Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Chế tạo vật liệu quang xúc tác tio2 biến tính (tio2v, tio2n và tio2 cnts) và ngh...

Tài liệu Chế tạo vật liệu quang xúc tác tio2 biến tính (tio2v, tio2n và tio2 cnts) và nghiên cứu một số tính chất của chúng

.PDF
181
824
62

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ----------o0o---------- DƯƠNG QUỐC VĂN CHẾ TẠO VẬT LIỆU QUANG XÚC TÁC TiO2 BIẾN TÍNH (TiO2:V, TiO2:N VÀ TiO2-CNTs) VÀ NGHIÊN CỨU MỘT SỐ TÍNH CHẤT CỦA CHÚNG LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội - 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ----------o0o---------- DƯƠNG QUỐC VĂN CHẾ TẠO VẬT LIỆU QUANG XÚC TÁC TiO2 BIẾN TÍNH (TiO2:V, TiO2:N VÀ TiO2-CNTs) VÀ NGHIÊN CỨU MỘT SỐ TÍNH CHẤT CỦA CHÚNG Chuyên ngành: Vật lý Chất rắn Mã số: 62.44.01.04 LUẬN ÁN TIẾN SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC 1. PGS.TS. Nguyễn Minh Thủy 2. TS. Nguyễn Huy Việt Hà Nội - 2017 i LỜI CẢM ƠN Đầu tiên, tôi xin được bày tỏ lòng kính trọng và biết ơn sâu sắc tới PGS.TS. Nguyễn Minh Thủy và TS. Nguyễn Huy Việt, những người thầy đã tận tình hướng dẫn và chỉ bảo cho tôi trong suốt thời gian làm luận án. Tôi xin chân thành cảm ơn PGS.TS. Nguyễn Văn Khánh, PGS.TS. Nguyễn Quỳnh Lan và PGS.TS. Trần Minh Thi, những người đã tạo mọi điều kiện thuận lợi trong công việc để cho tôi có thể tập trung vào quá trình học nghiên cứu sinh. Tôi xin trân trọng cảm ơn PGS.TS. Nguyễn Văn Hùng cùng các thầy cô trong Bộ môn Vật lý Chất rắn - Khoa Vật lý - Trường Đại học Sư phạm Hà Nội, những người đã tạo điều kiện tốt nhất cho việc học tập và nghiên cứu của tôi. Tôi xin cảm ơn PGS.TS. Lê Thị Hồng Hải, TS. Nguyễn Cao Khang, NCS. Nguyễn Mạnh Nghĩa, những người đã hỗ trợ tôi trong quá trình tổng hợp và thử nghiệm quang xúc tác cho các hệ mẫu trong luận án. Xin trân trọng cảm ơn TS. Trịnh Hải Đăng, TS. Nguyễn Hồng Quân vì sự giúp đỡ nhiệt thành trong quá trình chế tạo và khảo sát các tính chất đặc trưng cho các mẫu trong luận án này. Tôi xin gửi lời cảm ơn đến TS. Phạm Tiến Lâm, TS. Nguyễn Tiến Cường vì các hỗ trợ tận tình trong quá trình tính toán bằng phần mềm Materials Studio cho các mô hình trong luận án. Xin cảm ơn PGS.TS. Phạm Thọ Hoàn và các đồng nghiệp tại Trung tâm Khoa học Tính toán - Trường Đại học Sư phạm Hà Nội đã giúp đỡ tôi trong các tính toán bằng Quantum ESPRESSO. Các kết quả mô phỏng và các phân tích tương ứng được hoàn thành nhờ các thảo luận với TS. Lê Minh Thư. Tôi xin bày tỏ lòng biết ơn sâu sắc đến các đồng nghiệp trong Bộ môn Vật lý Đại cương - Khoa Vật lý - Trường Đại học Sư phạm Hà Nội, những người luôn bên tôi và hỗ trợ tôi vượt qua mọi khó khăn trong công việc để hoàn thành luận án này. ii Xin được gửi lời cảm ơn tới anh chị nghiên cứu sinh, các bạn học viên cao học và các em sinh viên làm việc tại Phòng thí nghiệm Vật lý Môi trường - Khoa Vật lý và Trung tâm khoa học và công nghệ nano - Trường Đại học Sư phạm Hà Nội, những người đã luôn cùng tôi làm việc trong những năm qua. Cuối cùng, tôi xin cảm ơn gia đình, người thân và bạn bè, những người luôn yêu thương, chia sẻ và giúp đỡ tôi trong quá trình hoàn thành luận án. Luận án này được hoàn thành nhờ một phần hỗ trợ từ đề tài cấp nhà nước NAFOSTED mã số 103.02-2011.12 và đề tài cấp Bộ GD-ĐT mã số B2014-17-46. Hà Nội, ngày 11 tháng 12 năm 2017 Dương Quốc Văn iii LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi dưới sự hướng dẫn của PGS.TS. Nguyễn Minh Thủy và TS. Nguyễn Huy Việt. Hầu hết các số liệu và kết quả trong luận án được trích dẫn từ các bài báo đã được xuất bản của tôi và cộng sự. Các số liệu, kết quả trong luận án là hoàn toàn trung thực và chính xác. Tác giả Dương Quốc Văn iv MỤC LỤC LỜI CẢM ƠN ................................................................................................... i LỜI CAM ĐOAN ........................................................................................... iii MỤC LỤC ....................................................................................................... iv DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ................................ viii DANH MỤC CÁC BẢNG .............................................................................. x DANH MỤC CÁC HÌNH VẼ........................................................................ xi Chapter 0 MỞ ĐẦU ........................................................................................ 1 Chapter 1 Chương 1 TỔNG QUAN VỀ VẬT LIỆU TiO2 .......................... 6 1.1 Tổng quan về TiO2..................................................................................................... 6 1.1.1 Cấu trúc tinh thể và tính chất vật lý của vật liệu TiO2 ...................................... 6 1.1.2 Tính chất dao động của mạng tinh thể TiO2 ...................................................... 8 1.1.3 Tính chất quang của vật liệu TiO2 ..................................................................... 9 1.1.4 Các kết quả nghiên cứu lý thuyết về vật liệu TiO2 ........................................... 10 1.1.5 Các ứng dụng của vật liệu nano bán dẫn nền TiO2 ........................................ 11 1.2 Hoạt tính quang xúc tác của vật liệu TiO2 anatase .............................................. 12 1.2.1 Quang xúc tác của vật liệu TiO2 ....................................................................... 13 1.2.3 Hạn chế của TiO2 trong các ứng dụng quang xúc tác .................................... 14 1.3.1 Các nghiên cứu tăng cường hoạt tính quang xúc tác trong vùng khả kiến ... 15 1.3.2 Các nghiên cứu tăng cường khả năng hấp phụ của TiO2 .............................. 21 1.4 Các nghiên cứu nhằm làm giảm bề rộng vùng cấm của vật liệu TiO2 ............... 23 1.4.1 Một số kết quả nghiên cứu về vật liệu TiO2 pha V .......................................... 23 1.4.3 Một số kết quả nghiên cứu về vật liệu TiO2 pha N .......................................... 30 1.5 Các nghiên cứu nhằm làm giảm tốc độ tái hợp điện tử - lỗ trống....................... 32 1.5.1 Một số tính chất đặc trưng của CNTs............................................................... 32 1.5.2 Các kết quả thực nghiệm về hoạt hóa CNTs .................................................... 34 1.5.3 Các kết quả thực nghiệm về vật liệu TiO2/CNTs .............................................. 34 1.5.4 Các kết quả tính toán về vật liệu TiO2/CNTs.................................................... 36 1.5.5 Cơ chế quang xúc tác của vật liệu TiO2/CNTs ................................................. 37 1.6 Tổng quan về tình hình nghiên cứu ở trong nước ................................................ 38 Kết luận chương 1 ......................................................................................................... 41 Chapter 2 Chương 2 KỸ THUẬT THỰC NGHIỆM VÀ PHƯƠNG PHÁP TÍNH TOÁN .................................................................................................. 43 v 2.1 Tổng hợp mẫu vật liệu nano bán dẫn nền TiO2.................................................... 43 2.1.1 Pha chế dung dịch chứa ion V4+....................................................................... 43 2.1.2 Tổng hợp mẫu TiO2 pha V bằng phương pháp thủy nhiệt .............................. 44 2.1.3 Tổng hợp mẫu TiO2 pha V bằng phương pháp sol-gel.................................... 45 2.1.4 Tổng hợp mẫu TiO2 pha V bằng phương pháp đồng kết tủa .......................... 45 2.1.5 Chế tạo mẫu màng TiO2 pha N......................................................................... 46 2.2 Tổng hợp các mẫu vật liệu tổ hợp TiO2/CNTs...................................................... 47 2.2.1 Hoạt hóa CNTs .................................................................................................. 47 2.2.2 Tổng hợp mẫu TiO2/CNTs ................................................................................ 48 2.3 Các thiết bị và kỹ thuật phân tích đặc trưng mẫu ................................................ 49 2.3.1 Kính hiển vi điện tử quét................................................................................... 49 2.3.2 Kính hiển vi điện tử truyền qua ........................................................................ 49 2.3.3 Kính hiển vi lực nguyên tử ............................................................................... 49 2.3.4 Phép đo nhiễu xạ tia X ...................................................................................... 50 2.3.5 Phép đo phổ hấp thụ UV-Vis............................................................................. 50 2.3.6 Phép đo phổ tán xạ Raman ............................................................................... 50 2.3.7 Phép đo phổ hồng ngoại ................................................................................... 50 2.3.8 Phép đo phổ tán sắc năng lượng tia X ............................................................. 51 2.3.9 Phép đo phổ quang điện tử tia X ...................................................................... 51 2.3.10 Phương pháp đẳng nhiệt hấp phụ - giải hấp phụ N2 .................................... 52 2.3.11 Phương pháp sắc ký lỏng hiệu năng cao ....................................................... 52 2.3.12 Phép đo hoạt tính quang xúc tác .................................................................... 52 2.4 Tính toán cấu trúc điện tử của vật liệu bằng lý thuyết phiếm hàm mật độ ....... 54 2.4.1 Bài toán cơ bản của tính toán cấu trúc điện tử của vật liệu ........................... 54 2.4.2 Lý thuyết phiếm hàm mật độ: các ý tưởng sơ khai .......................................... 56 2.4.3 Lý thuyết phiếm hàm mật độ: các định lý cơ bản ............................................ 57 2.4.4 Năng lượng tương quan – trao đổi................................................................... 59 2.4.5 Một số kỹ thuật tính toán trong DFT ............................................................... 61 2.4.6 Sơ lược về Quantum ESPRESSO và Materials Studio ................................... 64 2.4.7 Quy trình tính toán cho vật liệu sử dụng DFT ................................................ 65 Kết luận chương 2 ......................................................................................................... 67 Chapter 3 Chương 3 MÔ PHỎNG VÀ TÍNH TOÁN TÍNH CHẤT CỦA VẬT LIỆU NỀN TiO2 BẰNG LÝ THUYẾT PHIẾM HÀM MẬT ĐỘ ... 68 3.1 Kết quả tính cho vật liệu TiO2 anatase hoàn hảo ................................................. 68 3.1.1 Các thông số đặc trưng sử dụng trong tính toán cho vật liệu TiO2 ................ 68 3.1.2 Khảo sát phiếm hàm sử dụng để tính toán cho vật liệu TiO2 .......................... 69 3.1.3 Khảo sát thế bổ chính Hubbard cho mô hình tính toán của vật liệu TiO2 ..... 71 3.1.4 Các kết quả tính cho vật liệu TiO2 anatase ...................................................... 72 3.2 Kết quả tính cho vật liệu TiO2 pha tạp .................................................................. 74 3.2.1 Mô hình tính cho vật liệu TiO2 pha tạp............................................................ 74 vi 3.2.2 Các kết quả tính cho vật liệu TiO2 pha V ......................................................... 76 3.2.3 Các kết quả tính toán cho vật liệu TiO2 pha N ................................................ 81 3.3 Kết quả tính cho clusters TiO2 ............................................................................... 84 3.3.1 Các mô hình cluster TiO2 .................................................................................. 84 3.3.2 Quá trình cho – nhận điện tử của các cluster (TiO2)n ..................................... 84 3.4 Các kết quả tính cho vật liệu tổ hợp TiO2/CNTs .................................................. 87 3.4.1 Các mô hình cho vật liệu TiO2/CNTs ............................................................... 87 3.4.2 Cấu trúc và liên kết trong vật liệu TiO2/CNTs ................................................. 88 3.4.3 Các mô phỏng dự đoán hoạt tính quang xúc tác của vật liệu TiO2/CNTs ...... 93 Kết luận chương 3 ......................................................................................................... 96 Chapter 4 Chương 4 NGHIÊN CỨU SỰ ẢNH HƯỞNG CỦA HIỆU ỨNG PHA TẠP LÊN HOẠT TÍNH QUANG XÚC TÁC CỦA VẬT LIỆU TiO2 ................................................................................................................. 98 4.1 Ảnh hưởng của phương pháp chế tạo và nồng độ tạp chất lên tính chất của vật liệu TiO2 pha V ............................................................................................................ 100 4.1.1 Cấu trúc tinh thể của vật liệu TiO2 pha V ...................................................... 100 4.1.2 Tính chất quang của vật liệu TiO2 pha V....................................................... 102 4.1.3 Hoạt tính quang xúc tác của vật liệu TiO2 pha V .......................................... 103 4.2 Ảnh hưởng của tham số thủy nhiệt lên tính chất của mẫu TiO2 pha V ........... 110 4.2.1 Ảnh hưởng của thời gian thủy nhiệt lên tính chất của mẫu TiO2 pha V ..... 110 4.2.2 Ảnh hưởng của dung dịch thủy nhiệt lên tính chất của vật liệu TiO2 pha V111 4.3 Ảnh hưởng của nồng độ dung dịch lên hình thái của TiO2 pha V .................... 116 4.3.1 Cấu trúc tinh thể của vật liệu TiO2 pha V ...................................................... 116 4.3.2 Ảnh hưởng của dung dịch lên hình thái của vật liệu TiO2 pha V ................ 117 4.4 Thử nghiệm chế tạo màng TiO2 pha N ................................................................ 119 4.4.1 Hình thái bề mặt của mẫu TiO2 pha N........................................................... 119 4.4.2 Tính chất quang của vật liệu TiO2 pha N ...................................................... 120 4.4.3 Liên kết trong vật liệu TiO2 pha N.................................................................. 121 Kết luận chương 4 ....................................................................................................... 124 Chapter 5 Chương 5 NGHIÊN CỨU ẢNH HƯỞNG CỦA ĐIỀU KIỆN CÔNG NGHỆ LÊN TÍNH CHẤT CỦA VẬT LIỆU TỔ HỢP TiO2/CNTs.................................................................................................... 125 5.1 Ảnh hưởng của hoạt hóa CNTs lên tính chất của vật liệu TiO2/CNTs ............. 127 5.1.1 Ảnh hưởng của hoạt hóa CNTs lên sự hình thành lớp tiếp xúc TiO2-CNTs 127 5.1.2 Ảnh hưởng của nồng độ BA lên tính chất của vật liệu TiO2/CNTs .............. 129 5.2 Ảnh hưởng của tỉ lệ khối lượng lên tính chất của vật liệu TiO2/CNTs ............. 133 5.2.1 Cấu trúc tinh thể của vật liệu tổ hợp TiO2/CNTs ........................................... 133 5.2.2 Hình thái bề mặt của vật liệu TiO2/CNTs....................................................... 135 vii 5.2.3 Tính chất quang của vật liệu TiO2/CNTs ....................................................... 139 5.2.4 Hoạt tính quang xúc tác của vật liệu TiO2/CNTs .......................................... 140 Kết luận chương 5 ....................................................................................................... 143 KẾT LUẬN .................................................................................................. 144 DANH MỤC CÁC CÔNG BỐ KHOA HỌC ........................................... 146 TÀI LIỆU THAM KHẢO .......................................................................... 148 PHỤ LỤC ..................................................................................................... 162 P.1 Thẻ chuẩn JCPDS 21-1271 của TiO2 anatase ..................................................... 162 P.2 Thẻ chuẩn JCPDS 03-0380 của TiO2 brookite ................................................... 162 P.3 Thẻ chuẩn JCPDS 21-1276 của TiO2 rutile ........................................................ 163 P.4 Thẻ chuẩn JCPDS 25-0284 của CNTs ................................................................. 164 viii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Thuật ngữ Tiếng Anh Ý nghĩa AFM Atomic Force Microscope Kính hiển vi lực nguyên tử ALD Atomic Layer Deposition Phương pháp lắng đọng lớp nguyên tử at% Atomic Percentage Phần trăm nguyên tử BA Benzyl Alcohol Benzyl Alcohol - C6H5CH2OH BET Brunauer – Emmett - Teller Phép đo đẳng nhiệt hấp phụ - giải hấp phụ N2 CB Conduction Bands Dải dẫn CNTs Carbon Nanotubes Ống nano carbon CV Crystal Violet Tím Crystal DFT Density Functional Theory Lý thuyết phiếm hàm mật độ DOS Density of States Mật độ trạng thái EDX/EDS Energy-Dispersive Spectroscopy FTIR Fourier Transform Spectroscopy FWHM Full With at Half Maximum Độ bán rộng đỉnh phổ GGA Generalized Approximation Gần đúng gradient tổng quát HPLC High-Performance X-ray Infrared Gradient Liquid Phổ tán sắc năng lượng tia X Phổ hấp thụ hồng ngoại Sắc ký lỏng hiệu năng cao Chromatography HR-TEM High-Resolution Transmission Electron Microscope Kính hiển vi điện tử truyền qua phân giải cao LDA Local Density Approximation Gần đúng mật độ địa phương MB Methylene Blue Xanh Mê-ty-len C16H18N3SCl MS Materials Studio Phần mềm Materials Studio ix MWCNTs Multi-walled CNTs Ống nano carbon đa lớp OLA Oleic Acid Axit Oleic OXA Oxalic Acid Axit Oxalic PDOS Partial/Projected Density of States Mật độ trạng thái riêng QE Quantum ESPRESSO Phần mềm Quantum ESPRESSO RhB Rhodamine B C28H31ClN2O3 SEM Scanning Electron Microscope Kính hiển vi điện tử quét SWCNTs Single-walled CNTs Ống nano carbon đơn lớp TEM Transmission Microscope TTiP Titanium Tetraisoproproxide Ti(OCH(CH3)2)4 UV-vis Ultraviolet - Visible Bức xạ tử ngoại - khả kiến VB Valence Bands Dải hóa trị XPS X-ray Spectrocopy XRD X-ray Diffraction Patterns Electron Photoelectron Kính hiển vi điện tử truyền qua Phổ quang điện tử tia X Nhiễu xạ tia X 𝜶 Độ hấp thụ 𝜽 Góc nhiễu xạ tia X 𝝀 Bước sóng ánh sáng 𝝂 Tần số ánh sáng x DANH MỤC CÁC BẢNG Bảng 1.1 Một số thông số vật lý của pha rutile, anatase và brookite của TiO2 [80]. 7 Bảng 1.2 Các đỉnh tích cực Raman của tinh thể TiO2 anatase [137].........................8 Bảng 1.3 Tốc độ phân hủy CV và MB của các mẫu TiO2:V [181]. ..........................27 Bảng 1.4 Hằng số mạng và thể tích ô cơ sở của TiO2 pha V. ...................................28 Bảng 1.5 Năng lượng hình thành của các mô hình TiO2 pha N [180]. ....................31 Bảng 1.6 Bề rộng vùng cấm của các mô hình TiO2 pha N [180]. ............................31 Bảng 3.1 Các điểm đặc trưng trong vùng Brillouin của TiO2 anatase [156]. .........69 Bảng 3.2 Hằng số mạng của TiO2 anatase với giả thế khác nhau. ..........................71 Bảng 3.3 Các tham số sử dụng để tính toán cho TiO2 anatase.................................71 Bảng 3.4 Các thông số đặc trưng cho ô cơ sở của TiO2 anatase. ............................72 Bảng 3.5 Các thông số đặc trưng của TiO2 anatase tính toán theo DFT. ................74 Bảng 3.6 Các mô hình tính toán cho vật liệu TiO2 pha V, N. ...................................76 Bảng 3.7 Giá trị 𝑚, 𝑛 và 𝑝 cho các mô hình TiO2 pha V tương ứng........................77 Bảng 3.8 Công thức xác định thế hóa học của Ti và O trong các điều kiện hình thành khác nhau Ti-rich và O-rich. .....................................................................................77 Bảng 3.9 Năng lượng hình thành của các mô hình TiO2 pha V. ...............................78 Bảng 3.10 Năng lượng hình thành nút khuyết O trong các mô hình TiO2 pha V. ....79 Bảng 3.11 Giá trị 𝑚 và 𝑛 cho các mô hình TiO2 pha N. ..........................................81 Bảng 3.12 Năng lượng hình thành của một ô cơ sở và năng lượng hình thành một nút khuyết O trong các mô hình TiO2 pha N. ..................................................................81 Bảng 3.13 Bề rộng vùng cấm, bước sóng hấp thụ cực đại, bề rộng dải hóa trị và phân bố Hirshfeld trong các mô hình TiO2 pha N. ............................................................83 Bảng 3.14 Ái lực điện tử (EA) và năng lượng ion hóa (IP) của cluster TC-2. .........86 Bảng 3.15 Năng lượng hấp phụ của các mô hình CTO-1, CTO-2 và CTO-3...........90 Bảng 4.1 Các mẫu TiO2 pha V được chế tạo và nghiên cứu trong luận án..............99 Bảng 4.2 Điều kiện thử nghiệm hoạt tính quang xúc tác cho các mẫu vật liệu TiO2 pha 0,5% V chế tạo bằng các phương pháp khác nhau. .........................................103 Bảng 4.3 Hằng số mạng và kích thước tinh thể của hệ mẫu HVS. .........................112 Bảng 4.4 Hằng số mạng và kích thước tinh thể của hệ mẫu HA1420 ÷ HA1820. ..117 Bảng 4.5 Độ mấp mô bề mặt trung bình của các mẫu ANN. ..................................120 Bảng 5.1 Các mẫu TiO2/CNTs được chế tạo và nghiên cứu trong luận án. ...........126 Bảng 5.2 Bề rộng vùng cấm và bước sóng giới hạn của các mẫu TC-BA. .............132 Bảng 5.3 Hằng số mạng và kích thước tinh thể của các mẫu TC1 ÷ TC1000. .......134 Bảng 5.4 Thành phần các nguyên tố trong mẫu vật liệu tổ hợp TC1. ....................137 Bảng 5.5 Bề rộng vùng cấm và bước sóng giới hạn của các mẫu TC1÷TC1000. ..139 xi DANH MỤC CÁC HÌNH VẼ Hình 1.1 Cấu trúc tinh thể của pha (a) rutile, (b) anatase và (c) brookite của TiO2. 6 Hình 1.2 (a) Cấu trúc của bát diện TiO6 [109] và sắp xếp không gian của chúng trong ô cơ sở của pha (b) anatase, (c) rutile, (d) brookite của TiO2 [149]..........................7 Hình 1.3 Phổ Raman của mẫu TiO2 khối và kích thước nano [71]. ...........................8 Hình 1.4 Phổ hấp thụ của TiO2 anatase (a) dạng tinh thể và (b) kích thước nano [121]. ...........................................................................................................................9 Hình 1.5 Ô cơ sở của TiO2 và định hướng của các trục tọa độ [18]........................10 Hình 1.6 Cấu trúc vùng năng lượng của TiO2 anatase [18, 42]. .............................10 Hình 1.7 Mật độ trạng thái riêng của TiO2 anatase [42]. ........................................11 Hình 1.8 Các quá trình diễn ra trong chất bán dẫn khi được chiếu sáng [47]. .......12 Hình 1.9 Cơ chế quang xúc tác của vật liệu TiO2.....................................................13 Hình 1.10 Cơ chế quang xúc tác của vật liệu TiO2 pha kim loại [36]. ....................15 Hình 1.11 Cơ chế quang xúc tác của vật liệu TiO2 pha phi kim [36].......................17 Hình 1.12 Cơ chế quang xúc tác của vật liệu TiO2 biến tính bề mặt [36]................19 Hình 1.13 Bát diện VO6 trong cấu trúc tinh thể của TiO2 [175]. .............................24 Hình 1.14 Giản đồ nhiễu xạ tia X của các mẫu TixVyO2 với y = 0,015x ÷ 0,08x [181]. ...................................................................................................................................24 Hình 1.15 Giản đồ nhiễu xạ tia X của các mẫu TiO2 pha V với nồng độ khác nhau nung ở 400 oC [96]....................................................................................................25 Hình 1.16 Giản đồ nhiễu xạ tia X của các mẫu TiO2 pha V với nồng độ khác nhau nung ở 500 oC [123]..................................................................................................25 Hình 1.17 Giản đồ nhiễu xạ tia X của các mẫu TiO2 pha V với nồng độ khác nhau nung ở 600 oC [15]....................................................................................................25 Hình 1.18 Giản đồ nhiễu xạ tia X của các mẫu TiO2:1,81%V với nhiệt độ nung khác nhau [96]. ..................................................................................................................25 Hình 1.19 Phổ hấp thụ của (a) TiO2, (b) TiO2:1,5%V, (c) TiO2:2,5%V, (d) TiO2:5%V và (e) TiO2:8%V [181]. .............................................................................................26 Hình 1.20 Sự phụ thuộc của α2Eg vào năng lượng photon của mẫu TiO2:V [15]. ...26 Hình 1.21 Mật độ trạng thái của TiO2 pha V tính toán theo (a) LDA và (b) LDA+U [175]. .........................................................................................................................28 Hình 1.22 Mật độ trạng thái riêng của (A) TiO2 pha V với các vị trí khác nhau và (B) phân lớp 3d của V tính toán sử dụng GGA+U [125]. ..............................................29 Hình 1.23 Giản đồ nhiễu xạ tia X của mẫu (a) TiO2 và (b) TiO2 pha N [199].........30 Hình 1.24 Phổ XPS ứng với đỉnh N 1s của mẫu TiO2 pha N [199]..........................30 Hình 1.25 Mật độ trạng thái riêng của (a) TiO2 và (b) TiO2 pha N tính toán sử dụng GGA+U [180] . .........................................................................................................32 xii Hình 1.26 Sự hình thành SWCNTs từ việc cuộn tròn tấm graphene [150]. .............33 Hình 1.27 Các kiểu SWCNTs thường gặp: armchair, zigzag và chiral [150]..........33 Hình 1.28 CNTs đơn lớp và đa lớp [102]. ................................................................33 Hình 1.29 Giản đồ nhiễu xạ tia X của (a) MWCNTs, (b) TiO2, (c) 1-MWNT-TiO2, (d) 5-MWNT-TiO2, (e) 10-MWNT-TiO2, (f) 20-MWNT-TiO2 và (g) 40-MWNT-TiO2 [171]. .........................................................................................................................35 Hình 1.30 Phổ hấp thụ của vật liệu TiO2/CNTs với tỉ lệ khối lượng CNTs trong mẫu là (a) 0%, (b) 1%, (c) 5%, (d) 10%, (e) 20% và (f) 40% [171]. ...............................35 Hình 1.31 Sự thay đổi của nồng độ phenol trong dung dịch theo thời gian khi xử lý bằng các mẫu khác nhau [171].................................................................................36 Hình 1.32 Cấu trúc tối ưu hóa của các mô hình vật liệu tổ hợp TiO2/CNTs. (Hình cầu xanh: O, đỏ: Ti và xám: C) [124]. ............................................................................37 Hình 1.33 (a) Mật độ trạng thái toàn phần và (b) mật độ trạng thái riêng của các mô hình tổ hợp TiO2/CNTs [124]....................................................................................37 Hình 1.34 Các cơ chế giải thích khả năng tăng cường hoạt tính xúc tác của vật liệu tổ hợp TiO2/CNTs: (a) cơ chế dẫn truyền điện tử [83] và (b) cơ chế hấp thụ photon [172]. .........................................................................................................................38 Hình 2.1 Sơ đồ tóm tắt quy trình tổng hợp mẫu TiO2:V bằng phương pháp thủy nhiệt. ...................................................................................................................................44 Hình 2.2 Sơ đồ tóm tắt quy trình tổng hợp mẫu TiO2:V bằng phương pháp sol-gel. ...................................................................................................................................44 Hình 2.3 Sơ đồ tóm tắt quy trình tổng hợp mẫu TiO2:V bằng phương pháp đồng kết tủa. .............................................................................................................................46 Hình 2.4 Sơ đồ tóm tắt quy trình chế tạo mẫu màng TiO2:N bằng phương pháp ALD. ...................................................................................................................................46 Hình 2.5 Sơ đồ tóm tắt quy trình hoạt hóa CNTs sử dụng HNO3 hoặc hỗn hợp HNO3 : H2SO4 tỉ lệ 3 : 1. ......................................................................................................47 Hình 2.6 Sơ đồ tóm tắt quy trình tổng hợp các mẫu vật liệu tổ hợp TiO2/CNTs sử dụng CNTs không hoạt hóa. ...............................................................................................47 Hình 2.7 Sơ đồ quy trình tổng hợp các mẫu TiO2/CNTs sử dụng CNTs hoạt hóa bằng HNO3 hoặc hỗn hợp HNO3+H2SO4...........................................................................48 Hình 2.8 Sơ đồ quy trình tổng hợp các mẫu TiO2/CNTs sử dụng CNTs hoạt hóa bằng dung dịch chứa BA. ...................................................................................................48 Hình 2.9 Hệ đo phổ quang điện tử tia X tại Trường Đại học Chiao Tung, Đài Loan. ...................................................................................................................................51 Hình 2.10 Cấu tạo hóa học của (a) phenol, (b) xanh mê-ty-len và (c) rhodamine B. ...................................................................................................................................53 Hình 2.11 Sơ đồ xác định hoạt tính quang xúc tác của vật liệu. ..............................53 Hình 2.12 Phổ phát xạ của đèn dây tóc dùng trong thí nghiệm quang xúc tác. .......53 Hình 2.13 Siêu mạng tuần hoàn hình thành từ các siêu ô mạng [61]. .....................62 xiii Hình 2.14 Kết quả tính năng lượng của hệ sử dụng (a) LDA/GGA và (b) LDA+U. 63 Hình 3.1 Ô đơn vị dùng trong tính toán của tinh thể TiO2 anatase. .........................69 Hình 3.2 Vùng Brillouin của tinh thể TiO2 anatase [156]. .......................................69 Hình 3.3 Bề rộng vùng cấm của TiO2 anatase khi tính toán sử dụng (a) phiếm hàm PBE và (b) phiếm hàm PBE có bổ sung thế Hubbard U. .........................................72 Hình 3.4 Mật độ trạng thái toàn phần của TiO2 anatase tính toán sử dụng (a) phiếm hàm PBE và (b) phiếm hàm PBE có bổ sung thế Hubbard U. .................................73 Hình 3.5 Mật độ trạng thái riêng của TiO2 anatase tính toán sử dụng (a) phiếm hàm PBE và (b) phiếm hàm PBE có bổ sung thế Hubbard U. .........................................73 Hình 3.6 Các mô hình sử dụng để tính toán cho vật liệu TiO2 pha tạp: (a) TOO, (b) TOO-v, (c) TOV-s, (d) TOV-sv, (e) TOV-i, (f) TOV-iv, (g) TVO-s và (h) TVO-sv. ...75 Hình 3.7 Mật độ trạng thái riêng của các mô hình cho vật liệu nền TiO2: (a) TOO, (b) TOO-v, (c) TOV-i, (d) TOV-s, (e) TVO-s và (f) bề rộng vùng cấm của các mô hình. ...................................................................................................................................80 Hình 3.8 Mật độ trạng thái của mô hình (a) TOO, (b) TOO-v, (c) TON-i và (d) TONs. ................................................................................................................................82 Hình 3.9 Các mô hình cluster sử dụng trong tính toán của luận án. ........................84 Hình 3.10 Sự thay đổi mật độ điện tích khi nhận thêm một điện tử của (a) TC-2, (b) TC-3 và khi mất đi một điện tử của (c) TC-2 và (d) TC-3. .......................................85 Hình 3.11 Mô hình của vật liệu tổ hợp TiO2/CNTs sử dụng để tính toán: (a) ô cơ sở, (b) mặt cắt dọc và (c) mặt cắt vuông góc với trục của CNT. ....................................87 Hình 3.12 Cấu trúc của CTO-1 trước và sau khi tối ưu hóa hình học. ....................88 Hình 3.13 Cấu hình của CTO-2 trước và sau khi tối ưu hóa cấu trúc. ....................89 Hình 3.14 Sự phân bố lại mật độ điện tử khi TiO2 hấp phụ trên bề mặt CNTs. .......91 Hình 3.15 Mật độ trạng thái của (10,0)-CNTs (phía trên) và của CTO-1 (phía dưới). Đường nét đứt biểu thị mức Fermi............................................................................92 Hình 3.16 (a) Mật độ trạng thái riêng của TiO2 clusters và (10,0)-CNT; (b) mật độ trạng thái riêng của O (trên) và Ti (dưới). Đường nét đứt biểu thị mức Fermi. ......93 Hình 3.17 Mật độ trạng thái riêng của TC-2 và CNTs trong mô hình CTO-2. Đường nét đứt biểu thị mức Fermi. .......................................................................................94 Hình 3.18 Sự thay đổi của mật độ trạng thái của các nguyên tử C trong CNTs sau khi tổ hợp với TiO2: (a) vị trí các nguyên tử C được chọn và (b) mật độ trạng thái tương ứng của chúng trong vùng gần 0 eV. ........................................................................94 Hình 3.19 Sự thay đổi mật độ điện tích của cluster (TiO2)2 hấp phụ trên bề mặt CNT (a) khi thêm một điện tử và (b) khi mất đi một điện tử. ............................................95 Hình 4.1 Giản đồ nhiễu xạ tia X của các hệ mẫu TiO2 pha V chế tạo bằng phương pháp (a) thủy nhiệt, (b) đồng kết tủa và (c) sol-gel.................................................101 Hình 4.2 Phổ hấp thụ UV-Vis của các mẫu trong hệ HV. ......................................102 Hình 4.3 Cấu trúc vùng năng lượng của vật liệu TiO2 pha V. ................................102 xiv Hình 4.4 Sự suy giảm nồng độ phenol trong các dung dịch khi xử lý bằng các mẫu TiO2 pha tạp với điều kiện chiếu sáng khác nhau. ..................................................104 Hình 4.5 Ảnh SEM của các mẫu (a) HV5, (b) CV5 và (c) SV5. ..............................105 Hình 4.6 (a) Ảnh TEM, (b) HR-TEM, (c) ảnh biến đổi Fourier nhanh của vùng được chọn trên hình b và (d) mặt cắt của ảnh biến đổi Fourier nhanh của vùng lựa chọn trong hình c của mẫu HV5. .....................................................................................106 Hình 4.7 Đường đẳng nhiệt hấp phụ - giải hấp phụ N2 của các mẫu HV0 và HV5. .................................................................................................................................107 Hình 4.8 Phổ XPS của (a) Ti 2p và (b) O 1s của mẫu HV0 và HV5; kết quả fit hàm Gauss cho đỉnh phổ O 1s của (c) mẫu HV0 và (d) mẫu HV5. ................................108 Hình 4.9 Sự suy giảm nồng độ phenol trong dung dịch khi xử lý bằng hệ mẫu HV0÷HV9. ...............................................................................................................109 Hình 4.10 Phổ hấp thụ UV-Vis của hệ HVT theo bước sóng. .................................110 Hình 4.11 Giản đồ nhiễu xạ tia X của mẫu HT, HVT5 và HVT7............................111 Hình 4.12 Cường độ tỉ đối của các đỉnh nhiễu xạ của các mẫu HVT5 và HVT9. ..111 Hình 4.13 Giản đồ nhiễu xạ tia X của hệ mẫu HVS: HWAT, HCLA, HOXA và HOLA. .................................................................................................................................111 Hình 4.14 (a) Phổ tán xạ Raman của các mẫu HWAT, HCLA, HOXA, HOLA và (b) sự thay đổi vị trí đỉnh 144 cm-1 của các mẫu. .........................................................113 Hình 4.15 Phổ hấp thụ UV-Vis của hệ mẫu HWAT, HCLA, HOXA và HOLA. ......113 Hình 4.16 Sự thay đổi phổ hấp thụ của MB khi xử lý bằng mẫu HOLA theo thời gian. .................................................................................................................................114 Hình 4.17 Sự suy giảm nồng độ MB của các dung dịch khi xử lý bằng hệ mẫu HVS. .................................................................................................................................114 Hình 4.18 Ảnh TEM của (a) HWAT, (b) HCLA, (c) HOXA và (d) HOLA. .............115 Hình 4.19 Giản đồ nhiễu xạ tia X của hệ mẫu HA1420 ÷ HA1820. .......................116 Hình 4.20 Ảnh SEM và HR-TEM của các mẫu thủy nhiệt với dung môi OLA với tỉ lệ khác nhau: (a,e) HA1420, (b,f) HA1520, (c,g) HA1620 và (d,h) HA1820. ............118 Hình 4.21 Ảnh hiển vi lực nguyên tử của (a) ANN0, (b) ANN10, (c) ANN20; (d) thang đo và (e) hình dạng cân bằng của động học hình thành tinh thể TiO2 pha anatase. .................................................................................................................................120 Hình 4.22 Ảnh AFM của mẫu ANN0 với thang đo 200 nm. ...................................120 Hình 4.23 Phổ hấp thụ của hệ mẫu ANN. ...............................................................121 Hình 4.24 Phổ hấp thụ của hệ mẫu ANT. ...............................................................121 Hình 4.25 Đỉnh XPS Ti 2p của mẫu (a) ANN0, (b) ANN10 và (c) ANN20. ............121 Hình 4.26 Đỉnh XPS O 1s của mẫu (a) ANN0, (b) ANN10 và (c) ANN20. .............122 Hình 4.27 Đỉnh XPS N 1s của mẫu (a) ANN10 và (b) ANN20. ..............................123 Hình 5.1 Ảnh hiển vi điện tử quét (SEM) của mẫu TC-0-0. ....................................127 Hình 5.2 Ảnh SEM của mẫu (a) TC-1-I, (b) TC-1-BA,(c) TC-2-I và (d) TC-2-BA. 128 xv Hình 5.3 Ảnh SEM của (a) TC-EHB-5, (b) TC-EHB-10, (c) TC-EHB-20 và (d) TCEB-10. ......................................................................................................................129 Hình 5.4 Giản đồ nhiễu xạ tia X của hệ mẫu TC-BA. .............................................130 Hình 5.5 Phổ hấp thụ của hệ TC-BA. .....................................................................131 Hình 5.6 Sự suy giảm nồng độ RhB trong dung dịch khi xử lý bằng hệ mẫu TC-BA. .................................................................................................................................132 Hình 5.7 Giản đồ nhiễu xạ tia X của các mẫu TC1÷TC1000. ................................133 Hình 5.8 (a) Ảnh SEM và (b) ảnh HR-TEM của mẫu TC1. ....................................135 Hình 5.9 Đồ thị phân bố thể tích mao quản của mẫu (a) TiO2 và (b) TC3. ...........136 Hình 5.10 Phổ tán sắc năng lượng tia X của mẫu TC1. .........................................136 Hình 5.11 Phổ XPS của mẫu TC10. ........................................................................138 Hình 5.12 Phổ hấp thụ UV-Vis của hệ TC-m. .........................................................139 Hình 5.13 Sự suy giảm nồng độ MB của các dung dịch khi xử lý bằng hệ TC-m. .140 Hình 5.14 Sơ đồ mô tả sự tăng cường hoạt tính xúc tác của vật liệu tổ hợp TiO2/CNTs theo cơ chế dẫn truyền điện tử. ...............................................................................141 Hình 5.15 Sơ đồ mô tả sự tăng cường hoạt tính xúc tác của vật liệu tổ hợp TiO2/CNTs theo cơ chế hấp thụ photon. ....................................................................................142 1 Chapter 0 MỞ ĐẦU Trong những thập niên cuối của thế kỷ 20 và các thập niên đầu của thế kỷ 21, TiO2 là một trong những vật liệu được nghiên cứu và ứng dụng rộng rãi trên thế giới nhờ những đặc điểm nổi bật: giá thành sản xuất rẻ, không độc, bền về mặt hóa học và vật lý, chiết suất lớn và độ bền cơ học cao [31]. Mặt khác, TiO2 có hoạt tính cao, có khả năng phân hủy các chất hữu cơ độc hại trong một số điều kiện thích hợp. Các đặc điểm này làm cho vật liệu TiO2 trở thành đối tượng nghiên cứu của nhiều lĩnh vực khác nhau như công nghiệp vật liệu mới hay công nghệ môi trường. Khả năng quang xúc tác của TiO2 được phát hiện bởi Fujishima và Honda năm 1972 [41], sau đó được củng cố bởi các công trình của nhiều nhóm nghiên cứu khác. Tuy nhiên, việc ứng dụng TiO2 trong thực tế gặp khá nhiều khó khăn do các nguyên nhân chính: (i) bề rộng vùng cấm lớn và (ii) sự tái hợp nhanh của các cặp điện tử - lỗ trống (e- - h+). Các nguyên nhân này làm cho dải hoạt động của TiO2 bị giới hạn ở vùng tử ngoại đồng thời hiệu suất lượng tử thu được thấp, ảnh hưởng đến khả năng xúc tác của vật liệu. Do đó, một trong các mục tiêu của khoa học và công nghệ hiện nay là chế tạo được vật liệu quang xúc tác từ TiO2 có hiệu suất lượng tử cao và hoạt động trong vùng khả kiến. Năm 2001, nhóm nghiên cứu của Asahi [17] đã hé mở một hướng nghiên cứu mới khi chứng tỏ rằng có thể làm giảm bề rộng vùng cấm của TiO2 nhờ pha tạp N vào trong mạng tinh thể. Sau công trình này, hàng loạt các nghiên cứu về vật liệu TiO2 pha kim loại, phi kim hay kim loại chuyển tiếp đã được thực hiện. Trong số đó, các kim loại chuyển tiếp được khảo sát rộng rãi hơn cả vì vật liệu TiO2 pha kim loại chuyển tiếp không chỉ có bề rộng vùng cấm giảm mà còn làm tăng khả năng bắt giữ điện tử, ngăn chặn sự tái hợp của các cặp điện tử - lỗ trống, tăng cường khả năng xúc tác của vật liệu. Trong các nguyên tố kim loại chuyển tiếp thường dùng thì V là một trong các nguyên tố được sử dụng rộng rãi bởi việc pha V vào trong vật liệu TiO2 vừa (i) tăng độ dẫn điện đồng thời (ii) giữ được tính trong suốt và (iii) làm giảm bề rộng vùng cấm của vật liệu. Trong khi đó, một nguyên tố phi kim được sử dụng rộng rãi để pha vào TiO2 là N do vật liệu TiO2 pha N cho hoạt tính quang xúc tác cao, độ dịch bờ hấp thụ dịch về vùng khả kiến lớn. 2 Một trong các phương pháp để hạn chế sự tái hợp của các cặp điện tử - lỗ trống trong vật liệu quang xúc tác TiO2 là tổ hợp với một số vật liệu khác như ống nano carbon (Carbon Nanotubes – CNTs) hay graphene. CNTs là vật liệu có cấu trúc nano, tính dẫn điện phụ thuộc vào cấu trúc. Khi tổ hợp với TiO2, các điện tử sinh ra trong TiO2 do chiếu sáng sẽ chuyển sang CNTs, làm giảm tốc độ tái hợp của các cặp điện tử – lỗ trống. Điều này làm cho hiệu suất lượng tử của vật liệu được nâng cao. Hiện nay, vật liệu bán dẫn nền TiO2 và ứng dụng của nó đã trở thành một hướng nghiên cứu quan trọng ở Việt Nam. Các kết quả nghiên cứu về vật liệu này tập trung vào một số xu hướng chính như nghiên cứu tính bán dẫn bán từ của vật liệu hay khống chế kích thước hạt, làm giảm bề rộng vùng cấm. Các công trình nghiên cứu về vật liệu TiO2 pha V hoặc N còn ít, chưa đưa ra được quy trình hoàn chỉnh để tổng hợp mẫu thuận tiện và ổn định. Mặt khác, các nghiên cứu về TiO2 chủ yếu tập trung vào việc làm giảm bề rộng vùng cấm hiệu dụng của vật liệu mà chưa đề cập đến vấn đề làm giảm tốc độ tái hợp của điện tử - lỗ trống. Các kết quả nghiên cứu về công nghệ vật liệu trong nước có thể so sánh với nghiên cứu ở các nước khác, tuy nhiên việc kết nối thực nghiệm với lý thuyết để phân tích cơ chế quang xúc tác của vật liệu vẫn còn gặp nhiều khó khăn, do vậy mức độ khoa học của các kết quả thực nghiệm cũng bị hạn chế. Một phần nguyên nhân là do các kết quả thực nghiệm thường ít được đo ở những điều kiện phù hợp (như nhiệt độ thấp, đơn pha tinh thể, đo với trạng thái phân cực, độ phân giải cao) nên gặp khó khăn cho việc phân tích. Luận án đã thực hiện một quy trình nghiên cứu phù hợp với xu hướng hiện nay - tìm cách mô hình hóa bài toán theo điều kiện hiện có của thực nghiệm, sử dụng các chương trình và phần mềm mô phỏng vật liệu để tính cấu trúc điện tử, phân tích sự đóng góp của các trạng thái, ngoại suy các thông số, từ đó bổ trợ cho việc phân tích các đặc trưng vật lý của vật liệu đang nghiên cứu. Để thực hiện quá trình nghiên cứu này, đề tài được lựa chọn cho luận án là “Chế tạo vật liệu quang xúc tác TiO2 biến tính (TiO2:V, TiO2:N và TiO2-CNTs) và nghiên cứu một số tính chất của chúng”. Mục tiêu của luận án: Các mục tiêu chính của luận án là: (i) Tìm ra điều kiện tổng hợp vật liệu TiO2 pha tạp V, N và vật liệu TiO2/CNTs phù hợp để thu được mẫu có hoạt tính quang xúc tác cao; (ii) Giải thích cơ chế quang xúc tác của vật liệu thông qua kết hợp các tính toán lý thuyết và phân tích thực nghiệm. 3 Để thực hiện các mục tiêu đó, các nhiệm vụ chính của luận án là: (1) Xây dựng các mô hình, thực hiện tính toán, khảo sát tính chất của vật liệu TiO2 pha V, N và vật liệu tổ hợp TiO2/CNTs theo lý thuyết phiếm hàm mật độ, từ đó làm rõ nguyên nhân làm tăng hoạt tính quang xúc tác của vật liệu. (2) Khảo sát ảnh hưởng của công nghệ và hiệu ứng pha tạp lên tính chất vật lý và quang xúc tác của vật liệu TiO2 pha V, N; xác định các điều kiện thuận lợi để tổng hợp vật liệu này. (3) Nghiên cứu ảnh hưởng của điều kiện chế tạo lên tính chất vật lý và hoạt tính quang xúc tác của vật liệu tổ hợp TiO2/CNTs, xác định các điều kiện thuận lợi để tổng hợp vật liệu này. Đối tượng nghiên cứu: - Vật liệu nano TiO2 pha V, N. - Vật liệu tổ hợp TiO2/CNTs. Phương pháp nghiên cứu: Phương pháp nghiên cứu được sử dụng trong luận án là sự kết hợp giữa thực nghiệm và lý thuyết nhằm khảo sát ảnh hưởng của điều kiện chế tạo lên tính chất của vật liệu đồng thời đưa ra các phân tích nhằm giải thích các hiệu ứng liên quan. Các mẫu bột và một số mẫu màng nghiên cứu trong luận án được chế tạo tại Khoa Vật lý, Khoa Hóa học và Trung tâm Khoa học và Công nghệ nano - Trường Đại học Sư phạm Hà Nội. Cấu trúc tinh thể và hình thái bề mặt của vật liệu được khảo sát và phân tích nhờ các phép đo cơ bản như nhiễu xạ tia X (XRD), chụp ảnh hiển vi điện tử quét (SEM) và hiển vi điện tử truyền qua (TEM, HR-TEM). Tính chất quang học của mẫu được khảo sát thông qua phép đo phổ hấp thụ trong vùng khả kiến (UVVis). Ảnh hưởng của điều kiện chế tạo và nồng độ tạp chất lên tính chất dao động của vật liệu được khảo sát thông qua các phép đo phổ tán xạ Raman, phổ hấp thụ hồng ngoại (FTIR) hay phép đo quang điện tử tia X (XPS). Các phép đo và phân tích mẫu được sử dụng trong luận án đều được thực hiện trên các thiết bị hiện đại, có độ tin cậy cao tại các cơ sở nghiên cứu khoa học trong nước, một số phép đo được thực hiện tại các phòng thí nghiệm ở nước ngoài. Cấu trúc điện tử và các tính chất vật lý của vật liệu được tính bằng phần mềm chuyên dụng dựa trên lý thuyết phiếm hàm mật độ (Density Functional Theory -
- Xem thêm -

Tài liệu liên quan