Đăng ký Đăng nhập
Trang chủ Giải một số phương trình tích phân tuyến tính và áp dụng...

Tài liệu Giải một số phương trình tích phân tuyến tính và áp dụng

.PDF
67
113
56

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------- ĐÀO THỊ THANH GIẢI MỘT SỐ PHƯƠNG TRÌNH TÍCH PHÂN TUYẾN TÍNH VÀ ÁP DỤNG Chuyên ngành: TOÁN GIẢI TÍCH Mã số: 60.46.01.02 LUẬN VĂN THẠC SỸ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. LÊ HUY CHUẨN Hà Nội – Năm 2014 Mục lục MỞ ĐẦU 2 1 KIẾN THỨC CHUẨN BỊ 1.1 Khái niệm phương trình tích phân . . . . . . . . . . . . . . . . . . 1.2 Một số kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . 1.3 Phương trình tích phân Fredholm loại hai với nhân tách biến . . . 4 4 5 9 2 PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT 2.1 Phương pháp thế liên tiếp . . . . . . . . . . . . . . . . . . . . . . . 2.2 Phương pháp xấp xỉ liên tiếp . . . . . . . . . . . . . . . . . . . . . 2.3 Các định lý Fredholm . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Cấu trúc của nhân giải . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 17 21 30 3 PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN HERMITIAN 3.1 Một số tính chất của nhân Hermitian . . . . . . . . . . . . . . . . 3.2 Các giá trị riêng của nhân Hermitian . . . . . . . . . . . . . . . . . 3.3 Các hàm riêng của nhân Hermitian . . . . . . . . . . . . . . . . . . 3.4 Định lý Hilbert-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 35 37 45 52 65 66 1 MỞ ĐẦU Các phương trình tích phân xuất hiện rất tự nhiên khi ta nghiên cứu các bài toán lý thuyết cũng như các bài toán xuất phát từ vật lý, cơ học, · · · . Hai loại phương trình tích phân rất quan trọng được nghiên cứu và phát triển vào đầu thế kỉ 20 là phương trình tích phân Fredholm và phương trình tích phân Volterra. Trong luận văn này ta chỉ xét phương trình tích phân Fredholm. Ta sẽ nghiên cứu sự tồn tại nghiệm của phương trình tích phân Fredholm loại hai và chỉ ra phương pháp giải cụ thể trong một số trường hợp. Luận văn được chia thành ba chương: Chương 1. Kiến thức chuẩn bị. Chương này cung cấp cơ sở lý thuyết cho hai chương sau, bao gồm định nghĩa về phương trình tích phân và phân loại các dạng phương trình tích phân. Sau đó là một số tính chất và kí hiệu liên quan đến phương trình tích phân Fredholm loại hai. Thứ ba là định lý Fredholm trong trường hợp nhân có dạng tách biến. Chương 2. Phương trình tích phân Fredholm loại hai đối với nhân tổng quát. Mục đích của chương này là trình bày về phương trình tích phân Fredholm loại hai, đưa ra một số phương pháp giải là phương pháp thế liên tiếp, phương pháp xấp xỉ liên tiếp và một số ví dụ minh họa. Sau đó ta sẽ kết hợp cả hai phương pháp này để chứng minh định lý Fredholm trong trường hợp nhân tổng quát và đi xây dựng toán tử giải của nó. Chương 3. Phương trình tích phân Fredholm loại hai đối với nhân Hermitian. Chương này đưa ra khái niệm hạt Hermitian, một số tính chất của hạt nhân và toán tử Hermitian. Sau đó chứng minh định lý Hilbert-Schmidt và đưa ra công thức nghiệm của phương trình tích phân Fredholm loại hai với nhân Hermitian. Các kết quả chính trong luận văn được trình bày dựa trên tài liệu tham khảo [9]. 2 Lời cảm ơn Luận văn này được hoàn thành dưới sự hướng dẫn nhiệt tình và nghiêm khắc của TS. Lê Huy Chuẩn. Thầy đã dành nhiều thời gian hướng dẫn cũng như giải đáp các thắc mắc của tôi trong suốt quá trình làm luận văn. Tôi muốn bày tỏ lòng biết ơn sâu sắc đến thầy. Qua đây, tôi xin gửi tới quý thầy cô Khoa Toán-Cơ-Tin học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, cũng như các thầy cô đã tham gia giảng dạy khóa cao học 2011- 2013, lời cảm ơn sâu sắc nhất đối với công lao dạy dỗ trong suốt quá trình học tập của tôi tại Nhà trường. Tôi xin cảm ơn gia đình, bạn bè và các bạn đồng nghiệp thân mến đã quan tâm, tạo điều kiện và cổ vũ, động viên tôi để tôi hoàn thành tốt nhiệm vụ của mình. Hà Nội, tháng 03 năm 2014 Tác giả luận văn Đào Thị Thanh 3 Chương 1 KIẾN THỨC CHUẨN BỊ 1.1 Khái niệm phương trình tích phân Định nghĩa 1.1. Phương trình tích phân là một phương trình mà hàm cần tìm xuất hiện dưới dấu tích phân. Xét phương trình tích phân tuyến tính có dạng Z b λϕ(x) − K(x, t)ϕ(t)dt = f (x), (1.1) a trong đó • f (x) là hàm cho trước, có giá trị phức và liên tục trên đoạn [a, b]; • K(x, t) là hàm cho trước, liên tục trên [a, b] × [a, b], có giá trị phức và được gọi là nhân; • λ là hằng số phức cho trước; • ϕ(x) là hàm cần tìm, luôn được giả thiết là khả tích theo nghĩa Riemann. Ta có thể phân loại như sau: 1. Nếu hệ số λ = 0 thì ta được phương trình Z b K(x, t)ϕ(t)dt = f (x). a Phương trình trên được gọi là phương trình Fredholm loại một. 2. Nếu hệ số λ 6= 0 thì phương trình trên được gọi là phương trình tích phân Fredholm loại hai. Nếu nhân K(x, t) có tính chất K(x, t) ≡ 0 với mọi t > x thì phương trình (1.1) trở thành: 4 Chương 1. KIẾN THỨC CHUẨN BỊ 3. Nếu λ 6= 0 thì ta được phương trình Z x λϕ(x) − K(x, t)ϕ(t)dt = f (x), a và gọi là phương trình tích phân Volterra loại hai. 4. Nếu λ = 0 thì ta được phương trình Z x K(x, t)ϕ(t)dt = f (x), a và gọi là phương trình tích phân Volterra loại một. Trong luận văn này, chúng ta chỉ xét với phương trình Fredholm loại hai. Bằng phép biến đổi, ta có thể viết phương trình tích phân Fredholm loại hai dưới dạng Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt. (1.2) a 1.2 Một số kiến thức chuẩn bị Kí hiệu: Q[a, b] = [a, b] × [a, b],  C[a, b] = f : [a, b] → C : f liên tục trên [a, b] ,  C (Q[a, b]) = f : Q[a, b] → C : f liên tục trên Q[a, b] , R[a, b] là tập hợp các hàm giá trị phức và khả tích trên [a, b], R2 [a, b] là tập hợp các hàm bình phương khả tích trên [a, b]. Với mỗi f ∈ C[a, b], ta kí hiệu b Z kf k1 = |f (x)|dx a và Z !1/2 b |f (x)|2 dx kf k2 = . a Với mỗi K(x, t) ∈ C (Q[a, b]), ta kí hiệu Z bZ kKk2 = a !1/2 b |K(x, t)|2 dxdt a 5 . Chương 1. KIẾN THỨC CHUẨN BỊ Cho f và g là hai hàm thuộc C[a, b] thì ta định nghĩa tích vô hướng Z b hf, gi = f (x)g(x)dx. a Nếu hf, gi = 0 thì ta nói f và g trực giao. Ta có bất đẳng thức Cauchy-Schwarz Z ! Z ! Z b b b |f (x)|2 dx |g(x)|2 dx . f (x)g(x)dx ≤ a a a Định nghĩa 1.2 (Hệ các hàm trực chuẩn). Tập {ϕn (x)} các hàm thuộc C[a, b] được gọi là một hệ trực chuẩn nếu  0 nếu n 6= m, hϕn , ϕm i = 1 nếu n = m. Định nghĩa 1.3 (Hệ đầy đủ). Cho Φ = {ϕn (x)}∞ n=1 là hệ các hàm trực chuẩn 2 và f ∈ R [a, b]. Nếu f trực giao với mọi phần tử của Φ xảy ra khi và chỉ khi kf k2 = 0 thì hệ Φ được gọi là hệ đầy đủ. Đặt Φm = {ϕ1 , . . . , ϕm } là tập con hữu hạn của Φ. Nếu f ∈ span{Φm } thì ta có chuỗi Fourier hội tụ f (x) = hf, ϕ1 i ϕ1 (x) + · · · + hf, ϕm i ϕm (x), trong đó hf, ϕn i, n = 1, . . . , m được gọi là là hệ số Fourier thứ n của f (x). Định nghĩa 1.4 (Sự hội tụ đều). Cho {fn (x)} là dãy các hàm xác định trên [a, b]. Ta nói dãy {fn (x)} hội tụ đều tới hàm f (x) trên [a, b] nếu với mọi ε > 0, tồn tại số nguyên N = N (ε) sao cho với mọi n ≥ N thì |fn (x) − f (x)| < ε với mọi x ∈ [a, b]. Định lý 1.1 (Tiêu chuẩn Cauchy). Dãy vô hạn {fn (x)} các hàm xác định trên [a, b] hội tụ đều nếu và chỉ nếu với mọi ε > 0, tồn tại số nguyên N (ε) sao cho với mọi n, m ≥ N (ε), |fn (x) − fm (x)| < ε với mọi x ∈ [a, b]. Định lý 1.2. Nếu {fn (x)}∞ n=1 là dãy các hàm khả tích hội tụ đều tới hàm f (x) trên [a, b], thì f (x) cũng khả tích trên [a,b] và Z b Z b f (x)dx = lim a n→∞ 6 fn (x)dx. a Chương 1. KIẾN THỨC CHUẨN BỊ ∞ X Từ đó ta suy ra rằng nếu chuỗi un (x) hội tụ đều đến S(x) trên [a, b] và với n=1 mỗi n, un (x) khả tích trên [a, b] thì Z b S(x)dx = a ∞ Z X n=1 b un (x)dx. a Định nghĩa 1.5 (Hội tụ trung bình). Dãy {fn (x)} trong R2 [a, b] được gọi là hội tụ trung bình tới hàm giới hạn f (x) trong R2 [a, b] nếu !1/2 Z b |f (x) − fn (x)|2 dx lim kfn − f k2 = lim n→∞ n→∞ = 0. a Định nghĩa 1.6 (Toán tử Fredholm). Cho K(x, t) là hàm xác định trên Q[a, b] và khả tích theo từng biến trên [a, b]. Kí hiệu toán tử K :R2 [a, b] → R2 [a, b] Z ϕ(t) 7→ b K(x, t)ϕ(t)dt a và gọi là toán tử Fredholm tương ứng với hạt nhân K(x, t). Đặt K1 (x, t) = K(x, t) b Z K2 (x, t) = K1 (x, s)K(s, t)ds a ............... Z Km (x, t) = b Km−1 (x, s)K(s, t)ds. a Ta gọi Km (x, t) là nhân lặp thứ m của K(x, t). Từ định nghĩa ta có Z b Km ϕ = Km (x, t)ϕ(t)dt, m = 1, 2, . . . , . a Định nghĩa 1.7. Toán tử K được gọi là bị chặn nếu tồn tại hằng số C ≥ 0 sao cho kKϕk2 ≤ Ckϕk2 , ∀ϕ ∈ R2 [a, b]. Nếu K bị chặn thì ta đặt  kKk = sup  kKϕk2 : ϕ ∈ R2 [a, b], ϕ 6= 0 kϕk2 và gọi nó là chuẩn của toán tử K. 7 Chương 1. KIẾN THỨC CHUẨN BỊ Mệnh đề 1.1. Nếu nhân K(x, t) có kK(x, t)k2 < ∞ thì k K ϕk22 ≤ kKk22 kϕk22 , ∀ϕ ∈ R2 [a, b]. Chứng minh. Áp dụng bất đẳng thức Cauchy-Schwarz ta có 2 Z b K(x, s)ϕ(s)ds | K ϕ(x)|2 = a ! ! Z b Z b |K(x, s)|2 ds ≤ |ϕ(s)|2 ds a . a Do vậy kKϕk22 b Z |Kϕ(x)|2 dx = a Z bZ ≤ a = b |K(x, s)|2 dsdx ! Z a ! b |ϕ(s)|2 ds a kKk22 kϕk22 .  Định nghĩa 1.8. Giả sử K là toán tử Fredholm tương ứng với nhân K(x, t). Kí hiệu K ∗ (x, t) = K(t, x) và toán tử K∗ xác định bởi Z b K∗ : ϕ ∈ R2 [a, b] → (K∗ ϕ)(x) = K ∗ (x, t)ϕ(t)dt a được gọi là toán tử liên hợp của toán tử K. Từ định nghĩa ta suy ra: (i) Với mọi ϕ, ψ thuộc R2 [a, b] thì hKϕ, ψi = hϕ, K∗ ψi. (ii) Với mọi m ≥ 1 thì (Km )∗ = (K∗ )m . Định nghĩa 1.9 (Miền). Tập Ω ⊂ C mở, khác rỗng và liên thông được gọi là một miền trong C. Định nghĩa 1.10. Cho miền Ω và hàm f : Ω → C. (i) Hàm f được gọi là hàm giải tích trên Ω nếu f khả vi tại mọi điểm z ∈ Ω . (ii) Hàm f được gọi là hàm phân hình trên Ω nếu tồn tại tập P ⊂ Ω sao cho: - P không có điểm giới hạn trong Ω; - f (z) là hàm giải tích trong miền Ω\P ; - Mọi điểm của P đều là cực điểm của f (z). Định nghĩa 1.11. Hàm f : C → C được gọi là hàm nguyên nếu f là hàm giải tích trên toàn mặt phẳng phức C . 8 Chương 1. KIẾN THỨC CHUẨN BỊ 1.3 Phương trình tích phân Fredholm loại hai với nhân tách biến Trong mục này, ta xét phương trình tích phân Fredholm loại hai có dạng Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt, (1.3) a trong đó K(x, t) là nhân tách biến trên Q[a, b] có dạng n X K(x, t) = (1.4) ai (x)bi (t), i=1 trong đó ai (x), bi (t) là các hàm thuộc C[a, b]. Thay (1.4) vào phương trình (1.3) ta thu được ! Z b n X ϕ(x) = f (x) + λ ai (x) bi (t)ϕ(t)dt . a i=1 Khi đó phương trình trên trở thành ϕ(x) = f (x) + λ n X ci ai (x), (1.5) i=1 Z b bi (t)ϕ(t)dt, i = 1, . . . , n. Từ phương trình trên suy ra nghiệm trong đó ci = a ϕ(x) của phương trình (1.3) được xác định nếu như xác định được hệ số ci . Nhân cả hai vế của phương trình (1.5) với bi (t) rồi lấy tích phân theo biến t trên [a, b] ta thu được hệ phương trình ci = f i + λ n X aij cj , i = 1, . . . , n, j=1 trong đó Z b Z bi (t)f (t)dt, fi = aij = b aj (t)bi (t)dt. a a Việc giải phương trình trên tương đương với việc giải một hệ đại số tuyến tính (I − λA)c = f , (1.6) trong đó I là ma trận đơn vị cấp n × n, A = (aij ) là ma trận cấp n × n với các phần tử được xác định như trên, f = (f1 , · · · , fn )T và c = (c1 , · · · , cn )T là các hệ số phải tìm. 9 Chương 1. KIẾN THỨC CHUẨN BỊ Kí hiệu D(λ) = det(I − λA). Việc giải hệ tuyến tính (1.6) phụ thuộc vào giá trị của D(λ). Ta xét hai trường hợp sau: Trường hợp 1: D(λ) 6= 0. Trong trường hợp này λ được gọi là giá trị chính quy của nhân. Khi đó hệ tuyến tính trên có nghiệm duy nhất c = (I − λA)−1 f, hay c= 1 adj(I − λA)f, D(λ) trong đó adj(I − λA) = (Dji (λ)) là ma trận phụ hợp của ma trận (I − λA). Do đó mỗi hệ số ci có biểu diễn n 1 X ci = Dji (λ)fj . D(λ) j=1 Thay biểu diễn của ci và fi vào phương trình (1.5) ta được b Z ϕ(x) = f (x) + λ a n ! n 1 XX Dji (λ)ai (x)bj (t) D(λ) f (t)dt. i=1 j=1 Kí hiệu n n 1 XX R(x, t; λ) = Dji (λ)ai (x)bj (t) D(λ) i=1 j=1 và gọi nó là nhân giải của phương trình tích phân. Khi đó nghiệm ϕ(x) được xác định bởi công thức Z b ϕ(x) = f (x) + λ R(x, t; λ)f (t)dt. (1.7) a Đặt 0 a1 (x) a2 (x) ···  b1 (t) 1 − λa11 −λa12 · · ·  D(x, t; λ) =  b2 (t) −λa12 1 − λa11 · · ·   .  .. bn (t) .. . .. . −λan1 −λan2 ...  an (x) −λa1n   −λa2n  .. .   · · · 1 − λann và D(x, t; λ) = det(D(x, t; λ)). Khi đó R(x, t; λ) = − . 10 D(x, t; λ) . D(λ) (1.8) Chương 1. KIẾN THỨC CHUẨN BỊ Trường hợp 2: D(λ) = 0. Trong trường hợp này λ được gọi là giá trị riêng của nhân. Giả sử λk là một giá trị riêng, nghĩa là D(λk ) = 0. Xét trường hợp f = 0. Khi đó hệ phương trình (1.5) trở thành (I − λk A)c = 0. Vì D(λk ) = 0 nên phương trình trên có pk nghiệm độc lập tuyến tính được biểu diễn bởi   (j)  c(j) (λk ) =  c1 (λk ) .. . (j) cn (λk )   j = 1, . . . , pk . Thay các giá trị này vào phương trình (1.5) ta thu được các nghiệm ϕj (x; λk ) = f (x) + λk n X (j) ci (λk )ai (x), j = 1, . . . , pk . i=1 Nếu f (x) ≡ 0 trên [a, b] thì mỗi hàm (e) ϕj (x; λk ) = λk n X (j) ci (λk )ai (x) i=1 là một nghiệm không tầm thường của phương trình tích phân thuần nhất Z b ϕ(x) = λk K(x, t)ϕ(t)dt. a Chỉ số trên (e) để kí hiệu rằng nghiệm ϕ(e) j (x; λ) là hàm riêng của nhân tương ứng với giá trị riêng λk . Mỗi nghiệm của phương trình thuần nhất sẽ có dạng (h) ϕ (x; λk ) = pk X (e) αj ϕj (x; λk ), j=1 trong đó αj là hằng số tùy ý, chỉ số trên (h) là để kí hiệu rằng ϕ(h) (x; λk ) là nghiệm tổng quát của phương trình tích phân thuần nhất trên. Xét trường hợp f 6= 0. Ta sẽ sử dụng bổ đề sau: Bổ đề 1.1. Cho B = (bij )n×n và B∗ = (bji )n×n . Khi đó nếu det(B) = 0 thì hệ không thuần nhất Bx = f có nghiệm nếu và chỉ nếu f trực giao với tất cả các nghiệm của phương trình liên hợp thuần nhất B∗ y = 0. Từ bổ đề này, ta thấy hệ tuyến tính (I − λk A)c = f có nghiệm nếu và chỉ nếu f trực giao với tất cả các nghiệm của phương trình (I − λk A)∗ d = 0. 11 (1.9) Chương 1. KIẾN THỨC CHUẨN BỊ Vì ma trận (I − λk A) và (I − λk A)∗ có cùng hạng và số khuyết nên phương trình (1.9) cũng có pk nghiệm độc lập tuyến tính. Lại có T (I − λk A)∗ d = (I − λk A∗ )d = (I − λk A )d = 0. Vì vậy nếu (j) (j) d(j) (λk ) = (d1 (λk ), . . . , dn (λk ))T là một trong pk nghiệm của hệ (1.9) thì (j) dm (λk ) − λk n X (j) aim di (λk ) = 0, với m = 1, . . . , n. (1.10) i=1 Mặt khác, xét phương trình tích phân thuần nhất liên hợp với phương trình (1.3) Z b K(t, x)ψ(t)dt. (1.11) ψ(x) = λ a Vì K(t, x) = n X ai (t)bi (x) nên tương tự như trên, phương trình (1.11) có thể được i=1 viết dưới dạng dm − λ n X aim di = 0, m = 1, . . . , n (1.12) i=1 Z trong đó di = b Z b ai (t) ψ(t)dt, aim = a am (t) bi (t)dt. Từ (1.10) và (1.12) suy ra a d(j) (λk ) là nghiệm của (1.3) khi và chỉ khi nó là nghiệm của (1.12) với λ = λk . Từ đó, ta có kết quả sau: Định lý 1.1 ( Định lý Fredholm đối với hạt nhân tách biến). Xét phương trình tích phân Fredholm loại hai Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt a trong đó λ là tham số phức, f (x) ∈ C[a, b] và K(x, t) ∈ C(Q[a, b]) là hạt nhân tách biến có dạng (1.4). Khi đó: (i) Nếu λ là giá trị chính quy của nhân thì phương trình có nghiệm duy nhất biểu diễn dưới dạng Z b ϕ(x) = f (x) + λ R(x, t; λ)f (t)dt, a trong đó R(x, t; λ) được xác định bởi công thức (1.8). 12 Chương 1. KIẾN THỨC CHUẨN BỊ (ii) Nếu λ là giá trị riêng của nhân thì phương trình thuần nhất Z b ϕ(x) = λ K(x, t)ϕ(t)dt a có nghiệm không tầm thường. Hơn nữa, phương trình không thuần nhất có nghiệm khi và chỉ khi hàm f (x) trực giao với tất cả các hàm riêng của phương trình thuần nhất liên kết Z b ψ(x) = λ K(t, x)ψ(t)dt. a 13 Chương 2 PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT Ở Chương 1, ta đã xét phương trình tích phân Fredholm loại hai với K(x, t) là nhân tách biến thuộc C(Q[a, b]). Ta đã chứng minh định lý Fredholm về cấu trúc của các nghiệm của phương trình phụ thuộc vào λ. Trong chương này ta sẽ nghiên cứu phương trình tích phân Fredholm loại hai với nhân tổng quát. 2.1 Phương pháp thế liên tiếp Định lý 2.1 (Định lý thay thế liên tiếp). Xét phương trình tích phân Fredholm loại hai Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt, (2.1) a trong đó λ là một tham số phức, f (x) ∈ C[a, b] và K(x, t) là một nhân thuộc C(Q[a, b]). Nếu |λ|(b − a) sup |K(x, t)| < 1 thì phương trình có nghiệm duy (x,t)∈Q[a,b] nhất được xác định bởi công thức b Z ϕ(x) = f (x) + λ R(x, t; λ)f (t)dt, a trong đó R(x, t, λ) là toán tử giải được xác định bởi ∞ X R(x, t; λ) = λm−1 Km (x, t). m=1 Chứng minh. Đặt M = sup |K(x, t)|. Giả sử ϕ(x) là một nghiệm của (x,t)∈Q[a,b] phương trình (2.1). Khi đó thay biểu thức của ϕ(x) vào ϕ(t) trong vế phải ta 14 Chương 2. PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT thu được Z " b ϕ(x) = f (x) + λ Z K(x, t) f (t) + λ K(t, s)ϕ(s)ds dt a Z = f (x) + λ # b a b K(x, t)f (t)dt + λ 2 a Z bZ b K(x, t)K(t, s)ϕ(s)dsdt. a a Sau khi thay đổi thứ tự lấy tích phân trong tích phân cuối và thay thế biến s với t, ta thu được Z b Z b K(x, t)f (t)dt + λ2 ϕ(x) = f (x) + λ a K2 (x, t)ϕ(t)dt. a Tiếp tục quá trình này n lần, ta sẽ thu được dạng tổng quát ! Z b Z b n X λm ϕ(x) = f (x) + m=1 Km (x, t)f (t)dt + λn+1 a Kn+1 (x, t)ϕ(t)dt. (2.2) a Đặt σn (x) = n X λm−1 Km (x, t)f (t)dt , a m=1 n+1 ! b Z Z ρn (x) = λ b Kn+1 (x, t)ϕ(t)dt. a Khi đó phương trình (2.2) có thể viết gọn lại là ϕ(x) = f (x) + λσn (x) + ρn (x). Ta sẽ chứng minh rằng nếu |λ|M (b − a) < 1 thì dãy σn (x) hội tụ đều đến hàm liên tục σ(x) trên đoạn [a, b] và dãy ρn (x) hội tụ đều đến 0 trên đoạn [a, b]. Thật vậy, vì |K(x, t)| ≤ M nên |Km (x, t)| ≤ M m (b − a)m−1 . Do đó Z b m−1 Km (x, t)f (t)dt ≤ (|λ|M (b − a))m−1 M kf k1 . λ a Vì |λ|M (b − a) < 1 nên khi n đủ lớn thì ∀m > n, ∀ε > 0, ta có " m # X k−1 |σm (x) − σn (x)| ≤ (|λ|M (b − a)) M kf k1 k=n+1 ≤ (|λ|M (b − a))n < ε. 15 M kf k1 1 − |λ|M (b − a) Chương 2. PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT Như vậy, dãy các hàm liên tục σn (x) hội tụ tuyệt đối và đều tới hàm giới hạn ! Z b ∞ X λm−1 σ(x) = Km (x, t)f (t)dt m=1 Hơn nữa, lấy tích phân từng số hạng ta được ! Z b X ∞ σ(x) = λ a m−1 . a Km (x, t) b Z f (t)dt = R(x, t; λ)f (t)dt. a m−1 Mặt khác, ta có |ρn (x)| ≤ |λ| M kϕk1 (|λ|M (b − a))n . Do đó ρn (x) hội tụ đều tới 0 trên [a, b] khi n → +∞. Vậy ϕ(x) = f (x) + λσ(x) hay Z b ϕ(x) = f (x) + λ R(x, t; λ)f (t)dt.  a Ví dụ 2.1. Giải phương trình tích phân Fredholm sau: Z π/2 ϕ(x) = cos x + 1 2 sin x ϕ(t)dt. 0 Lời giải. Trước hết ta thấy sup | sin x| = 1, [0, π2 ] Suy ra 1 λ= , 2 a = 0, b= π . 2 1 π π λ(b − a) sup |K(x, t)| = ( − 0)1 = < 1. 2 2 4 Vì thế ta có thể áp dụng phương pháp thay thế liên tiếp để giải phương trình này. Thay Z π/2 ϕ(t) = cos t + 1 2 sin t ϕ(t1 )dt1 0 vào biểu thức dưới dấu tích phân, ta được " Z π/2 Z 1 ϕ(x) = cos x + 2 1 = cos x + 2 1 sin x cos t + 2 0 π/2 Z 0 sin t ϕ(t1 )dt1 dt 0 1 sin x cos t dt + 4 1 1 = cos x + sin x + 2 4 Z π/2 Z sin x 0 Z π/2 Z π/2 sin x sin t ϕ(t1 )dt1 dt 0 π/2 0 sin t ϕ(t1 )dt1 dt. 0 16 # π/2 Chương 2. PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT Z 1 Lại thay ϕ(t1 ) = cos t1 + 2 1 1 ϕ(x) = cos x + sin x + 2 2 π/2 sin t1 ϕ(t2 )dt2 , ta được 0 π/2 Z 0 1 sin x sin t cos t1 dt1 dt + 4 1 1 1 = cos x + sin x + sin x + sin x 2 4 8 π/2 Z π/2 Z sin x sin t sin t1 ϕ(t2 )dt2 dt1 dt 0 π/2 Z ϕ(t2 )dt2 . 0 Cứ tiếp tục phương pháp này ta sẽ thu được nghiệm 1 1 1 ϕ(x) = cos x + sin x 2 + 4 + 8 + ···   = cos x + sin x. 2.2 0 Phương pháp xấp xỉ liên tiếp Trong phần này, ta sẽ giới thiệu một phương pháp khác để giải quyết phương trình tích phân Fredholm loại hai. Điểm thuận lợi của phương pháp này là ta sẽ sử dụng cách chứng minh sự hội tụ khác và thu được một kết quả tốt hơn trong trường hợp chuỗi toán tử giải có bán kính hội tụ lớn. Xét phương trình tích phân Fredholm loại hai Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt. (2.3) a Đầu tiên ta chọn xấp xỉ bậc không ϕ0 (x) là một hàm giá trị thực, với a ≤ x ≤ b. Thông thường ta sẽ chọn ϕ0 (x) ∈ {0, 1, x, ex }. Xấp xỉ bậc một ϕ1 (x) của nghiệm ϕ(x) được xác định như sau Z b ϕ1 (x) = f (x) + λ K(x, t)ϕ0 (t)dt. (2.4) a Xấp xỉ bậc hai ϕ2 (x) của nghiệm ϕ(x) thu được bằng cách thay thế ϕ(t) trong phương trình (2.3) bởi ϕ1 (x) ta được Z b ϕ2 (x) = f (x) + λ K(x, t)ϕ1 (t)dt. a Cứ tiếp tục phương pháp này, ta sẽ thu được xấp xỉ bậc n + 1 của nghiệm ϕ(x) theo công thức truy hồi sau Z b ϕn+1 (x) = f (x) + λ K(x, t)ϕn (t)dt với n ≥ 0. a 17 Chương 2. PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT Thay thế mỗi xấp xỉ ϕj (x) vào trong biểu thức của xấp xỉ tiếp theo ϕj+1 (x) với j = 0, . . . , n, ta thu được ! Z b n X λm ϕn+1 (x) =f (x) + +λ m=1 Z b n+1 Km (x, t)f (t)dt a Kn+1 (x, t)ϕ0 (t)dt a hay ϕn+1 (x) = f (x) + λσn (x) + ωn+1 (x), trong đó σn (x) = n X λm−1 Km (x, t)f (t)dt , a m=1 n+1 ! b Z b Z ωn+1 (x) = λ Kn+1 (x, t)ϕ0 (t)dt. a Từ đó dẫn đến định lý sau: Định lý 2.2 (Định lý xấp xỉ liên tiếp). Xét phương trình tích phân Fredholm loại hai Z b ϕ(x) = f (x) + λ K(x, t)ϕ(t)dt, (2.5) a trong đó λ là một tham số phức, f (x) ∈ C[a, b] và cho K(x, t) là một nhân thuộc C(Q[a, b]). Nếu |λ| kKk2 < 1 thì phương trình trên có nghiệm duy nhất và nghiệm đó được cho bởi công thức Z b R(x, t; λ)f (t)dt, ϕ(x) = f (x) + λ a trong đó R(x, t; λ) là toán tử giải được xác định như sau R(x, t; λ) = ∞ X λm−1 Km (x, t). m=1 Chứng minh. Theo phương pháp xấp xỉ mà ta đã thực hiện ở trên, ta đã có xấp xỉ bậc n + 1 của nghiệm ϕ(x) được xác định bởi công thức ϕn+1 (x) = f (x) + λσn (x) + ωn+1 (x). 18 Chương 2. PHƯƠNG TRÌNH TÍCH PHÂN FREDHOLM LOẠI HAI VỚI NHÂN TỔNG QUÁT Ta sẽ chứng minh rằng nếu |λ| kKk2 < 1 thì dãy σn (x) hội tụ đều tới hàm giới hạn σ(x), còn dãy ωn+1 (x) hội tụ về 0 khi n → ∞. Áp dụng bất đẳng thức Cauchy-Schwarz đối với hạt nhân lặp ta được ! Z ! Z b b |Km (x, t)|2 ≤ |Km−1 (x, s)|2 ds a |K(s, t)|2 ds . a Lấy tích phân trên cả hai vế của bất đẳng thức này theo biến t, ta được ! Z Z ! Z b Z b b b |Km (x, t)|2 dt ≤ a |Km−1 (x, s)|2 ds a |K(s, t)|2 dsdt a . a Đặt Z κm (x) = b |Km (x, t)|2 dt. a Ta được κm (x) ≤ κm−1 (x) kKk22 . Bằng quy nạp, ta thu được đánh giá κm (x) ≤ κ1 (x) kKk22m−2 . Áp dụng bất đẳng thức Cauchy-Schwarz đối với những tích phân trong tổng σn (x), ta được Z 2 ! Z ! Z b b b |Km (x, t)|2 dt |f (t)|2 dt Km (x, t)f (t)dt ≤ a a a ≤ κm (x) kf k22 . ≤ κ1 (x) kf k22 kKk2m−2 2 Do đó mỗi số hạng trong tổng σn (x) đều được đánh giá bởi bất đẳng thức Z p b κ1 (x) kf k2 m Km (x, t)f (t)dt ≤ (|λ| kKk2 )m . λ kKk2 a Từ đó ta suy ra rằng nếu như |λ| kKk2 < 1 thì chuỗi {σn (x)} hội tụ tuyệt đối và đều tới hàm giới hạn duy nhất σ(x) trên đoạn [a, b]. Cũng sử dụng đánh giá tương tự như trên, ta thấy rằng p |ωn+1 (x)| ≤ κ1 (x) kϕ0 k2 (|λ| kKk2 )n+1 → 0 khi n → +∞. kKk2 19
- Xem thêm -

Tài liệu liên quan