Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Đại cương Các bài toán về hình học phẳng tập 1...

Tài liệu Các bài toán về hình học phẳng tập 1

.PDF
287
262
135

Mô tả:

ĐẠI H Ọ C V I N H THƯ V I Ệ N 516.220 76 PRA(l)/94 DT 002494 v . v . PRAXOLOV CÁC BÀI TOÁN VẼ HĨNH HOC PHANG NHÀ XUẤT BẢN HÁI PHÒNG TẬP v.v PRAXOLOV CÁC BÀI TOÁN VÈ HÌNH HỌC PHANG • (GỒM 2 TẬP) TẬP ĩ Người dịch: H O À N G ĐỨC C H Í N H NGUYỄN ĐẺ Hiệu đinh: P.T.S N G U Y Ễ N V I Ệ T H Ả I Dùng cho học sinh khá và các lóp chuyên, cnợn. Là tài liệu tham khảo cho các thày giáo và sinh viên khoa toán bậc Cao đẳng và Oại học. Có nhiều dê thi chọn lọc quõc gia và quốc tẽ. NHÀ XUẤT BẢN HẢI PHONG 1994 LỜI (Trích NÓI lời tác ĐẦU già) Tập bài tập này dùng cho học sinh cấp 2 va 3, các giáo viên phổ thông, cho các giáo viên dạy các lớp chuyên, chọn, cho sinh viên các trường đại học và cao đáng sư phạm và cho tất cả những ai yêu thích hình học sơ cấp. Trong tập bài tập này gôm nhiêu bài tập có nội dung và phương pháp giải dễ hiểu, độc đáo, đôi khi cao hơn mức độ bình thường cùa chương trình hình học phổ thông, ơ đáy có nhiêu bài toán đã được dùng để thi học sinh giỉi các cấp. à các mức độ và thời gian khác nhau, nhiêu bài toán trong các tài liệu thi và bôi dương học sinh giỉi các cấp cùa nhiêu nước trên thế giới. Tập tài liệu %ôm 2 tập, mồi tập cỉ khoảng 600 Sai tập. Nó không chỉ được coi là một tập tư liệu bài tập hình học sơ cốp, mà còn là một cuốn cám nang đê tự bôi dưỡng, nâng cao thêm vê hình học. Dê giúp bạn đọc sứ dụng một cách dễ dàng, nhanh chóng tìm được các bài tập ức một đê tài nào đó còn quan tăm, cuốn sách được chia ra làm 29 chương mồi chương gôm từ 5 đến 10 mục nhỉ. Cơ số đề chia ra như vậy lờ dựa rối nôi dung bài tập và nhất là dựa (lào phương pháp để giòi các bài tập hỉnh học-. Trong mỗi mục các bài toán đưoc xếp từ đơn giản đến phức tạp. Mồi c hương được bổi đàu bòng tóm tát một số kiến thức lý thuyết căn nám vững tít' giai toán l à một số bài toán mó đón • lò các bài toán đơn giản nhưng thìtờny hay được SỪ dụng đê giải các bài toàn khác phức tạp hơn. Salt mỗi chứâhi có một su bài tạp đi' bạn đọc tự giải và lời giai (f'â\ đủ các bài tọp trong chương. v.v. Praxolov 3 LỜI NGƯỜI DỊCH Bằng kinh nghiệm thực tiễn giảng dạy của bản thân, chúng tòi cho rằng cuốn Bài tập hình học phăng cua tác giả V. V. Praxolov là Ì tập tài liệu qui che các đối tượng đã nêu ờ lời nói đầu, nhất là cho giáo viên và học sinh chuyên chọn phổ thông. Đây là một tập sách khống chớ là một "kho" tư liệu vê bài tập hình học phăng nhưng được phàn loại và sáp xếp rất có khoa học và trình bày trong sáng, rõ ràng nên có thể coi nó là một cuốn sổ tay hình học sơ cấp để tra cứu, tham khảo đoi với giáo viên, để tự học, tự nâng cao đối với học sinh vê tất cả các mặt: kiến thức, nội dung, dạng bài và phương pháp giải. Nó cũng rất căn cho cá các giáo viên phổ thòng dạy lớp thường, các sinh viên đại học và cao đẳng sư phạm dù ng để học tập, để bói dương năng cao, tự mình thấy được cái đa dạng, phong phú vê thể loại, cái đẹp qua lời giải các bài toán hình, giúp mình gân gũi uàyẽu mến hình học hơn. Cuốn sách này gom 1318 bài toán cùa 29 chương trong đó có một số phần (một số chương, một số đê mục) còn ít tư liệu và tí được đê cập trong các tài liệu hiện có cho đối tượng phổ thông ở nước ta, như: vecto, biến hớnh, tọa độ, các phương pháp qui nạp hình học, nguyên tắc Diricle, phương pháp cực hạn, chia, cái, phủ, tổ hợp, trò chơi, và càng hiếm hơn vè áp dụng phép chiếu, biến đổi afin, biến đổi xạ ánh, phép nghịch đảo, điểm bất biến, sử dụng tô màu, tinh chẵn lẻ để giải bài toán hình. Tập sách này có thể coi là nguồn bổ sung căn thiết và kịp thời giúp việc dạy và học hình học ỏ phổ thông được tốt hơn. Phương pháp trình bày, sắp xếp cùa cuốn sách rất khoa học, hoàn chớnh, dễ sử dụng và tính hiệu quả cao. Người dịch đã hết sức cố gắng thể hiện ý tưởng đó, nhitng do khả năng có hạn nôn không tránh khói thiếu sót. Rất mong ý kiến chớ bảo cùa độc giả Thư góp ý xin gửi về phòng PTTH sà Giáo dục - Dào tạo Hải Phòng. Chương I T A M GIÁC ĐÒNG DẠNG C Á C K I Ế N T H Ứ C C ơ BÀN 1. Tam giác A B C đ ô n g dạng v ớ i tam giác A i B i C i ( k í h i ệ u A A B C _ AA1B1C1) k h i va chi khi thỏa mãn m ộ t trong các đ i ề u k i ệ n tương đ ư ơ n g sau : a) A B BC : C A = A1B1 : B i d : C1A1. b) AB : B e = A1B1 : B i C i và c) A B C = A1B1C1 và A B C = A1B1C1. BÁC = BiAid 2. Nêu các đường thẳng song song cắt ra k h ỏ i góc đ i n h A các tam giác AB1C1 và AB2C2, t h ì c á c tam g i á c đ ó d õ n g dạng và A B i : A B 2 = A C i : AC2 (các đ i ế m B i và B2 nằm t r ê n một cạnh cùa góc, C i và C2 nằm t r ê n cạnh kia). 3. Đường trung binh của tam giác là đoạn thẳng n ố i trung đ i ể m hai cạnh của nó. Đoạn thẳng đ ó song song v ớ i cạnh t h ứ ba và bằng nửa đ ộ dài của nó. Đường trung bình của h ì n h thang là đoạn thẳng nối trung điểm các cạnh bên của hình thang. Đoạn thẳng đ ó song song với các đáy và bằng nửa tổng độ dài của chúng. 4. T i sô d i ệ n tích của các tam giác đỏng dạng bằng bịnh p h ư ơ n g t i số đông dạng, tức là bằng b ì n h phuong t i số đ ộ dài các cạnh t ư ơ n g ứ n g . Đ i ê u đ ó đ ư ợ c ổóiy ra, chẳng h ạ n , t ừ c ô n g t h ú c 1 SABC = A B . A C . sinA. 2 5. Da gịắc A i A 2 . . . A n đ ư ợ c g ọ i là đ ồ n g d ạ n g v ớ i đ a g i á c B1B2...B A 1 A 2 : A 2 A 3 : . . . : A n A i = B1B2: B2B3:...: B n B i và các góc thuộc các đinh A i , . . . , A n tương ứng bằng các góc thuộc các đ i n h Bi,...,Bn. T i sỗ các đ ư ờ n g c h é o t ư ơ n g ứng của các đa giác đ ô n g dạng bằng t i sỗ đ ô n g dạng; dối với các đ a giác đồng dạng ngoại t i ế p t h ì t i sỗ b á n k í n h cùa các đường tròn n ộ i l i ế p cũng bằng t i số đồng dạng. 7 CÁC BÀI TOÁN M Ở ĐẦU 1. Chứng minh rằng các đường trùng tuyến của tam giác đông quy tại một điểm và bị chia bởi điểm đó theo ti số 2 : Ì tính từ đinh. 2. Trên cạnh BC cùa A Aốc lấy điếm A i sáo cho B Ấ i : ẤiC = 2 : 1. Hỏi dường trung tuyển CCi chia đoạn thắng A A i theo l i số nào ? 3. Trong tam giác nhọn ABC kẻ các đường cao ÁAi và BBi. Chứng minh rằng AiC : BiC = AC : Be. 4. Đuơng phân giác AD của Á ABC cắt đuờng tròn ngoại tiếp tậi điểm p Chứng minh rằng A ABP _ A BDP. 5. Trong A ABC nội tiếp mộtiiình vuông sao cho một cạnh của hình vuông nằm trên cạnh Be, còn hai đinh còn lại của hình vuông nằm trên các cạnh AB và AC. Tính cạnh của hình vuông, nêu biết độ dài cạnh Be và đường cao hạ xuongflc. §1. dè đoạn thẳng nằm giữa các đường thẳng song song 1.1. Các đáy của hình thang bằng a và b. a) Tính độ dài của đoạn thắng định bởi các dugng chéo trên dường trung bình. b) Tính độ dài của đoạn thắng định bởi các cạnh bên của hình thang trôn đường thắng đi qua giao điếm các đường chéo và song song với cádacy. 1.2. Chứng minh rằng các trung điểm của các cạnh của một tứ giác bất kì là các đinh của một hình binh hành. Đối với các tứ giác nào thì hình bình hành đó là hình chữ nhật, hình thoi, hình vuông ? 1.3. Các điếm A i và Bi chia các cạnh Be và AC theo các t i sỗ B A I : A i C = = 1 : p và A B i : BiC = Ì : q. H ỏ i đoạn thắng A A i bị chia bởi đoạn thắng BBi theo ti sỗ nào ? ' Ì 1.4. Trên cạnh A D của hình bình hành ABCD lấy điếm p sao cho ÁP = - AD; < n Q là giao điếm của các đường thắng AC và BP. Chứng minh rằng AQ = —-— AC. n + Ì 1.5. Một trong các đường chéo của tứ giác nội tiếp trong đường tròn là đường kính của đường tròn đó. Chứng minh rằng các hình chiêu của các cạnh đỗi nhau lên đường chéo kia bằng nhau. 8 1.6. Các đ i ể m A và B dinh trên đuờiỊg tròn tâm o một cung có số do 60°. T r ê n cung d ó láy một điểm M . Chứng minh rằng đường thẳng đi qua trung đ i ề m của các đoạn thẳng M Ạ và OB vuông góc v ớ i đường thẳng đi qua trụng đ i ể m của các đoạn thẳng M B vá O A . 1.7. Trong hình chữ nhật A B C D đ i ể m M là (rung điểm của cạnh A D , N là trung điểm của cạnh BC. T r ê n phần kéo dài cùa đoạn thẳng CD vè phía D lây m ộ i diêm p. K i hiồu giao điểm của các đường than? PM và A C là Q. Chứng minh r ằ n g Q N M = MNP (hình 1). 1.8. Các đường kính A B và CD của t ương t r ò n s vuông góc với nhau. Dây cung E A cài đường kính C D tại điểm K, dây cung EC r ắ t dường k í n h A B t ạ i điểm L . Chứng minh rằng nếu CK. : K D = 2 : 1 thì A L : L B = 3 : 1. § 2 . T ỉ s ố c á c c ạ n h c ù a các tam giác đồng dạng 1.9. B E là đường phân giác của góc B trong Hình Ì A A B C (hay đường phân giác ngoài của góc B) v ớ i E là đ i ể m t r ê n đường thẳng A C . Chứng minh rằng A B : BC = A E : EC. 1.10. Các đường chéo của tứ giác A B C D cắt nhau t ạ i đ i ể m o. Chứng minh rằng A O B O = C D . D O khi và chi k h i BC I I A D . 1.11. Đ i ể m H là trực t â m của A A B C ; A i , B i , Ci là c h â n của các đường cao A A i , B B i , C C i . Chứng minh rằng A H A i H --= B H . B i H = C H . C i H . 1.12. Các đ i ể m M và K nằm t r ê n các cạnh A B và BC của Á A B C ; các đoạn thẳng A K và C M cắt nhau t ạ i đ i ể m p. B i ế t rằng các đoạn thẳng A K và C M bị chia b ớ i đ i ể m p theo t i số 2:1 tính từ đ i n h . Chứng minh rằng A K và C M là các đường trung tuyên của tam giác. 1.13. X u ố n g các cạnh BO và C D của h ì n h b ì n h h à n h A B C D (hay xuống c á c p h ầ n k é o d à i của c h ú n g ) hạ các đ ư ờ n g v u ô n g góc A M và A N . Chứng minh rằng À M A N _ ầ ABC. 1.14. Qua m ộ t điếm p bất kì t r ê n cạnh A C của A A B C ké các đường thẳng song song v ớ i các đường trung tuyển A K và C L , cắt các cạnh BC và A B t ạ i các đ i ể m E và F t ư ơ n g ứng. Chứng minh rằng c á c đ u ờ n g trung tuyên A K v a C L chia đoạn thẳng E F t h à n h ba phần bằng nhau. 9 1.15. G i ả sử hai cạnh và hai góc của m ộ i tam giác bằng hai cạnh và hai góc của một (am giác khác. Có thể két luận các tam giác đ ó bằng nhau dược . H a y không ? 1.16. G i ả sử B là trung đ i ể m của đoan thẳng A C . Các đ i ể m D và E nằm ve một phía so với dường thẳng A C và A D B = E B C , D A B = B C E . Chứng minh rằng BDE = A D B . 1.17. T r ê n đường phân giác của một góc vuông lẩy diêm p. Qua n ó kẻ một (luông Ihẳng bát kì định ra trên các cạnh của góc các đoạn thẳng dài a và b. Chứng minh rằng dại lượng - + -- khôni! phừ thuộc vào đường thẳng đó. a b 1.18. G i ả sử ra, I"b, Te là bán kính các dường tròn bàng t i ế p của A A B C , tiếp xúc với các cạnh Be, CA, A B t ư a n e ứng, r là bán kính đường tròn nội t i ế p , s và p là diện lích và nửa chu vi của tam giác ABC. Chứng minh rằng : a) S = ( p - a ) r . . a 1 1 1 1 b) — + — + — = r r r a b c -. r 1-19. T r ê n cạnh BC của lam niác đêu A B C n h ư trên đường kính vê phía ngoài dựng nửa dường tròn, t r ẽ n (ló lay các đ i ể m K và L chia nửa đường tròn ra t h à n h các cung bằng nhau. Chứng minh rang các đuừng thẳng A K và A L chia đoạn thẳng BC ra t h à n h các phân bằng nhau. 1.20. Đ i ế m o là tâm (lường tròn n ộ i t i ế p của A A B C . T i ê n các cạnh A C và BC chọn các đ i ể m M và K tương ứng sao cho B K . A B = B O và A M . A B = A O . Chứng minh rằng các đ i ể m M , o và K thẳng hàng. 2 2 1.21. Đ ộ dài hai cạnh của một tam giác bằng 10 và 15. Chứng minh rằng độ dài đường p h â n giác của góc giữa chung k h ô n g l á n hơn 12. 1.22. Chứng minh rằng giao đ i ể m của các đường chéo, giao đ i ể m các phân k é o dài của các cạnh bên và trung đ i ế m các đáy của một hình thang bát kì nằm trên cùng một đường thẳng. 1.23. Trong một hình thang giao đ i ể m các đường chéo nằm cách đêu các đường thẳng chứa các cạnh bên. Chứng minh rằng h ì n h thang đó cân. 1.24. Đường thẳng Ì cắt các cạnh A B và A D của hình b ì n h h à n h A R C D t ạ i các đ i ể m E và F tương ứng. G i ả sử G là giao đ i ể m của đường thẳng Ì v ớ i đường chéo ™ • K * AB A D _ AC A C . Chứng minh rang — H = ——. AE AF AG 10 1.25. G i ả sử AC là dường c h é o lởn him của hình bình hành A B C D . T ừ (liếm c xuống p h â n kéo dài của các cạnh A B và A D hạ các dường vuông góc C E va CF. C h ứ n g minh rằng A B . A E + A D . A F = A C 2 L.26. Đoạn thẳng B E chia A A B C ra (hành hai tam giác dồng dạng, đòn lí thời l i sô đồng dạng bằng Vĩ . Tính các góc của A ABC. * § 3 . T ỉ s ố diện tích của các tam giác đồng dạng 1.27. Qua một điềm nào đ ó nằm trong tam giác kỏ ba dường thẳng soniĩ sontí với cạnh của nó. Các (luông thẳng này chia tam giác ra thành sáu p h â n . ironn sò ứỏ có ba lam giác với các diện tích là Si, S 2 , Sĩ. Tính diện tích của lam giác đã cho. 1.28. T r ê n cạnh A C của A A B C lây một đ i ế m E. Qua đ i Ị m E kỏ (luông t hắn a D E song son^ với cạnh BC và duờne thắm; E F sòm; song với cạnh A B ( D và E lít các đ i Ị m t r ê n các cạnh). Chứnc m i n h rằng S I J D E F = 2 V S A D E - S[=FC 1.29. Qua một điỊm nằm trong tam giác cho trước kẻ ba (luông thẳng song song với các cạnh của nó. Các duờne thẳng này chia tam giác ra Ihành sáu phân. trong số đó cố ba hình bình hành với các diện tích S i ' . Sì, Sỉ'. Tính diện tích của tam giác. 1.30. T r ê n các cạnh của h ì n h vuóntỊ A B C D diện tích s lây các đ i Ị m K, E. M , H (K n e n A B , V A ' . . . ) sao tho A K = BE = C M = D H = - A B . T í n h d i ệ n tích tứ giác 4 uiới hạn bởi các duủnẹ thằne A E , B M , C H và D K . § 4 . Các tùm giác phụ bang nhau 1.31. Cạnh góc vuông Be của tam giác vuông ABC (góc c vuông) bị chia bởi các d i ố m D và E ra thành ba phần bằng nhau. CTúrniỉ minh rằng nêu BC = 3AC, thì tổng các góc A E C , A D C và A B C bằng 90°. 1.32. Đ i ế m •' ỉa truno điỊm cạnh A B cùa hình vuông A B C D , còn diêm L chia dirừng c h é o AC ihco t i sỏ A L : L C = 3:1. Chứng minh rằng góc K.LD vuông. 1.33. Các tam tỊiác vuông cân A B C và CDE vói c á t đinh góc vuông B và D cho trước trên mặt phẳnỏ có dinh churl!" c (dnng thời các chiêu quay t ừ A B đ ẽ n BC và từ C D đ e n D E là n h ư nhau). C h ư n g minh pinn vị trí trung đ i Ị m của đoạn thẳng A E k h ô n g phụ thuộc vào vị trí diêm c. 1.34. a) Trên các cạnh BC và CD của hình vuông A B C D dựng về phía ngoài các lam giác đêu BCK và D C L . Chứng minh rằng A A K L đêu. b) T r ê n các t ạ n h BC và CD t ủ a h ì n h bình hành A B C D dựng vệ phía ngoài các lam giác- (lêu BCK và D C L . Chứng minh rằng A A K L đêu. li 1.35. Bên trong hình vuông ; A B C D P B A = P A B = 1 5 ° . Chứng minh rằng lẩy A C P D đêu. điểm p sao cho 5 1.36. Trên các cạnh góc vuông C A và C B của tam giác vuông cân A B C lẫy các điểm D và E tương ứng sao cho C D = CÊ. Phần kéo dài của các đường vuông góc hạ từ các điểm D và c xuống đường thẳng AE cắt cạnh huyên AB tương ứng tại các điểm K và L . Chứng minh rằng KL = LB. 1.37. Bôn trong A A B C lẫy điểm p sao cho P A C = P B C . Từ điểm p xuống các cạnh Be và C A hạ các đường vuông góc PM vá P K tương ứng. G i ả sử D là trung điểm của cạnh AB. Chứng minh rằng D K = DM. §5 Áp dụng các tính chựt của góc nội tiếp đ ể chúng minh các tam giác đồng dạng 1.38. Trên đoạn thẳng A B như trên đường kính dựng một nửa dường tròn. Đường thẳng Ì tiếp xúc với nửa đường tròn đó tại điểm c. Từ các điểm A và B xuống dường thẳng Ì hạ các đường vuông góc A M và BN. Giả sử D là hình chiếu của điểm c lên A B . Chứng minh ràng C E T = A M . B N . 1.39. Cho hai đường tròn cắt nhau tại các điểm A và D. A B và C D là các tiếp tuyên của đường tròn thứ nhựt và thứ hai (B và c là các điểm trên các đường tròn)j 2 _ . . AC _ C D Chứng minh rang —— = . BD AB u k 2 1.40. Cho hình bình hành A B C D với góc ở đinh A nhọn. Trên các tia A B và C B đặt c á c đ i ể m H và K t ư ơ n g ứng sao cho C H = Be và A K = A B . Chứng minh rằng: a) D H = D K . b) A D K H _ A ABK. 1.41. Trên cung Be của dường tròn ngoại tiếp quanh tam giác đều A B C lẫy một điểm p bựt kì. Các đoạn thẳng ÁP và B C cắt nhau tại Q. Chứng minh rằng Ị PQ _ Ị Ị PB PC 1.42. A B là đường kính của đường tròn S i , A là tâm của đường tròn S2. Các đường tròn này cắt nhau tại các điểm c và D. Qua điểm B kẻ đường thẳng cắt đường tròn S2 tại diêm M nằm trong đường tròn S i , còn đường tròn Si - tại điểm N. Chóng minh rằng^MN = CN.ND. 2 12 1.43. a) T ừ đ i ế m c kỏ hai đường thẳm; l i ế p xúc với dường tròn tại các đ i ể m A và B. Chứng minh rằng (lộ dài đường vuôn? "óc hạ từ mót (liếm p bát kì của (lườm; tròn xuống đường-ti.ẳnẹ A B , bằng trung hình nhân của các dụ dài các dường vuông nóc c ù n c hạ từ diêm dỏ cùa đường tròn xuống các dưc/ng thẳm; A C và B e . b) Từ một đ i ể m o bát ki của dường trùn nội tiếp trong A A B C hạ các đường V U Ô I I Í ; góc O A ' , O B \ o e xuống các cạnh của A A B C và các đường vuông góc OA", •OB", o e xuồng các cạnh của tam giác với các đinh tại các tiếp đ i ể m . Chứng minh rằng OA'.OB'.OC" = OA".OB".OC". 1.44. Cho một cóc dinh o và một đường tròn l i ế p xúc với các cạnh của nó t ạ i các Jicm A và B. T ừ điểm A ké một tia song soni! vói OB cắt ưườne tròn t ạ i đ i ể m c . Đoạn thắng o e cắt dường tròn tại điểm E, còn các đuùniở thẳnc AE và OB cắt nhau tại (liếm K . Chứnii minh rằng O K = K B . 1.45. Qua trunụ đ i ể m c của dây cung A B bát kì của (lườm: tròn kẻ hai dây cung K L và M N (các đ i ể m K và M nằm cùng một phía so vùi A B ) . a) Đoạn thẳng K N cắt A B t ạ i diêm Q, đoạn thắng M L cai A B tại diêm p. Chứng minh rằng PC = QC. b) Đường thẳng K M cắt dirờna thẳng A B t ạ i diổm R, đường thắng N L - tại đ i ể m s. Chứng minh rằng RC = s e . § 6 . Tam giác tạo bởi t h â n các dinrn" cao 1.46. Giả sử A A i và BBi là các đường cao của A A B C . Chứng rằng A A i B i C _ A ABC. T i sô đòng dạng bằng bao nhiêu ? minh 1.47. Tam (Ịiác A B C nhọn và B Á C = (í. T r ê n cạnh BC như trên (lườm; kính dựnii nứa đưửng tròn cắt các cạnh A B và B e tại các điếm p vá o (ưomg ứng. T í n h t i sô diện tích của các tam giác ABC vá APQ. Ì .48. Từ đ i n h c của tam giát nhọn ABC hạ (lươn? cao C H . từ điếm H hạ các d lít mu '^ôni> gốc H M và H N xuống các cạnh B e và AC tuôn!! ứng. Chưn" minh rằng t á c tam giác ABC và M N C dòng (lạjig. 1.49. Trong tam eiác nhọn A B C kố các duừnu cao A D , BE va CF. Chứng minh rằng — = — , trong đ ó p là chu vi của A E D F , p là chu vì của A ABC. p R 1.50. a) Chứng minh rằng các dường cao A A i , B B i , CCi của tam giác nhọn A B C chia đôi các góc cùa tam giác A 1 B 1 C 1 . lĩ b) Trôn các cạnh A B , BC, C A của lam giác nhọn A B C lây các đ i ế m C i , A i , B i lương ứ n g . C h ứ n g m i n h r ằ n g n ê u B 1 A 1 C = B A ị C i , A 1 B 1 C = A B 1 C 1 v à A i C i B = A C 1 B 1 ,thì c á c đ i ể m A i , B i . C i là c h á n c á c đ ư ờ n g cao của tam g i á c ABC. 1.51. T r o n £ tam giác nhọn A B C kỏ các dường cao A A i , B B i và C C i . Chửng minh rằng A C Q - A A ] B i . 1.52. Trong tam giác nhọn A B C kè các dưưg nau) A A i , B B i và CC|. Chứng minh rằne n ế u A 1 B 1 I I A B v à B 1 C 1 1 I BC, thì A 1 C 1 1 1 A C . § 7 . Các h ì n h đồng dạng 1.53. Trona tam giác nội t i ẽ p ưưừng tròn bán kinh r. Các liêp tuyên cùa duửnu tròn đó sonc sontỉ với cúc cạnh của tam giác cai khỏi nó ba lam lỉiác nín'). Giả sử r i , TI, n là bán kính các (lườm; tròn nội tiếp troniỉ các lam I l i a c đó. Chưn!? minh rằng r i + TI + Tì = r. 1.54. Cho A A B C . Dắnc hai ưuừni; thẳng X và y sao cho với mọi điềm M trên cạnh A C tổng đ ộ d à i c á c đ o ạ n t h ẳ n i i M X M v à M Y , M k ỏ từ đ i ề m M s o n " s o n g v ớ i c á c d u ừ n g t h ẳ n g X và y cho đ e n k h i cắt các c ạ n h A B và Be của tam ỊỊỉiác, h u n t ' 1. 1.55. Trong tam giác cân A B C từ trunc diem H của dày BC hạ đưừnu VUÓIIỊI uỏc H E xuống cạnh bên A C , o là irune điềm của (loạn thẳng H E . Chứng minh i ằ n u các dường thẳng A O và BE vuôniĩ uóc. 1.56. Chứng minh rằng các hình chiêu của chân dường tao cùa lam giác lên các cạnh cùng xuất phát l ừ một dinh vái dường cao đó, và len hai dương cao khác, cùm; nằm trên một đường thắng. 1.57. Trên đ o ạ n thẳng A C lấy một điểm B và trôn các đoạn thẳnu A B , B e , CA dắng các nửa (liiừnp iròn S i , Si, S3 vè cùng một phía so vói A C . D là điỂm l ấ n S i có hình chiêu lòn A C trùng với đ i ể m B. T i ế p tuyến chung của S i và S2 (lép xúc với các nửa đường tròn đ ó l ạ i các đ i ế m F v à E tương ứng. Chứng minh rằng : a) ĐuxYnị! thang EF son lĩ song với t i ế p luyến của S3 kè qua đ i ể m D: b) B F D E là hình chữ nhật. 1.58. T ừ một diem M bất kì cùa đuừne tròn ngoại l i ế p quanh hình chữ nhại A B C D hạ các dưửn li vuông góc M Q và MP xuống hai cạnh đói nhau cùa nó và các đường vuông nóc M R và M T xuống phân kéo dài của hai cạnh kia. Chứng minh rằng các đường thẳng PR và Q T vuông góc với nhau. còn giao đ i ế m của chúnc nằm trôn đường c h é o của hình chữ nhật A B C D . 14 1.59. T á i hai dường tron nằm !U»oài nhau kẻ m ộ t t i ế p tuyến chung ngoài và một tiếp tuyên chung Ì ròn lí. Xét hai dướn lí thẳng, mỗi đường đi qua các tiếp điểm nằm trên một dường Iron. Chứng minh rằng giao điểm của các dường tháng đ ó nằm t r ê n dường thảng nối lâm t ủ a các dường (ròn. CÁC BÀI TOÁN T Ự G I Ả I 1.60. Dáy của một lam giác cân chiêm - chu vi cùa lam líiác. T ừ một diêm bất 4 kì của đáy kè các diKMit! Ihẳntĩ song song với các cạnh bên. H ỏ i chu vi của tam I»iác l ớ n han chu vi của hình bình hành vừa lạo được bao nhiêu lãn ? 1.61. Các duụni; chéo của một hình tham: vuòniỊ góc với nhau. Chứng minh rằng tích đ ộ đài t á c đáy của hình Ihanií bằm: tổnu các tích dụ dài các đoạn t h ẳ n ẹ của m ộ i dường chéo và độ dài các đoạn thẳng cùi! (lươnlĩ chéo kia, nhận được khi chia các dường c h é o bởi liiao đ i ế m của c h ú n c . 1.62. Các cạnh của hình vuône bằne 1. ọ ja làm của nỏ kở mội dườni! thẳnn. Tính tổng bình phucmj! khoảng cách tù 4 diêm cite hình vuônu đến dường thẳng đó. 1.63. Có thổ bằng hai nhát cài thẳng di qua hai đinh cùa lam giác chia nó ra t h à n h bốn phàn sao cho ba phàn là các tam giác tương đương dược hay không ? 1.64. Các diêm A', B' và C" dôi xúm; với tâm (lươn!! tròn ngoại Ì lép qua các cạnh của A A B C . C h ư n e minh rằnc t á c tam giác A B C và A ' B ' C bằng nhau. 1.65. Trong hình bình hành A B C D các đ i ể m E và F là Iruna diêm của các cạnh A D và BC; K, L , M , N là các giao (liếm của A F và B D , D F vã A C , CE và BO, A C vã BE lương ứng. Chứng minh rằng tứ giác K L N M là hình bình h à n h . 1.66. G ó c A của A A B C lem gã|) đôi góc B. ChứniỊ minh rằnc BC 2 = ( A C + A B ) . AC 1.67. Chứng minh rằng nêu trực tâm chia các đường cao của tam ciác theo cùn lĩ một t i sô, thi tam giác là đều. 1.68. Bên tronụ A A B C cho d i í m K. mà các dường thẳnc di qua K. và soniỉ son ụ với các cạnh của A A B C được dinh bởi các cạnh của tam giác các đoạn thẳng c ó cùng đ ộ dài X. T í n h X, nếu đ ộ đài các cạnh cùa lam giác bằng a, b, c. 1.69. G i ả sụ o là mội điềm bát kì trên đường trung tuyên A A | của A ABC. Đường tháng BO cắt cạnh A C tại điếm B i . Qua B i kẻ dưừnu thằng song song v á i 15 dày B e và cắt cạnh A B t ạ i đ i ể m C i . Chứng minh rằng các điểm c, o, Gi cùng nằm t r ê n một đ ư ờ n g thẳng. 1.70. Qua đ i ể m o lẩy t r ê n đường cao BH cùa A ABC kỏ các đường thẳng AO và CO, c h ú n g cắt các cạnh B e và BA tương ửní> l ạ i các điểm K và M . Chứng minh rằng K.HB MHB. 1.71. Trong tứ giác A B C D đ i ể m E là trung điểm cạnh A B , F là trung đ i ế m cạnh C D . C h ư n g m i n h rằng trung đ i ể m của các đoạn thẳng A F , CE, B F và P E là các đ ỉ n h của một h ì n h b ì n h h à n h . L Ờ I GIẢI 1.1. G i ả sử A B C D là h ì n h thang, BC = a, A D = b, trong đ ó a < b . a) G i à sử M và N là trung đ i ế m của các cạnh AB và CD, K và L là các giao đ i ế m cùa d ư ờ n g t h ẳ n g M N v ớ i các đường c h é o A C và B D t ư ơ n g ứng. K h i đó 1 M K = -- Be = - a và M L = - 2 2 A D = - b. Do đó K L = ML - MK= - 2 2 (b - a). 2 b) Đ ư ờ n g thẳng đi qua d i ê m o là giao đ i ế m của các đường c h é o cắt A B tại p o r> ^ w ~ -r- , ÁP PO BP AB-AP „ _ d i ê m p, C D t ạ i d i ê m Q. Ta có - — = — , - — = — = . Cộng các Be AB AD AB AB a đắng thức đó lại ta dược + Be PQ = 2 P O = Ì , tức AD là PO = ——— a + b và = a + b i.^Trfong t t f ' J g t r A ^ S & i c a c điểm K,L,M,N là trung đ i ể m của các cạnh A B , BC, C D , D ỳ t u ô n g ý u ì ĩ . - B ữ Ì ậ ó K L = M N = - A C và K L I I M N , tức K L M N là hltah-bijih h à n h , R õ rarfgTCĩJýỉN là hình chữ nhật nếu các đường c h é o A C và B D vuông góc; là l ỳ n h thoi nếu A C = B D ; và là hình vuông nếu các dường c h é o A C và B D vừa v u ô n g góc vừa bằng nhau. 1.3. Kí hiệu giao đ i ể m c ủ a c á c đ o ạ n t h ẳ n g A A i và B B i là o. K ẻ trong A B i B C đ o ạ n t h ẳ n g A 1 A 2 I I B B i . K h i đ ó B i C : B1A2 = ( l + p ) : Ì, và do đ ó A O ; . Ộ X I U A B I : B1A2 = - q 16 BiC : B1A2 = : Ì q = . q thứ nhối : AAQP Ọ C = nAQ; AC = A Q + Cách ọc = A C Q B , do đ ó AQ ÁP QC 1.4. Cách Be t ứ c là (n + l ) A Q . thứ hai : Chia các cạnh A D và BC ra làm n p h â n bằní> nhau và nỗi c h ú n g n h ư trên h.2. K h i đ ó (lườm: c h é o A C dược chia làm n + 1 p h â n mà dỗ d à n g thấy dược có đ ộ dài bằng nhau. 1.5. A B C D là t ứ giác đã cho, A C là đường k í n h của đường tròn ngoại t i ế p quanh A B C D . H ạ các đường vuông góc A A i và CCi xuống B D (h.3). Ta căn phải chứng minh rằng B A I = D C i . Cũng hạ đường vuông góc OP l ừ t â m o cùa dường tròn ngoại Hình 2 tiếp xuống B D . R õ ràng p là trung diêm cùa đoạn t h ẳ n g B D . C á c đ ư ờ n g thẳng A A i . OP, C C i song song, và A O = oe, cho nên A t P = P C ] . B ở i vì p là trung đ i ể m cùa B D , suy ra B A I = D C i . L.6. G i ả sứ c, D , E, F là trung đ i ế m các cạnh A O ; O B , B M , M A của t ứ giác A O B M . Bởi vi A B = M O = R, trong đó R là bắn kíni^sàa^hajaựr*Ei»RfT«ffFffểi, n h ư ta đã biết qua bài 1.2, C D E F là một h ì n h thoi. I|t> ( f * l l j ư w i ^ l t à t t £ » ^ ! W Ị ô Ị ^ góc v ớ i dườne thằng D F . ^ ^ 1.7. Kò qua tâm o của hình chữ nhắt A B C D (lircftsfftilNg 1. Tam giác v ớ i các cạnh Ì, a, a tòn t ạ i , nếu a - Xem thêm -