Tài liệu [FILE WORD] 04. tiệm cận của đồ thị hàm số dvd

  • Số trang: 40 |
  • Loại file: DOC |
  • Lượt xem: 517 |
  • Lượt tải: 0
bachkhoatailieu

Tham gia: 31/07/2016

Mô tả:

ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 1 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ A – KIẾN THỨC CHUNG 1. Định nghĩa: +) Đường thẳng x  a là TCĐ của đồ thị hàm số y  f  x  nếu có một trong các điều kiện sau: lim y   hoặc lim y   hoặc lim y   hoặc lim y   x a x a x a x a +) Đường thẳng y  b là TCN của đồ thị hàm số y  f  x  nếu có một trong các điều kiện sau: lim y  b hoặc lim y  b x   x   2. Dấu hiệu: +) Hàm phân thức mà nghiệm của mẫu không là nghiệm của tử có tiệm cận đứng. +) Hàm phân thức mà bậc của tử  bậc của mẫu có TCN. +) Hàm căn thức dạng: y  có TCN. (Dùng liên hợp)  ,y   bt, y  bt  x +) Hàm y  a ,  0  a  1 có TCN y  0 +) Hàm số y  log a x,  0  a  1 có TCĐ x  0 3. Cách tìm: +) TCĐ: Tìm nghiệm của mẫu không là nghiệm của tử. +) TCN: Tính 2 giới hạn: xlim y hoặc xlim y     4. Chú ý: +) Nếu x    x  0  x2  x  x +) Nếu x    x  0  x2  x  x B – BÀI TẬP DẠNG 1: BÀI TOÁN KHÔNG CHỨA THAM SỐ Câu 1: Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang: 3 x  1 2 x2 1 A. y  x3  25x 2  8 B. y  x 4  8 x 2  99 C. y  2 D. y  x 2 x2 Câu 2: Đường thẳng y  8 là tiệm cận ngang của đồ thị của hàm số nào ? 2x  7 16 x  25 8 x  25 2 x2 1 A. y  2 B. y  C. y  D. y  x 9 3  2x 1  3x 16 x  2 2x  3 Câu 3: Phương trình các đường tiệm cận của đồ thị hàm số y  là: x 1 1 1 A. y  1, x  2 B. y  2, x  1 C. y  , x  1 D. y  1, x  2 2 2 2 x  4x  3 x  2x  6 Câu 4: Cho hàm số y  và y  . Tổng số đường tiệm cận của hai đồ thị là x2  9 x 1 A. 3 B. 4 C. 5 D. 6 3 Câu 5: Cho hàm số y  có đồ thị là (C). Mê nh đề nào sau đây là đúng? ê x 1 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 2 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A A.  C  có tiê êm câ ên ngang là y  3 Phần Hàm số - Giải tích 12 B.  C  có tiê êm câ ên ngang là y  0 C.  C  có tiê êm câ ên đứng là x  1 D.  C  chỉ có mô êt tiê êm câ ên 3  2x Câu 6: Đồ thị hàm số y  có đường tiê êm câ ên đứng, tiê êm câ n ngang là: ê x 1 A. x  1; y  2 B. x  1; y  2 C. x  1; y  2 D. x  2; y  1 x2 Câu 7: Đồ thị hàm số y  có đường tiệm cận đứng là 1  2x 1 1 1 A. x   . B. x  2. C. x  . D. y   . 2 2 2 2  2x Câu 8: Tìm tiệm cận ngang của đồ thị hàm số y  . x 1 A. x  2 B. y  2 C. y  1 D. x  1 Câu 9: Phương trình đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y  lượt là x 1 lần x2 A. x  2; y  1 B. y  2; x  1 C. x  2; y  1 D. x  2; y  1 3 x  3x  2 Câu 10: Cho hàm số y  2 . Khẳng định nào sau đây đúng? x  4x  3 A. Đồ thị hàm số đã cho không có tiệm cận đứng. B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng. C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y  1 và y  3. D. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng x  1 và x  3. Câu 11: Trong các hàm số sau, hàm số nào có đúng một đường tiệm cận (gồm các đường tiệm cận đứng và tiệm cận ngang). x 1 . A. y  x 2  1  x. B. y  C. y  x 4  x 2  1. D. y  x 3  2 x  1. x2 Câu 12: Cho hàm số y  f  x  xác định trên khoảng  2; 1 và có x lim  f  x   2, x lim  f  x    .  2  1 Hỏi khẳng định nào dưới đây là khẳng định đúng? A. Đồ thị hàm số f  x  có đúng hai tiê êm câ n ngang là các đường thẳng y  2 và y  1 ê B. Đồ thị hàm số f  x  có đúng mô êt tiê êm câ ên đứng là đường thẳngx  1 C. Đồ thị hàm số f  x  có đúng mô êt tiê êm câ ên ngang là đường thẳngy  2 D. Đồ thị hàm số f  x  có đúng hai tiê êm câ n đứng là các đường thẳng x  2 và x  1 ê Câu 13: Số đường tiê êm câ ên đứng và tiê êm câ n ngang của đồ thị  ê y 4 x 2  1  3x 2  2 là: x2  x D. 1. A. 2. B. 3. C. 4. Câu 14: Đồ thị hàm số y  f ( x) có xlim y  2; xlim y  2 . Chọn khẳng định đúng ?     x  2. A. Tiệm cận đứng B. Tiệm cận ngang y  2 . C. Hàm số có hai cực trị. D. Hàm số có một cực trị. Câu 15: Xét các mệnh đề sau: 1. Đồ thị hàm số y  1 có một đường tiệm cận đứng và một đường tiệm cận ngang. 2x  3 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 3 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 2 2. Đồ thị hàm số y  x  x  x  1 có hai đường tiệm cận ngang và một đường tiệm cận đứng. x x  2x  1 3. Đồ thị hàm số y  có một đường tiệm cận ngang và hai đường tiệm cận đứng. x2  1 Số mệnh đề ĐÚNG là A. 3 B. 2 C. 1 D. 0 1 ; y  x 3 . Chọn phát biểu sai 3x A. Có hai đồ thị có tiệm cận đứng. B. Có hai đồ thị có tiệm cận ngang. C. Có đúng hai đồ thị có tiệm cận. D. Có hai đồ thị có chung một đường tiệm cận. x 1 Câu 17: Số tiệm cận của đồ thị hàm số y  là x2 1 A. 3 . B. 1 . C. 2 . D. 0 . 2x 1 Câu 18: Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y  ? x 1 1 A. x   . B. y  1 . C. y  2 . D. x  1 . 2 x Câu 16: Cho các hàm số y  3 ; y  log 3 x; y  Câu 19: Số đường tiệm cận của đồ thị hàm số y  f  x   A. 1 B. 3 C. 2 x 2  1  2x là: x 1 D. 4 Câu 20: Tìm tất cả các đường tiệm cận ngang và đứng của đồ thị hàm số y  f  x   3x  2 x 1 A. Đồ thị hàm số f  x  có tất cả hai tiệm cận ngang là các đường thẳng y = -3 , y = 3 và không có tiệm cận đứng. B. Đồ thị hàm số f  x  không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = -1 C. Đồ thị hàm số f  x  không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng x = -1, x = 1. D. Đồ thị hàm số f  x  có đúng một tiệm cận ngang là đường thẳng y 3 và không có tiệm cận đứng. 2x  3 Câu 21: Đồ thị hàm số y  1  có bao nhiêu đường tiệm cận? | x | 1 A. không có B. 1 C. 4 D. 2 Câu 22: Đường thẳng y  2 là tiệm cận ngang của đồ thị hàm số nào dưới đây? 2 1 x 2x  2 2 x  3 . . . . A. y  B. y  C. y  D. y  x 1 1 2x x2 x2 2x Câu 23: Số đường tiệm cận của đồ thị hàm số y  là 2 x 1  x A. 2 . B. 1 . C. 3 . D. 4 . x 1 Câu 24: Số tiệm cận của đồ thị hàm số y  là x2 1 A. 3 . B. 1 . C. 2 . D. 0 . 6  2x Câu 25: Cho hàm số y  . Khi đó tiệm cận đứng và tiệm cân ngang là 3 x A. Không có. B. x  3; y  2. C. x  3; y  2. D. x  2; y  3. File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 4 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Câu 26: Số đường tiệm cận của đồ thị hàm số y  A. 0. B. 1. Phần Hàm số - Giải tích 12 2x 1 x2  x  2 C. 2. D. 3. 2x 1 ? Câu 27: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số y  1 x A. y  2. B. y  2. C. x  2. D. x  2. đứng là x  1. 3x  2 Câu 28: Tìm phương trình đường tiê êm câ ên ngang của đồ thị hàm số y  x 1 A. x  1 B. x  1 C. y  3 D. y  2 Câu 29: Đồ thị hàm số nào dưới đây có đường tiệm cận? x 1 . A. y  B. y  x 4  5x 2  1. x 3 C. y   x 3  2x  3. D. y   x 4  x 2 . 1  2x Câu 30: Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y  có phương trình lần x  2 lượt là A. x  2; y  2. B. x  2; y  2. C. x  2; y  2. D. x  2; y  2. x Câu 31: Số đường tiệm cận của đồ thị hàm số y  là: 2 x 1 A. 2. B. 4. C. 3. D. 1. 2 x  4x  3 Câu 32: Cho hàm số y  có đồ thị là  C  . Gọi m là số tiệm cận của  C  và n là giá trị 2x  3 của hàm số tại x  1 thì tích mn là: 14 2 3 6 A. . B. . C. . D. . 5 15 5 5 2 x  2x  3 Câu 33: Cho hàm số y  . Khi đó: x2  4 A. Đồ thị hàm số có tiệm cận đứng x  1 ; tiệm cận ngang y  2 và y  2 . B. Đồ thị hàm số có tiệm cận đứng x  2 và x  2 ; tiệm cận ngang y  1 . C. Đồ thị hàm số có tiệm cận đứng x  2 và x  2 ; tiệm cận ngang y  1 . D. Đồ thị hàm số có tiệm đứng x  1 và x  1 ; tiện cận ngang y  1 . x2 Câu 34: Tiệm cận ngang của đồ thị hàm số y  có phương trình là 2x 1 A. y  B. y  1 C. y  1 D. y  2 2 3x 2  1  x 4  x  2 Câu 35: Đồ thị hàm số f (x)  có tiệm cận đứng và tiệm cận ngang là x 2  3x  2 A. Tiệm cận đứng x  2 , x  1 ; tiệm cận ngang y  2 . B. Tiệm cận đứng x  2 ; tiệm cận ngang y  2 . C. Tiệm cận đứng x  2 , x  1 ; tiệm cận ngang y  2 , y  3 . D. Tiệm cận đứng x  2 ,; tiệm cận ngang y  2 , y  3 . x 1 Câu 36: Cho hàm số y  có đồ thị C . Mệnh đề nào dưới đây là đúng. x 2  3x  2 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 5 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 A. C không có tiệm cận ngang B.C có đúng một tiệm cận ngang y  1 C.C có đúng một tiệm cận ngang y  1 D. C có hai tiệm cận ngang y  1 và y  1 x4 Câu 37: Đồ thị hàm số y  có bao nhiêu tiệm cận? x2  4 A. 3. B. 1. C. 2. D. 4. Câu 38: Đồ thị của hàm số nào sau đây có ba đường tiệm cận? x x3 x x . . A. y  2 B. y  C. y  2 D. y  . . 2 2x 1 x 4 x  2x  3 x  3x  2 1  x2 . Tìm khẳng định đúng? x A. Đồ thị hàm số có hai đường tiệm cận ngang là các đường thẳng y  1, y  1. B. Đồ thị hàm số không có tiệm cận. C. Đồ thị hàm số có 3 đường tiệm cận ngang là các đường thẳng x  0, y  1, y  1. D. Đồ thị hàm số chỉ có một tiệm cận đứng là đường thẳng x  0. 1 Câu 40: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số y  3  x 3 y  3 y3 A. B. x  3 C. x  3 D. 3 x  3x 2  20 Câu 41: Tìm tất cả các đường tiệm cận đứng của đồ thị hàm số y  2 x  5x  14  x  2 x  2 A.  B. x  2 C.  D. x  7 x  7  x  7 Câu 39: Cho hàm số y  x2  4 ? 3  2x  5x 2 3 3 3 A. x = 1 và x  B. x  1 và x  C. x  1 D. x  5 5 5 2x  1 ? Câu 43: Đường thằng nào sau đây là tiệm cận ngang của đồ thị hàm số y  x 1 A. y  2 B. y  2 C. x  1 D. x  1 2x  2017  1 . Mệnh đề nào dưới đây là đúng? Câu 44: Cho hàm số y  x 1 A. Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x  1 B. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y  2, y  2 và không có tiệm cận đứng. C. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y  2 và không có tiệm cận đứng. D. Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng x  1, x  1 . 3x  1 . Khẳng định nào dưới đây đúng? Câu 45: Cho hàm số y  2x  1 1 1 A. Đồ thị hàm số có tiệm cận đứng là x   . B. Đồ thị hàm số có tiệm cận ngang là y  . 2 2 1 C. Đồ thị hàm số có tiệm cận đứng là y  . D. Đồ thị hàm số không có tiệm cận. 2 Câu 42: Tìm tất cả các đường tiệm cận đứng của đồ thị hàm số y  File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 6 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Câu 46: Tìm số đường tiệm cận đứng của đồ thị hàm số y  A. 2. B. 3. C. 1. Câu 47: Tiệm cận đứng và tiệm cận ngang của đồ thị y  A. x  1; y  2 C. x  2; y  1 Câu 48: Cho hàm số y  A. 2 . 2x  3 Phần Hàm số - Giải tích 12 4x  1  x 2  2x  6 . x2  x  2 D. 0. 2x 1 có phương trình lần lượt là x 1 B. y  1; y  2 D. x  1; y  2 . Đồ thị hàm số có bao nhiêu tiệm cận? x2  2x  3 B. 3 . C. 4 . Câu 49: Tìm tất cả các tiê êm câ n đứng của đồ thị hàm số : y  ê D. 5 . 1 x  x 1 x3 1 2 A. Đồ thị hàm số không có tiê êm câ ên đứng B. x  1 C. x  0 D. x  1 1  2x Câu 50: Hỏi đồ thị hàm số y  có bao nhiêu đường tiê êm câ ên? 3x  2 A. 2 B. 1 C. 0 D. 3 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 7 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 DẠNG 2: CÁC BÀI TOÁN CHỨA THAM SỐ Câu 1: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y  A  1; 4  A. m  1 m2 x  4 có tiệm cận đi qua điểm mx  1 B. m  2 C. m  3 D. m  4  m  1 x  5m có tiệm cận ngang là đường thẳng y  1 . Câu 2: Tìm m để đồ thị hàm số y  2x  m 5 A. m  2. B. m  . C. m  0. D. m  1. 2 2x 1 Câu 3: Cho M là giao điểm của đồ thị  C  : y  với trục hoành. Khi đó tích các khoảng cách từ 2x  3 điểm M đến hai đường tiệm cận là A. 4 . B. 6 . C. 8. D. 2 . 3 x  6x  m Câu 4: Tìm m để hàm số y  không có tiệm cận đứng? 4x  m m  0 A. m  2 . B.  . C. m  16 . D. m  1 . m  8 Câu 5: Tìm tất cả các giá trị thực của tham số m để đường tiệm cận đứng của đồ thị hàm số x 1 y đi qua điểm A  1; 2  . 2x  m A. m  2. B. m  2. C. m  4. D. m  4. Câu 6: Biết rằng các đường tiệm cận của đường cong  C  : y  5x  1  x 2  1 và trục tung cắt nhau x4 tạo thành một đa giác (H). Mệnh đề nào dưới đây đung? A. (H) là một hình vuông có chu vi bằng 16. B. (H) là một hình chữ nhật có chu vi bằng 8. C. (H) là một hình chữ nhật có chu vi bằng 12. D. (H) là một hình vuông có chu vi bằng 4. ax  1 1 Câu 7: Cho hàm số y  . Tìm a, b để đồ thị hàm số có x  1 là tiệm cận đúng và y  là tiệm bx  2 2 cận ngang. A. a  1; b  2. B. a  1; b  2. C. a  1; b  2. D. a  4; b  4. Câu 8: Cho hàm số y  f  x  có lim f  x   0 và lim f  x    Mệnh đề nào sau đây là đúng? x   x   A. Đồ thị hàm số y  f  x  không có tiệm cận ngang B. Đồ thị hàm số y  f  x  nằm phía trên trục hoành C. Đồ thị hàm số y  f  x  có một tiệm cận ngang là trục hoành. D. Đồ thị hàm số y  f  x  có một tiệm cận đứng là đường thẳng y  0. Câu 9: Các giá trị của tham số a để đồ thị hàm số y  ax  4x 2  1 có tiệm cận ngang là: 1 1 A. a   2 B. a  2 và a  C. a   D. a   1 2 2 mx  1 Câu 10: Tìm m để hàm số có tiê êm câ ên đứng xm File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 8 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A A. m   1;1 Phần Hàm số - Giải tích 12 B. m  1 C. m  1 D. không có m 2x  1 Câu 11: Số điểm thuô êc đồ thị (H) của hàm số y  có tổng các khoảng cách đến hai tiê êm câ n ê x 1 của (H) nhỏ nhất là A. 3 B. 2 C. 1 D. 0 x 1 Câu 12: Cho hàm số y  có đồ thị (C). Số điểm thuô êc đồ thị (C) cách đều hai tiê êm câ n của đồ ê x 1 thị (C) là A. 2 B. 4 C. 0 D. 1 x2 Câu 13: Cho hàm số y  có đồ thị (C). Tìm tọa độ điểm M có hoành độ dương thuộc (C) sao x2 cho tổng khoảng cách từ M đến hai tiệm cận là nhỏ nhất. A. M  2; 2  B. M  0; 1 C. M  1; 3 D. M  4;3 Câu 14: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y  2x   m  1 x 2  1 x 1 có đúng hai tiê êm câ n ngang? ê A. m  1 B. m   1; 4    4;   C. m  1 D. m  1 a Câu 15: Cho hàm số y  (a  0) có đồ thị (H). Gọi d là khoảng cách từ giao điểm hai tiệm cận của x đồ thị (H) đến một tiếp tuyến của (H). Giá trị lớn nhất của d có thể đạt được là: a a A. a 2 B. d  a 2 C. d  D. d  2 2 mx  2 Câu 16: Tìm các giá trị thực của tham số m để đồ thị hàm số y  có hai đường tiệm cận x2 1 ngang. A. m  0 B. Với mọi m  � C. m  0 D. m  0 Câu 17: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y  tiệm cận đứng. A. m  1 2x 2  3x  m không có xm B. m  0 C. m  1 D. m  1 và m  0 x 1 , m  0 . Có tất cả bao nhiêu giá trị thực của tham số m để đồ thị Câu 18: Cho hàm số y  2 x  2mx  9 của hàm số đã cho có đúng một đường tiệm cận đứng? A. 3 B. 2 C. 1 D. 2mx  m Câu 19: Cho hàm số y  . Với giá trị nào của m thì đường tiệm cận đứng, tiệm cận ngang của x 1 đồ thị hàm số cùng hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8. 1 A. m   2 B. m   C. m   4 D. m   2 2 2x  1 Câu 20: Tìm m để đồ thị hàm số y  2 không có tiệm cận đứng x  2mx  3m  4 A. m  1 hoặc m  4 B. m  1 hoặc m  4 C. 1  m  4 D. 1  m  4 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 9 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Câu 21: Biết đồ thị hàm số y  Phần Hàm số - Giải tích 12 (4a  b) x 2  ax  1 nhận trục hoành và trục tung làm hai tiệm cận thì x 2  ax  b  12 giá trị a  b bằng: A. 10 . B. 2 . C. 10 . D. 15 . 2 Câu 22: Số các giá trị thực của tham số m để đồ thị hàm số y  mx  4x  mx  1 có tiệm cận ngang là: A. 3 B. 0 C. 1 D. 2 ax  1 Câu 23: Cho hàm số y  . Đồ thị hàm số nhận trục hoành và trục tung làm tiệm cận ngang x  3b  1 và tiệm cận đứng. Khi đó tổng a  b bằng: 1 1 2 A. B. 0 C.  D. 3 3 3 4mx  3m Câu 24: Cho hàm số y  . Với giá trị nào của m thì đường tiệm cận đứng, tiệm cận ngang x2 của đồ thị hàm số cùng hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 2016 . A. m   . B. m   504 . C. m   252 . D. m   1008 . x 1 Câu 25: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y  2 có đúng một tiệm x  mx  m cận đứng. A. m  0 B. m  0 C. m   0; 4 D. m  4 Câu 26: Tìm tất cả các giá trị thực của m để đồ thị hàm số y  x2  2 mx 4  3 có hai đường tiệm cận ngang. A. m  0 B. m  0 C. m  0 D. m  3 3x  1 Câu 27: Cho hàm số y  có đồ thị là (C). Tìm điểm M thuộc đồ thị (C) sao cho khoảng cách từ x 3 M đến tiệm cận đứng bằng hai lần khoảng cách từ M đến tiệm cận ngang. A. M1  1; 1 ; M 2  7;5  B. M1  1;1 ; M 2  7;5  C. M1  1;1 ; M 2  7;5  Câu 28: Cho hàm số y  đứng A. m  �\  0;1 D. M1  1;1 ; M 2  7; 5  x 1 (m: tham số). Với giá trị nào của m thì hàm số đã cho có tiệm cận mx  1 B. m  �\  0 C. m  �\  1 D. m  � 4x Câu 29: Tìm tất cả các giá trị của số thực m sao cho đồ thị hàm số y  2 có 2 đường tiệm x  2mx  4 cận. A. m  2 B. m  2  m  2 C. m  2 D. m  2  m  2 ax  1 Câu 30: Cho hàm số y   1 . Xác định a và b để đồ thị hàm số nhận đường thẳng x  1 là tiệm bx  2 1 cận đứng và đường thẳng y  làm tiệm cận ngang. 2 a  2; b  2 a  1; b  2 A. B. C. a  2; b  2 D. a  1; b  2 5x  3 Câu 31: Cho hàm số y  2 với m là tham số thực. Chọn khẳng định sai: x  4x  m A. Nếu m  4 đồ thị hàm số có một tiệm cận ngang. File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 10 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 B. Nếu m  4 đồ thị hàm số có một tiệm cận ngang và một tiệm cận đứng. C. Nếu m  4 đồ thị hàm số có ít nhất một tiệm cận đứng và một tiệm cận ngang. D. Với mọi m hàm số luôn có hai tiệm cận đứng. 2x  1 Câu 32: Cho hàm số y  . Tìm điểm M trên (C) để khoảng cách từ M đến tiệm cận đứng của đồ x 1 thị (C) bằng khoảng cách từ M đến trục Ox. M  0; 1 M  0;1 M  0; 1 M  1; 1 A.  B.  C.  D.  M  4;3 M  4;3 M  4;5  M  4;3 x3 Câu 33: Cho hàm số y  2 . Tìm tất cả các giá trị của tham số m để đồ thị hàm số chỉ có x  6x  m một tiệm cận đứng và một tiệm cận ngang? A. 27 . B. 9 hoặc 27 . C. 0 . D. 9 . 2x  1 Câu 34: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y  có đường tiê êm câ n ê 3x  m đứng 3 A. m  1 B. m  1 C. m  � D. m  2 Câu 35: Cho hàm số y = mx2 + 2x - x . Tìm các giá trị của m để đồ thị hàm số có đường tiê êm câ n ê ngang ;1 A. m = 1. B. m �{ - 2;2} . C. m �{ - 1 } . D. m > 0 . 2x  1 Câu 36: Giả sử đường thẳng d : x  a  a  0  cắt đồ thị hàm số y  tại một điểm duy nhất, biết x 1 khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1; ký hiệu  x 0 ; y 0  là tọa độ của điểm đó. Tim y 0 . A. y 0  1. B. y0  5. C. y0  1. D. y 0  2. x2  x  2 , điểm trên đồ thị mà tiếp tuyến tại đó lập với 2 đường tiệm cận x2 một tam giác có chu vi nhỏ nhất thì hoành độ bằng A. 2  4 10 B. 2  4 6 C. 2  4 12 D. 2  4 8 mx  1 Câu 38: Cho hàm số y  . Nếu đồ thị hàm số có tiệm cận đứng x  3 và có tiệm cận ngang và xn đi qua điểm A  2;5  thì phương trình hàm số là: 2 x  1 3 x  1 5 x  1 3x  1 A. B. C. D. x3 x3 x3 x 3 Câu 37: Cho hàm số: y  Câu 39: Gọi A là 1 điểm thuộc đồ thị hàm số y  x3  C  . Gọi S là tổng khoảng cách từ A đến 2 x3 đường tiệm cận của (C). Giá trị nhỏ nhất của S là A. 6 B. 2 6 C. 6 D. 12 x2 Câu 40: Cho hàm số y  , có đồ thị (C). Gọi P, Q là 2 điểm phân biệt nằm trên (C) sao cho tổng x2 khoảng cách từ P hoặc Q tới 2 đường tiệm cận là nhỏ nhất. Độ dài đoạn thẳng PQ là: A. 4 2 B. 5 2 C. 4 D. 2 2 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 11 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Câu 41: Cho hàm số y  đứng? A. m  4 Phần Hàm số - Giải tích 12 x2 . Với giá trị nào của m thì đồ thị hàm số có 1 đường tiệm cận x  4x  m 2 B. m  4 C. m  4 D. m   mx  2 Câu 42: Tìm tất cả các giá trị của tham số m để đường cong y  3 có hai tiệm cận đứng ? x  3x  2  1  1 A. m   2;  B. m   3;  C. m  1 D. m   2;1  4  2 4x 2  m Câu 43: Tìm tất cả các giá trị của tham số m để đường cong y  2 có hai tiệm cận đứng. x  4x  3 A. m   4;36 B. m   2;1 C. m   3; 4 D. m  1 3 Câu 44: Giả sử M  x0 ; y0  là giao điểm của đường phân giác góc phần tư thứ nhất (của mặt phẳng tọa độ) với tiệm cận ngang của đồ thị hàm số y  A. 2 x2  1 . Tính x0  y0 x C. 4 B. 3 D. 8 2mx  m Câu 45: Cho hàm số y  . Với giá trị nào của tham số m thì đường tiệm cận đứng, tiệm cận x 1 ngang cùng hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8. A. . B. m   1 . C. . D. . m2 m  4 m  2 2 2x  1 tại một điểm duy x 1 nhất, biết khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1; kí hiệu  x0 ; y0  là Câu 47: Giả sử đường thẳng d : x  a, a  0, cắt đồ thi hàm số hàm số y  tọa độ của điểm đó. Tìm y0 . A. y0  1 B. y0  5 C. y0  1 D. y0  2. Câu 48: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y  có đúng một tiệm cận ngang. A. m  1 hoặc m  1 B. m  0 C. m   1 m 2  1 x 2  x  2 x 1 D. Với mọi giá trị m File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 12 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 C – HƯỚNG DẪN GIẢI DẠNG 1: BÀI TOÁN KHÔNG CHỨA THAM SỐ Câu 1: Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang: 3 x  1 2x2 1 y  x 3  25 x 2  8 B. y  x 4  8 x 2  99 C. y  2 A. D. y  x 2 x2 Hướng dẫn giải: Chọn đáp án B Đồ thị hàm số ở câu A và B không có tiệm cận, đồ thị hàm số ở câu D có tiệm cận xiên 3 x  1  0 nên đồ thị hàm số nhận đường thẳng y = 0 là tiệm cận Xét ý C: Ta có lim y  lim 2 x   x   x  2 ngang. Câu 2: Đường thẳng y  8 là tiệm cận ngang của đồ thị của hàm số nào ? 2x  7 16 x  25 8 x  25 2x2 1 A. y  2 B. y  C. y  D. y  x 9 3  2x 1  3x 16 x  2 Hướng dẫn giải: Chọn đáp án B ax  b a ax  b   c  0; ad  bc  nên đồ thị hàm số y  Ta có lim  c  0; ad  bc  nhận đường thẳng x    cx  d c cx  d a 16 x  25 y  là tiệm cận ngang. Do vậy đường thẳng y = -8 là tiệm ngang của đồ thị hàm số y  . c 2 x  3 2x  3 Câu 3: Phương trình các đường tiệm cận của đồ thị hàm số y  là: x 1 1 1 A. y  1, x  2 B. y  2, x  1 C. y  , x  1 D. y  1, x  2 2 Hướng dẫn giải: Chọn đáp án C 2x  3  2 Do đó là tiệm cận ngang là y = 2 Ta có lim x   x  1 2x  3 2x  3   ; lim   nên tiệm cận đứng là x = 1. Lại có lim x   x  1 x   x  1 x2  4x  3 x2  2x  6 Câu 4: Cho hàm số y  và y  . Tổng số đường tiệm cận của hai đồ thị là x2  9 x 1 A. 3 B. 4 C. 5 D. 6 Hướng dẫn giải: Chọn đáp án C x2  2x  6 Xét y  có 1 tiệm cận đứng là x = 1 x 1 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 13 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 2x 6  x2 x2  1 ;  1 x 1    x 2x 6 x 1 2  2 2 x  2x  6 x x  1 lim y  lim y x   x   x 1  1 x 1    x Nên đồ thị hàm số có 2 đường tiệm cận ngang là y   1 x 2  4 x  3  x  1  x  3 y  Xét ta có đồ thị hàm số có một tiệm cận ngang là y = 1 và chỉ có một x2  9  x  3  x  3 x 1 2  nên x = 3 không tiệm cận đứng là x = -3. Do vậy tổng số tiệm cận là 5. Chú ý: Do lim y  x 3 x 3 5 là tiệm cận đứng. 3 Câu 5: Cho hàm số y  có đồ thị là (C). Mê nh đề nào sau đây là đúng? ê x 1 A.  C  có tiê êm câ ên ngang là y  3 B.  C  có tiê êm câ ên ngang là y  0 x2  2x  6 lim y  lim y Mặt khác x   x   x 1 x 1 C.  C  có tiê m câ ên đứng là x  1 D.  C  chỉ có mô t tiê m câ ên ê ê ê Hướng dẫn giải: Chọn đáp án B Đồ thị hàm số đã cho có tiệm cận đứng là x  1 , tiê êm câ ên ngang là y  0 nên B đúng 3  2x Câu 6: Đồ thị hàm số y  có đường tiê êm câ n đứng, tiê êm câ ên ngang là: ê x 1 A. x  1; y  2 B. x  1; y  2 C. x  1; y  2 D. x  2; y  1 Hướng dẫn giải: Chọn đáp án C  lim y  2  x    hàm số có TCN là đường thẳng y  2 Ta có   xlim y  2     lim y    x  1  Hàm số có TCĐ là đường thẳng x  1 Lại có  lim y    x  1  x2 Câu 7: Đồ thị hàm số y  có đường tiệm cận đứng là 1 2x 1 1 1 A. x   . B. x  2. C. x  . D. y   . 2 2 2 Hướng dẫn giải: Chọn đáp án C 2  2x Câu 8: Tìm tiệm cận ngang của đồ thị hàm số y  . x 1 A. x  2 B. y  2 C. y  1 D. x  1 Hướng dẫn giải: Chọn đáp án B File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 14 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A   xlim y  xlim      Ta có:   lim y  lim x    x   Phần Hàm số - Giải tích 12 2  2x  2 x 1 => Đồ thị hàm số có tiệm cận ngang y  2 . 2  2x  2 x 1 Câu 9: Phương trình đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y  lượt là A. x  2; y  1 Hướng dẫn giải: Chọn đáp án A B. y  2; x  1 C. x  2; y  1 x 1 lần x2 D. x  2; y  1 Tiệm cận đứng: x  2 , tiệm cận ngang y  1 . x3  3x  2 . Khẳng định nào sau đây đúng? x2  4x  3 A. Đồ thị hàm số đã cho không có tiệm cận đứng. B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng. C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y  1 và y  3. D. Đồ thị hàm số đã cho có hai tiệm cận đứng là các đường thẳng x  1 và x  3. Hướng dẫn giải: Chọn đáp án D TXĐ D  �\  1;3 Câu 10: Cho hàm số y  +) lim1y   , lim1y   và lim3y   , lim3y   Vậy x  1, x  3 là 2 đường TCĐ. x x x x +) Chú ý: chỉ cần tính 1 giới hạn bên trái hoặc bên phải Câu 11: Trong các hàm số sau, hàm số nào có đúng một đường tiệm cận (gồm các đường tiệm cận đứng và tiệm cận ngang). x 1 . A. y  x 2  1  x. B. y  C. y  x 4  x 2  1. D. y  x 3  2 x  1. x2 Hướng dẫn giải: Chọn đáp án A Ta có: Tập xác định của hàm số là � và:   1 2 lim x 2  1  x  lim    0; xlim x  1  x  0 2 x   x      x 1  x  Vậy đồ thị hàm số có một tiệm cận ngang. Câu 12: Cho hàm số y  f  x  xác định trên khoảng  2; 1 và có x lim  f  x   2, x lim  f  x    .  2  1     Hỏi khẳng định nào dưới đây là khẳng định đúng? A. Đồ thị hàm số f  x  có đúng hai tiê êm câ n ngang là các đường thẳng y  2 và y  1 ê B. Đồ thị hàm số f  x  có đúng mô êt tiê êm câ ên đứng là đường thẳngx  1 C. Đồ thị hàm số f  x  có đúng mô êt tiê êm câ ên ngang là đường thẳngy  2 D. Đồ thị hàm số f  x  có đúng hai tiê êm câ n đứng là các đường thẳng x  2 và x  1 ê Hướng dẫn giải: Chọn đáp án B Ta có lim  f  x     đồ thị hàm số f  x  có đúng mô êt tiê êm câ ên đứng là đường thẳngx  1 x   1 File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 15 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Câu 13: Số đường tiê êm câ ên đứng và tiê êm câ ên ngang của đồ thị  y A. 2. Hướng dẫn giải: Chọn đáp án A B. 3. C. 4. 1  1   Tâ p xác định: D    ;     ;1   1;   ê 2  2   Tiê êm câ ên đứng: lim y  lim   x 1 x 1 Phần Hàm số - Giải tích 12 4 x 2  1  3x 2  2 là: x2  x D. 1.  4 x 2  1  3x 2  2 4 x 2  1  3x2  2   ; lim y  lim   x  1 x  1 x  x  1 x  x  1 Suy ra x  1 là tiê êm câ ên đứng. Tiê êm câ ên ngang: lim y  lim 4 x  1  3x  2  lim x  x2  x lim y  lim 4 x 2  1  3x 2  2  lim x  x2  x x   x   x  x  2 2 4 1   3 x2 x4 1 1 x 4 1   3 x2 x4 1 1 x 2 x 2  3  y  3 là tiê m câ n ngang ê ê 2 x 2  3  y  3 là tiê m câ n ngang ê ê Vâ êy đồ thị hàm số có hai tiê êm câ n. ê Câu 14: Đồ thị hàm số y  f ( x ) có xlim y  2; xlim y  2 . Chọn khẳng định đúng ?     A. Tiệm cận đứng x  2 . B. Tiệm cận ngang y  2 . C. Hàm số có hai cực trị. D. Hàm số có một cực trị. Hướng dẫn giải: Chọn đáp án B ax  b a a a Với hàm số y  có lim y  ; lim y  suy ra tiệm cận ngay y  x   x  cx  d c c c Tiệm cận ngang y  2 Câu 15: Xét các mệnh đề sau: 1. Đồ thị hàm số y  1 có một đường tiệm cận đứng và một đường tiệm cận ngang. 2x  3 2 2. Đồ thị hàm số y  x  x  x  1 có hai đường tiệm cận ngang và một đường tiệm cận đứng. x x  2x  1 3. Đồ thị hàm số y  có một đường tiệm cận ngang và hai đường tiệm cận đứng. x2  1 Số mệnh đề ĐÚNG là A. 3 Hướng dẫn giải: Chọn đáp án C B. 2 C. 1 D. 0 y 1 có một đường tiệm cận đứng và một đường tiệm cận ngang. 2x  3 lim x  x2  x  1 x  x2  x  1 1 x  x2  x  1 có hai đường tiệm cận ngang  2; lim   y x   x x 2 x x   và một đường tiệm cận đứng. File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 16 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A y Phần Hàm số - Giải tích 12 1  x  2x  1 có tập xác định D   ;    \  1 nên có tối đa một đường tiệm cận đứng. 2 x 1 2  x Câu 16: Cho các hàm số y  3 ; y  log 3 x; y  1 ; y  x 3 . Chọn phát biểu sai 3x B. Có hai đồ thị có tiệm cận ngang. D. Có hai đồ thị có chung một đường tiệm cận. A. Có hai đồ thị có tiệm cận đứng. C. Có đúng hai đồ thị có tiệm cận. Hướng dẫn giải: Chọn đáp án C Dựa vào đáp án ta thấy 1 Đồ thị hai hàm số y  log 3 x; y  cùng có tiệm cận đứng là đường thẳng x  0 3x 1 x Đồ thị hai hàm số y  3 ; y  cùng có tiệm cận ngang là: y  0 3x Có 3 đồ thị hàm số có tiệm cận nên C sai. x 1 Câu 17: Số tiệm cận của đồ thị hàm số y  là x2  1 A. 3 . B. 1 . C. 2 . D. 0 . Hướng dẫn giải: Chọn đáp án A TXĐ: D    ; 1   1;   . lim y   1 đồ thị hàm số có hai tiệm cận ngang. x    x 1   lim    0 x 2  1 x  1  x  1    x 1 lim y  lim x  1 x  1 x 1   đồ thị hàm số có một tiệm cận đứng x  1 x 1 x 1 x 2  1 x 1 x  1 Vậy đồ thị hàm số có 3 tiệm cận. 2x 1 Câu 18: Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y  ? x 1 1 A. x   . B. y  1 . C. y  2 . D. x  1 . 2 Hướng dẫn giải: Chọn đáp án C  Ta có xlim y  2  y  2 là đường tiệm cận ngang của đồ thị hàm số.   lim y  lim   x 1  lim  Câu 19: Số đường tiệm cận của đồ thị hàm số y  f  x   A. 1 Hướng dẫn giải: Chọn đáp án B Ta có: lim y  lim x   x   B. 3 C. 2 x 2  1  2x là: x 1 D. 4 x 2  1  2x  1 nên đường thẳng y  1 là tiệm cận ngang khi x   . x 1 x 2  1  2x  3 nên đường thẳng y  3 là tiệm cận ngang khi x   . x   x   x 1 +) Mà đường thẳng x  1 là tiệm cận đứng của đồ thị hàm số. +) lim y  lim File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 17 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 Câu 20: Tìm tất cả các đường tiệm cận ngang và đứng của đồ thị hàm số y  f  x   3x  2 x 1 A. Đồ thị hàm số f  x  có tất cả hai tiệm cận ngang là các đường thẳng y = -3 , y = 3 và không có tiệm cận đứng. B. Đồ thị hàm số f  x  không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = -1 C. Đồ thị hàm số f  x  không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng x = -1, x = 1. D. Đồ thị hàm số f  x  có đúng một tiệm cận ngang là đường thẳng y 3 và không có tiệm cận đứng. Hướng dẫn giải: Chọn đáp án A 2 3 3x  2 3x  2 x  3  y  3 là TCN.  lim  lim Ta có: xlim y  xlim     x  1 x   x  1 x   1 1 x 2 3 3x  2 3x  2 x  3  y  3 là TCN. lim y  lim  lim  lim x   x   x  1 x   x  1 x   1 1 x Không tồn tại giá trị xo để lim y  0  Đồ thị hàm số không có TCĐ. x  xo 2x  3 có bao nhiêu đường tiệm cận? | x | 1 B. 1 C. 4 Câu 21: Đồ thị hàm số y  1  A. không có Hướng dẫn giải: Chọn đáp án D D. 2 3   2 x   2x  3  lim  lim 1    3  y  3 là TCN   lim 1  x   x    | x | 1  x    1  1   x 3   2    2x  3  x  1  y  1 lim  lim 1  là TCN    lim 1  x   x   | x | 1  x    1  1    x  Đồ thị hàm số có 2 đường tiệm cận. Cách 2 : Dùng CALC của CASIO Câu 22: Đường thẳng y  2 là tiệm cận ngang của đồ thị hàm số nào dưới đây? 2 1 x 2x  2 2 x  3 . . . . A. y  B. y  C. y  D. y  x 1 1 2x x2 x2 Hướng dẫn giải: Chọn đáp án C a Tiệm cận ngang y   2 c 2x Câu 23: Số đường tiệm cận của đồ thị hàm số y  là x2 1  x A. 2 . B. 1 . C. 3 . D. 4 . File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 18 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 Hướng dẫn giải: Chọn đáp án B 2x y x2  1  x x2  1  x  x  lim y  lim x  x  lim y  lim x  x2 1  x  0 . 2x 1 x 1 2  x x 2x  x2  1  x 2 x 1 x x  2  lim x   2 1  1 2 1 x   lim 2x x  Câu 24: Số tiệm cận của đồ thị hàm số y    1 . Tiệm cận ngang : y  1  x 2  1  x   . x 1 là x2  1 C. 2 . A. 3 . B. 1 . Hướng dẫn giải: Chọn đáp án A TXĐ: D    ; 1   1;   . lim y   1 đồ thị hàm số có hai tiệm cận ngang. D. 0 . x   lim y  lim x  1 x  1  x 1   lim    0 x 2  1 x  1  x  1    x 1 x 1   đồ thị hàm số có một tiệm cận đứng x  1 x 1 x 1 x 2  1 x 1 x  1 Vậy đồ thị hàm số có 3 tiệm cận. 6  2x Câu 25: Cho hàm số y  . Khi đó tiệm cận đứng và tiệm cân ngang là 3 x A. Không có. B. x  3; y  2. C. x  3; y  2. D. x  2; y  3. Hướng dẫn giải: Chọn đáp án C Dựa vào định nghĩa tiệm cận đứng và tiệm cận ngang. 2x 1 Câu 26: Số đường tiệm cận của đồ thị hàm số y  x2  x  2 A. 0. B. 1. C. 2. D. 3. Hướng dẫn giải: Chọn đáp án C 2x  1 2x  1  2; lim  2 Ta phải tính các giới hạn: xlim  2   x   x x2 x2  x  2 Hàm số có 2 tiệm cận ngang y=2 và y  2 2x 1 ? Câu 27: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số y  1 x A. y  2. B. y  2. C. x  2. D. x  2. đứng là x  1. Hướng dẫn giải: lim y  lim   x 1  lim  Chọn đáp án B File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 19 ST và BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A Phần Hàm số - Giải tích 12 Ta có : lim  2 nên tiệm cận ngang của đồ thị hàm số là y  2. x  Câu 28: Tìm phương trình đường tiê êm câ n ngang của đồ thị hàm số y  ê A. x  1 B. x  1 C. y  3 Hướng dẫn giải: Chọn đáp án C 3x  2 lim  3 suy ra y  3 là tiê êm câ n ngang ê x   x  1 Câu 29: Đồ thị hàm số nào dưới đây có đường tiệm cận? x 1 . A. y  B. y  x 4  5x 2  1. x3 C. y   x 3  2x  3. D. y   x 4  x 2 . Hướng dẫn giải: Chọn đáp án A Câu 30: Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y  3x  2 x 1 D. y  2 1  2x có phương trình lần x  2 lượt là A. x  2; y  2. B. x  2; y  2. C. x  2; y  2. D. x  2; y  2. Hướng dẫn giải: Chọn đáp án C  lim y    x 2 Có:  nên đường thẳng x  2 là tiệm cận đứng của đồ thị hàm số.  xlim y    2 lim y  2 nên đường thẳng y  2 là tiệm cận ngang của đồ thị hàm số. x   Câu 31: Số đường tiệm cận của đồ thị hàm số y  x x2  1 C. 3. là: A. 2. B. 4. D. 1. Hướng dẫn giải: Chọn đáp án A + Ta có: x 2  1 vô nghiệm suy ra hàm số không có tiệm cận đứng. x x 1 lim  lim  lim 1 y 1 2 x   x   x   + là tiệm cận ngang của đồ thị hàm 1 1 x 1 x 1 2 1 2 x x số. x x 1 lim  lim  lim  1  y  1 x   + x x 2  1 x  là tiệm cận ngang của đồ thị 1 1  x 1 2  1 2 x x hàm số. Vậy đồ thị hàm số có 2 tiệm cận ngang là y  1và y  1. x  4x2  3 Câu 32: Cho hàm số y  có đồ thị là  C  . Gọi m là số tiệm cận của  C  và n là giá trị 2x  3 của hàm số tại x  1 thì tích mn là: 14 2 3 6 A. . B. . C. . D. . 5 15 5 5 Hướng dẫn giải: Chọn đáp án D File Word liên hệ: 0978064165 - Email: dangvietdong.bacgiang.vn@gmail.com Facebook: https://www.facebook.com/dongpay Trang 20
- Xem thêm -