trong quan điểm của X. I. Svacxbuốc, Pellery, … Tuy nhiên, giữa các quan điểm vẫn có những thành tố năng lực chưa thống nhất hoặc có những quan điểm vẫn chưa thể đưa ra đầy đủ các thành tố trong cấu trúc năng lực toán học của HS. Chẳng hạn, năng lực khái quát hoá theo V. A. Krutecxki là một trong những năng lực cơ bản trong cấu trúc năng lực toán học, đó là năng lực khái quát hoá các đối tượng, quan hệ toán học và các phép toán; Ông cũng cho rằng năng lực khái quát hóa tài liệu toán học là năng lực đặc thù. Nhưng khi đưa ra cấu trúc năng lực toán học của HS, Viện sĩ A. I. Marcusêvich lại không đề cập năng lực khái quát hoá mà chỉ coi trọng năng lực trừu tượng hoá (kỹ năng biết tách ra cái bản chất của vấn đề và loại bỏ các chi tiết không cơ bản). Mặt khác, khi bắt đầu quá trình tư duy và trong mỗi lần chuyển hướng tương tự, thường phải đánh giá tình huống với mục đích lựa chọn một tìm tòi hợp lý hơn. Trong các tình huống toán học hoàn toàn mới mà kinh nghiệm không có đủ để giải quyết, lúc này vai trò chính lại là trực giác toán học, sự nhạy bén của tư duy, năng lực dự đoán phương hướng tìm kiếm có thể đưa đến mục đích. Mặc dù, trực giác toán học cho đến nay vẫn còn ít được nghiên cứu (cũng như bản chất, cơ chế của quá trình tư duy nói chung) nhưng sự tồn tại của nó đã được khẳng định bởi các nhà Toán học vĩ đại có kinh nghiệm sáng tạo khoa học cũng như các nhà Sư phạm Toán có nhiều kinh nghiệm và đã có thời gian dài theo dõi tư duy của các em HS có năng lực về Toán. Chẳng hạn, nhà toán học Pháp vĩ đại A. Poăngcarê thừa nhận có tính đặc thù của năng lực sáng tạo toán học và đã chỉ ra thành phần quan trọng nhất của chúng 18 là trực giác toán học; trong sơ đồ cấu trúc về năng lực toán học của HS của Viện sĩ A. N. Kôlmôgôrôv cũng đã nói về trực giác nhưng trực giác theo một nghĩa hẹp (trực giác hình học). Nhưng trên thực tế, như chúng ta đã biết trực giác có thể mang tính lôgic. ở đây, trực giác toán học cần được coi như một năng lực phức hợp đoán định trước các kết quả mà cách thức dẫn đến mục đích của tư duy sáng tạo trong lĩnh vực Toán học. Tư duy lôgic không tham gia trực tiếp vào hành động trực giác (vai trò của nó chưa nhận thức được), nhưng nhất thiết sau đó nó phải được lôi cuốn vào để kiểm tra tính đúng đắn của dự đoán trực giác; G. Tômac cũng rất coi trọng vai trò của trực giác trong việc sáng tạo Toán học. Vì vậy, trực giác toán học không chỉ là nhân tố phức hợp quan trọng nhất trong năng lực sáng tạo khoa học mà nó cần phải có trong thành phần sơ đồ khái quát của cấu trúc năng lực toán học. 1.5. Kết luận chương 1 Trong Chương I, Luận văn trình bày một số cách hiểu về khái niệm năng lực toán học và các quan điểm về những thành phần của năng lực toán học của một số nhà khoa học . Sự so sánh, đối chiếu các quan điểm đã cho thấy rằng, đến nay vẫn chưa có một quan điểm thống nhất về những thành tố của năng lực toán học. Có rất nhiều quan điểm, mỗi quan điểm nhấn mạnh một số loại thành tố nào đó, mỗi quan điểm đều có những nét hợp lý riêng khi ta đối chiếu với một bậc học nào đó (chẳng hạn, V. A. Krutecxki thì thiên về các giai đoạn cơ bản của việc giải bài tập của HS cấp I hoặc cấp II). 19 CHƯƠNG II GÓP PHẦN BỒI DƯỠNG MỘT SỐ YẾU TỐ CỦA NĂNG LỰC TOÁN HỌC CHO HỌC SINH TRUNG HỌC PHỔ THÔNG, THÔNG QUA VIỆC KHAI THÁC CÁC BÀI TẬP TOÁN TRONG CHƯƠNG TRÌNH THPT 2.1. Các điểm tựa để xác định các năng lực thành tố Để xác định được các năng lực thành tố cần bồi dưỡng cho học sinh trung học phổ thông trong dạy học khai thác các bài tập, chúng tôi dựa vào các điểm tựa sau: - Những thành tố đưa ra phải thực sự có ý nghĩa đối với dạy học thông qua việc khai thác các bài tập ở trường trung học phổ thông; - Chương trình THPT có nhiều tiềm năng để bồi dưỡng các năng lực thành tố đó; - Các năng lực thành tố phải xuất hiện trong những quan điểm của các nhà khoa học; - Trong thực tiễn học Toán, học sinh còn có những hạn chế về những năng lực thành tố này. 2.2. Các yêú tố năng lực toán học cần bồi dưỡng cho học sinh 2.2.1. Năng lực phân chia trường hợp 2.2.1.1. Trong việc trình bày lý thuyết, hệ thống hoá các kiến thức, cũng như khi giải toán biện luận, ... ta cần phải phân chia một khái niệm. Trong lôgic học, người ta quan niệm: “Phân chia khái niệm là thao tác lôgic, chia các đối tượng thuộc ngoại diên khái niệm cần phải phân chia thành các nhóm theo những tiêu chuẩn nhất định” [45, tr. 72]. Nói cách khác, phân chia một khái niệm tức là đem ngoại diên của khái niệm ấy chia thành nhiều bộ phận [11, tr. 141]. Phân loại là phân chia một tập hợp đối tượng cho trước thành những tập hợp con, dựa trên cơ sở một dấu hiệu chung. 20 Giữa phân chia khái niệm và phân loại thường không có sự phân biệt rõ ràng, người ta thường dùng phân loại theo nghĩa phân chia khái niệm. Việc phân chia, phân loại phải tuân theo một số quy tắc nhất định: + Sự phân chia (phân loại) phải triệt để, không bỏ sót; + Sự phân chia (phân loại) không trùng lặp; + Cùng một lúc không được đưa vào nhiều dấu hiệu khác nhau để phân chia (phân loại); + Phân chia phải liên tục [45, tr. 141]. 2.2.1.2. Trong môn Toán THPT, nói riêng trong môn Đại số và Giải tích, hay Hình học có nhiều tình huống liên quan đến việc phân chia và xem xét các trường hợp riêng. Chẳng hạn: - Lớp các bài toán giải và biện luận phương trình, hệ phương trình, hệ bất phương trình có chứa tham số; - Lớp các bài toán tìm điều kiện của tham số để một phương trình hoặc bất phương trình, hệ phương trình, hệ bất phương trình (chứa tham số) thỏa mãn một yêu cầu nào đó về tập nghiệm; - Lớp các bài toán về giải phương trình, bất phương trình mà tập xác định của nó cần phải được tách thành các bộ phận để thuận lợi cho việc sử dụng các phép biến đổi tương đương; - Lớp các bài toán tích phân liên quan đến việc chọn cận trung gian; - Lớp các bài toán về đại số tổ hợp; - Lớp các bài toán về phép biến hình; - Lớp các bài toán về thiết diện; - Lớp các bài toán về đường thẳng vuông góc; - Lớp các bài toán về thể tích Trong khi ở trường THCS học sinh chủ yếu làm việc với phương trình, bất phương trình, hệ phương trình, hệ bất phương trình với hệ số bằng số thì ở các lớp THPT, đi sâu vào những phương trình, bất phương trình hệ phương
- Xem thêm -