Tài liệu Bí quyết giải phương trình lượng giác 2

  • Số trang: 50 |
  • Loại file: PDF |
  • Lượt xem: 127 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 20010 tài liệu

Mô tả:

THAÏC SÓ. TRAÀN MAÏNH HAÂN BÍ QUYEÁT GIAÛI PHÖÔNG TRÌNH LÖÔÏNG GIAÙC - CÁC KĨ THUẬT GIẢI PHƯƠNG TRÌNH ĐẶC SẮC - CÁC MẸO LOẠI NGHIỆM NHANH, CHÍNH XÁC - CÁCH BẤM MÁY TÍNH TÌM HƯỚNG GIẢI. HÀ NAM 8-2014 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com FB: thayHanSP1 CÔNG THỨC LƯỢNG GIÁC CẦN NẮM VỮNG I. CÁC HỆ THỨC LƯỢNG GIÁC CƠ BẢN sin2 x  1  cos2 x   sin x  cos x  1   cos2 x  1  sin2 x  1 1 2 2  1  tan x  tan x  1  cos2 x cos2 x 1 1  1  cot2 x  cot2 x  1  2 sin x sin2 x 1  tan x .cot x  1  cot x  tan x 4 4 2  sin x  cos x  1  2 sin x cos2 x ;   6 sin x  cos6 x  1  3 sin2 x cos2 x    sin3 x  cos 3 x  (sin x  cos x )(1  sin x cos x )   3 sin x  cos3 x  (sin x  cos x )(1  sin x cos x )   2 2 II. DẤU CỦA CÁC HÀM SỐ LƯỢNG GIÁC Góc I sin x cos x tan x cotx     Góc II Góc III         Góc IV     III. MỐI QUAN HỆ CỦA CÁC CUNG LƯỢNG GIÁC ĐẶC BIỆT  Hai cung đối nhau cos(x )  cos x tan(x )   tan x sin(x )   sin x cot(x )   cot x  Hai cung bù nhau sin(  x )  sin x tan(  x )   tan x cos(  x )   cos x cot(  x )   cot x  Hai cung phụ nhau  sin(  x )  cos x 2  tan(  x )  cot x 2  cos(  x )  sin x 2  cot(  x )  tan x 2 sin(  x )   sin x tan(  x )  tan x cos(  x )   cos x cot(  x )  cot x  Hai cung hơn nhau   Hai cung hơn nhau  2 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 1 ThS. Trần Mạnh Hân (0974514498)  sin(  x )  cos x 2  tan(  x )   cot x 2  Với k là số nguyên thì ta có: sin(x  k 2)  sin x tan(x  k )  tan x www.MATHVN.com  cos(  x )   sin x 2  cot(  x )   cot x 2 FB: thayHanSP1 cos(x  k 2)  cos x cot(x  k )  cot x IV. CÔNG THỨC CỘNG sin(x  y )  sin x cos y  cos x sin y sin(x  y )  sin x cos y  cos x sin y cos(x  y )  cos x cos y  sin x sin y tan x  tan y tan(x  y )  1  tan x tan y cos(x  y )  cos x cos y  sin x sin y tan x  tan y tan(x  y )  1  tan x tan y Đặc biệt:    sin 2x  2 sin x cos x  2 2 2 2 TH1: Công thức góc nhân đôi:  cos 2x  cos x  sin x  2 cos x  1  1  2 sin x  2 tan x  tan 2x    1  tan2 x  1  cos 2x 1  cos 2x 2 ;cos2 x  Hệ quả: Công thức hạ bậc 2: sin x  2 2 3 sin 3x  3 sin x  4 sin x  TH2: Công thức góc nhân ba:  3 cos 3x  4 cos x  3 cos x V. CÔNG THỨC BIẾN ĐỔI TỔNG SANG TÍCH VÀ TÍCH SANG TỔNG x y x y cos 2 2 x y x y cos x  cos y  2 sin cos 2 2 x y x y sin x  sin y  2 sin cos 2 2 x y x y sin x  sin y  2 cos sin 2 2 cos x  cos y  2 cos 1 cos(x  y )  cos(x  y ) 2  1 sin x sin y   cos(x  y )  cos(x  y ) 2 1 sin x cos y   sin(x  y )  sin(x  y ) 2 1 cos x sin y  sin(x  y )  sin(x  y ) 2 cos x cos y  Chú ý:    sin x  cos x  2 sin x   sin x  cos x        2 cos x    4  4      2 sin x     2 cos x     4  4  Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 2 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1 PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN u  v  k 2 u  v  k 2  sin u  sin v   u    v  k 2  cos u  cos v   u  v  k 2  u  v  k   tan u  tan v   u    k   2  cot u  cot v      u  v  k  u  k  Đặc biệt:   k 2 cos x  1  x  k 2 cos x  1  x    k 2 sin x  0  x  k  cos x  0  x    k 2 2  sin x  1  x    k 2 2 sin x  1  x  Chú ý:  Điều kiện có nghiệm của phương trình sin x  m và cos x  m là: 1  m  1 .  Sử dụng thành thạo câu thần chú " Cos đối - Sin bù - Phụ chéo" để đưa các phương trình dạng sau về phương trình cơ bản:   sin u  cos v  sin u  sin   v    2   cos u  sin v  cos u  cos   v    2 sin u   sin v  sin u  sin(v )  cos2 x  1  Đối với phương trình  2   sin x  1 cos u   cos v  cos u  cos(  v )   cos x  1 không nên giải trực tiếp vì khi đó phải giải 4  sin x  1  phương trình cơ bản thành phần, khi đó việc kết hợp nghiệm sẽ rất khó khăn. Ta nên dựa vào công  cos2 x  1 sin x  0  thức sin x  cos x  1 để biến đổi như sau:  2    sin 2x  0 .  sin x 1  cos x  0  2  cos x  1 2 cos2 x  1  0  2    cos 2x  0 .  Tương tự đối với phương trình  2 1  sin2 x  1  2 sin x  0  2  2 2 Bài 1. Giải các phương trình sau   2  cos x      4     2 cos x     2 sin 2x    3  0  6     3 tan   x   3   3 2    2  0 3  Hướng dẫn giải:    2  3  cos x    cos  cos x      4  2  4  4 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 3 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1  3 ,v  , nên dựa vào công thức nghiệm ta có 4 4  3  3 x   k 2 hoặc x     k 2 . 4 4 4 4  Vậy nghiệm của phương trình là: x    k 2 ; x    k 2 , (k  ) . 2        3   2 sin 2x    3  0  sin 2x      sin 2x    sin       3  6  6  2 6  Ta xác định ở phương trình này u  x    2x       k 2 x     k    6 3 12   (k  ) .    4 3 2x     k 2  x  4  k  6 3        2    cos x    cos  2 cos x    2  0  cos x       3  3  2 3  4     x      k 2 x     k 2   3 4 12   (k  ) .   x     k 2 x   7   k 2   3 4 12         3   3 tan   x   3  tan   x    tan   x   tan    3  3 3 6  3      x   k   x   k  , (k  ) . 3 6 6 Chú ý: Đối với phương trình tan x  m ( tan x  m ), trong đó m là hằng số thì điều kiện  cos x  0 ( sin x  0 ) là không cần thiết. Bài 2. Giải các phương trình sau    sin x  sin 2x     4       sin x    cos 2x         tan 3x    tan x    4   6   6  4       cot 2x    tan   x   0   6 4     Hướng dẫn giải:   x  2x    k 2 x     k 2   4 4  , (k  ) .    x    2x   k 2 x   k 2   4 4 3     2x    2  x  k 2 x  5  k 2      2    4 3 36 3 .  x      PT  cos 2x    cos       2  11  4 3  2x    x    x  k 2  k 2   4 3 12    Do PT có dạng tan u  tan v nên ta chỉ cần một điều kiện cos u  0 hoặc cos v  0 . Để đơn      giản ta chọn điều kiện: cos x    0  x    k   x   k  . Khi đó: 6  6 2 3     sin x  sin 2x     4  Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 4 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com FB: thayHanSP1       5   k , (k  ) . tan 3x    tan x    3x   x   k   x  4  6  4 6 24 2   5   k , (k  ) . 24 2  Do có thể biến đổi PT về dạng tan u  tan v nên ta chỉ cần một điều kiện cos u  0 hoặc cos v  0 . Để đơn giản ta chọn điều kiện:      cos   x   0   x   k   x    k  .   6 6 2 3 Kết hợp nghiệm trên đường tròn lượng giác thu được nghiệm của PT: x      3      2x  PT  cot 2x    tan x    tan x    tan       x 4  6    6    4  3 11    2x  k   x   k (k  ) . 6 4 36 3 Kết hợp nghiệm trên đường tròn lượng giác thu được nghiệm của PT: x  11   k , (k  ) . 36 3 Bài 3. Giải các phương trình sau  4 cos2 x  2( 3  1) cos x  3  0  3 tan2 x  (1  3) tan x  1  0  2 cos2 x  5 sin x  4  0     2 2  sin x    cos x 4  Hướng dẫn giải:    cos x  1 x     k 2  2  3 (k  ).  PT      3 x    k 2  cos x   6   2 sin x  2 (lo¹i)   PT  2(1  sin2 x )  5 sin x  4  0  2 sin2 x  5 sin x  2  0   sin x  1 (t/m) 2   5 Vậy phương trình có nghiệm: x   k 2 và x   k 2 , (k  ) . 6 6  tan x  1 sin x  2 (lo¹i)   2   PT    2 sin x  5 sin x  2  0  1  tan x  sin x  1  2  3   5 Vậy phương trình có nghiệm: x   k 2 và x   k 2 , (k  ) . 6 6   1  cos 2x      2  1  cos 2x  PT   sin 2x   cos 2x  tan 2x  1  x    k .  8 2 2 2 Bài 4. Giải các phương trình sau  sin 4 x  cos 4 x  sin 2x  1 2  sin 4 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam x x  cos4  1  2 sin x 2 2 www.DeThiThuDaiHoc.com 5 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498)   2  4 4  2(sin x  cos x )  cos   2x   0  FB: thayHanSP1  sin6 x  cos6 x  cos 4x Hướng dẫn giải: 1 1 1  1  sin2 2x  sin 2x  2 2 2  sin 2x  1    2x    k 2  x    k,(k  ).  sin2 2x  2 sin 2x  3  0   2 4  sin 2x  3 (lo¹i) sin x  0 1  PT  1  sin2 x  1  2 sin x  sin2 x  4 sin x  0    x  k  (k  ).  sin 4 (lo¹i) x 2   sin 2x  1  1 2  2    2 1  sin 2  sin 2  0 x x  PT  sin 2x  sin 2x  2  0      2   sin 2x  2 (lo¹i)    2x   k 2  x   k ,(k  ). 2 4 3  PT  1  3 sin2 x cos2 x  1  2 sin2 2x  1  sin2 2x  1  2 sin2 2x 4   sin 2x  0  2x  k   x  k ,(k  ). 2  PT  1  2 sin2 x cos2 x  sin 2x  Bài 5. Giải các phương trình sau 4 4 2(sin6 x  cos6 x )  sin x cos x  0 (A06)  sin x  cos x  sin x cos x  0  1  cos 4 x  sin 2 x  4 x  (2  3) cos x  2 sin2 (  ) 2 4 1  2 cos x  1 2  2 sin x Hướng dẫn giải: 1 1  PT  1  sin2 2x  sin 2x  0  sin2 2x  sin 2x  2  0  2 2 x   sin 2x  1   sin 2x  2 (lo¹i)    k ,(k  ). 4  x    k   2  4  (A-2006) Điều kiện: 2  2 sin x  0  sin x   3 2 x    k 2  4    1 3 PT  2(sin6 x  cos6 x )  sin x cos x  0  2 1  sin2 2x   sin 2x  0  4  2  sin 2x  1    x   k  , (k  ).  3 sin 2x  sin 2x  4  0   4  sin 2x   (lo¹i) 4 3  5 Kết hợp nghiệm ta thu được nghiệm của phương trình x   k 2. 4 2 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 6 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com FB: thayHanSP1  2  cos x  1 1  2  PT  cos4 x  1  cos2 x   4 cos4 x  4 cos2 x  3  0   4  cos2 x   3 (lo¹i)  4      2 cos2 x  1  0  cos 2x  0  2x   k   x   k , (k  ) . 2 4 2   Điều kiện: 2 cos x  1  x    k 2. 3   x    PT  (2  3)cos x  2 sin2 (  )  2 cos x  1   3 cos x  1  cos x    1  2  2 4      3 cos x  cos   x   0  3 cos x  sin x  0  tan x  3  x   k ,(k  ).  2  3 Bài 6. Giải các phương trình sau  sin 3x  cos 2x  sin x  0 (D-2013)  sin 5x  2 cos2 x  1 (B-2013)  sin x  4 cos x  2  sin 2x (A-2014)  cos 3x  cos 2x  cos x  1  0 (D-2006) Hướng dẫn giải:  PT  sin 3x  sin x  cos 2x  0  2 cos 2x sin x  cos 2x  0  cos 2x (2 sin x  1)  0  x    k   4 2  cos 2x  0       x    k 2 .  sin x   1 6   2  7  k 2 x  6   PT  sin 5x  1  cos 2x  1  cos 2x   sin 5x  cos 2x  sin 5x     x     k 2  2 x 5 x k 2         6 3 (k  ). 2   cos 2x  cos   5x     2  x     k 2 2x     5x  k 2   14 7 2    PT  sin x  4 cos x  2  2 sin x cos x  sin x (1  2 cos x )  2(2 cos x  1)  0   sin x  2 (lo¹i)   (sin x  2)(1  2 cos x )  0    x    k 2. 1  cos x  3  2  PT  cos 3x  cos x  cos 2x  1  0  2 sin 2x sin x  2 sin2 x  0  sin x  0   sin x (sin 2x  sin x )  0   sin 2 x  sin x  0  Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam   sin x  0 x  k   2 2 cos x  1  0   x    k 2   3 www.DeThiThuDaiHoc.com 7 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1 MỘT SỐ DẠNG PHƯƠNG TRÌNH LƯỢNG GIÁC DẠNG 1. PHƯƠNG TRÌNH BẬC NHẤT VỚI SINX VÀ COSX  Dạng phương trình: a sin x  b cos x  c  Cách giải: Chia hai vế phương trình cho  a a2  b2 C1: Đặt C2: Đặt sin x  a a2  b2 a a2  b2 b a 2  b2  cos ,  sin , cos x  b a 2  b2 b a 2  b2 a 2  b2 c a 2  b2  sin . Khi đó PT  sin(x  )   cos . Khi đó PT  cos(x   )  c a 2  b2 c a 2  b2 x ? x ?  Điều kiện có nghiệm của phương trình: a 2  b 2  c 2  Chú ý: Khi phương trình có a  c hoặc b  c thì dùng công thức góc nhân đôi và sử dụng phép nhóm nhân tử chung. Bài 1. Giải các phương trình sau  cos x  3 sin x  2  3 cos 3x  sin 3x  2  2 sin x  2 cos x  6  sin x  cos x  2 sin 5x Hướng dẫn giải:  Nhận xét: Trong PT này ta xác định các hệ số a  1, b  3, c  2 thỏa mãn điều kiện a 2  b 2  c 2 do đó phương trình này có nghiệm. Để giải PT ta cần chia cả hai vế cho a 2  b 2  12  ( 3)2  2 .  x    k 2    1 3 2  2  12 sin x   sin x     PT  cos x    2 2 2 6 2 x  7   k 2  12   x    k 2   1 1 3  3  12  sin x    cos x  sin x    PT    2 4 2  x  5  k 2 2 2  12     3x    k     3 1 2 2  4 cos 3x  sin 3x   sin   3x    3  PT    3  3 2 2 2 2   3x    k 2 3 4   x    k   36 3 , (k  ) .  5  2 x   k .  36 3   1 1   PT  sin x  cos x  sin 5x  sin x    sin 5x  4  2 2 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 8 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com FB: thayHanSP1   5x  x    k 2 x    k    4 16 2.   3    5x  x   k  x  k 2   4 8 3   Bài 2. Giải các phương trình sau    3 sin 2x  sin   2x   1  2   ( 3  1)sin x  ( 3  1)cos x  3  1  0  3 sin x  3 cos 3x  1  4 sin 3 x  2 6  ;   5 7   cos 7x  3 sin 7x  2  0, x   Hướng dẫn giải:  PT  3 sin 2x  cos 2x  1   3 1 1  1 sin 2x  cos 2x   sin 2x     2 2 2 6  2   2x      k 2 x  k   6 6  (k  ) .  x    k  5  2x     k 2   3 6 6  3 1 3 1 1 3 sin x  cos x   PT  8 8 8 3 1 Nhận xét: Sử dụng máy tính 570ES PLUS ta bấm SHIFT SIN của sin 5  12 3 1 8 . Vậy ta có nên đưa phương trình về dạng cos ngay lập tức hay chưa? Câu trả lời là chưa. Bởi vì kết quả 8 thu được 5 , tức là 12 5 5 1 3 sin x  sin cos x  12 12 8 5 không phải giá trị cung lượng giác đặc 12 biệt có mặt trong SGK?Vì vậy ta nên làm như sau cho thuyết phục:   5     2 3 2 1 3 1 .  sin     sin cos  cos sin  .  .   4 6  12 4 6 4 6 2 2 2 2 8   5  5 5 3 1 5  sin x  sin cos x    sin x     cos   Nên PT  cos   12  12  12 12 8  x  5     k 2         5 7 5   12 12  sin x    cos    sin x    sin       12    12  5  13  12  12  x    k 2  12 12   2  k 2 , (k  ) . Vậy phương trình có nghiệm: x    k 2 và x  2 3 Ta có sin 1 3 1 sin 3x  cos 3x  2 2 2   x     k 2    k 2  6 18 3 .  5  2    k 2 x  6  k 3 6   PT  sin 3x  3 cos 3x  1    3x     1   3  sin 3x       3  2  3x    3  Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 9 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1  7x      k 2   3 1 2 2   6 4 sin 7x  cos 7x    PT   sin 7x      3  2 2 2 6 2  7x     k 2  6 4    x  5  k 2 7x  5  k 2   84 7 (k  ) . 12   x  11  k 2 7x  11  k 2   84 7 12    2 6  Nhận xét: Để tìm nghiệm x   ;  thực chất là ta phải chọn số nguyên k thỏa mãn  5 7  2 5 2 6 2 11 2 6 hoặc tức là ta phải giải các bất phương trình  k   k  5 84 7 7 5 84 7 7 2 5 2k 6 2 11 2k 6    ;    để tìm các miền giá trị của k rồi sau đó chọn k là số 5 84 7 7 5 84 7 7 nguyên. 53 5 59 ,x  và x  . 84 12 84 KL: Vậy phương trình có các nghiệm thỏa mãn điều kiện là: x  Ngoài ra, ta có thể không cần giải các BPT nghiệm nguyên ở trên bằng cách sử dụng 570ES PLUS như sau: 2 6   - Trước tiên ta tìm khoảng gần đúng của  ;  là 0, 4; 0, 857... 5 7   5 2X vào máy tính (vì máy tính không có k nên ta coi X là k ) rồi  84 7 CALC với các giá trị X  0; 1; 2; 3... để kiểm tra xem có thỏa mãn hay không. Khi đó ta tìm - Nhập biểu thức thứ nhất được k  2 , ứng với nghiệm là x  53 . 84 - Tương tự cho biểu thức thứ 2 thu được k  1; k  2 , tương ứng với nghiệm x  5 59 và x  . 12 84 Bài 3. Giải các phương trình sau  cos 7x  sin 5x   3(cos 5x  sin 7x ) 3(1  cos 2x )  cos x 2 sin x  tan x  3 cot x  4(sin x  3 cos x )  sin x  sin 2x  3 (CĐ2004) cos x  cos 2x Hướng dẫn giải:  Nhận xét: Đối với PT dạng a sin x  b cos x  c thì chúng ta có thể giải một cách dễ dàng bằng cách chia cho a 2  b 2 . Nhưng nếu gặp dạng a sin mx  b cos mx  c sin nx  d cos nx trong đó a 2  b 2  c 2  d 2 thì làm thế nào? Cứ bình tĩnh quan sát nhé! Chúng ta nhận thấy mỗi vế của phương trình đều có dạng bậc nhất của sin và cos, ta thử chia mỗi vế cho a 2  b 2 , rất may a 2  b 2  c 2  d 2 . Nhưng lưu ý rằng, ta phải chuyển vế sao cho mỗi vế có cùng một cung. Từ đó ta có lời giải như sau: PT  cos 7x  3 sin 7x  sin 5x  3 cos 5x  Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam 1 3 1 3 cos 7x  sin 7x  sin 5x  cos 5x 2 2 2 2 www.DeThiThuDaiHoc.com 10 ThS. Trần Mạnh Hân (0974514498)      sin 7x    sin 5x      6  3  www.MATHVN.com FB: thayHanSP1   7x    5x    k 2 x    k    6 3 12   2   7x   x    k   5x  k 2   6 3 24 6    sin x  0  sin 2x  0  x  k  .  Điều kiện:  cos x  0  2  sin x  3 cos x  sin2 x  3 cos2 x   4  0 PT   4(sin x  3 cos x )  (sin x  3 cos x )   sin x cos x sin x cos x   tan x   3  sin x  3 cos x  0        sin x    sin 2x  sin x  3 cos x  2 sin 2x   3      Giải và kết hợp nghiệm trên đường tròn lượng giác ta thu được: x    k ; x   k 2; 3 3 2 2 , (k  ) . x k 9 3  Điều kiện: sin x  0  x  k  2x      k 2    3  3 3  PT  sin 2x  3 cos 2x  3  sin 2x     2  3  2 2x     k 2  3 3  x  k  (lo¹i)   . Vậy phương trình có nghiệm: x   k ,(k  ) .   x   k  6 6  2  Điều kiện: cos x  cos 2x  0  2x  x  k 2  x  k 3 PT  sin x  sin 2x  3(cos x  cos 2x )  sin x  3 cos x  sin 2x  3 cos 2x   1 3 1 3   sin x  cos x  sin 2x  cos 2x  sin x    sin 2x    3  3  2 2 2 2  x  k 2  (k  ) .  x  5  k 2 9 3   Vậy phương trình có nghiệm: x  k 2; x  5 2 k . 9 3 Bài 4. Giải các phương trình sau  cos x  3 sin x     1 cos x  1  tan x  2 2 sin x  3 cos 5x  2 sin 3x cos 2x  sin x  0 (D09)  4 sin x  3 cos x     (A2013) 4  6 6 4 sin x  3 cos x  1 Hướng dẫn giải: Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 11 ThS. Trần Mạnh Hân (0974514498)  Điều kiện: cos x  0  x  www.MATHVN.com FB: thayHanSP1   k . 2 PT  cos2 x  3 sin x cos x  1  cos 2x  3 sin 2x  1   2x      k 2    1  6 6  sin 2x        5  6 2   2x     k 2  6 6   Vậy phương trình có nghiệm: x  k ; x   k  . 3   Điều kiện: cos x  0  x   k . 2 1 3 1 cos 2x  sin 2x  2 2 2 x  k  (t/m)   (k  ) . x    k  (t/m)  3  1  sin x  2  0  PT  1   2(sin x  cos x )  (sin x  cos x )   cos x cos x  Kết hợp với điều kiện thu được nghiệm của PT: x    tan x  1    cos x  1  2    k ; x    k 2 , (k  ) . 4 3  PT  3 cos 5x  (sin 5x  sin x )  sin x  0  3 cos 5x  sin 5x  2 sin x    x     k  5 x x k 2         18 3 , (k  ) .   sin   5x   sin x   3  3       5x    x  k 2 x    k 3  6 4       Vậy phương trình có nghiệm: x    k ; x    k . 18 3 6 4  Đặt t  4 sin x  3 cos x  1 , (t  0) t  1  t  6  4 3 + Với t  1 ta có 4 sin x  3 cos x  0  sin x  cos x  0 5 5  cos  sin x  sin  cos x  0  sin x    0  x    k  . 6 PT  t  1   6  t 2  7t  6  0  t + Với t  6 ta có 4 sin x  3 cos x  5  4 3 sin x  cos x  1 5 5  cos  sin x  sin  cos x  1  sin x     1  x    Vậy phương trình có nghiệm: x    k 2; x      k 2 . 2  3   k 2 trong đó sin   và cos   . 2 5 5 DẠNG 2. PHƯƠNG TRÌNH THUẦN BẬC HAI VỚI SINX VÀ COSX  Dạng phương trình: a sin2 x  b sin x cos x  c.cos2 x  d  0  Cách giải: Cách 1: + Xét cos x  0 có là nghiệm phương trình không? Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 12 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) + Xét cos x  0 , chia hai vế phương trình cho cos2 x ta được: FB: thayHanSP1 a tan2 x  b tan x  c  d(1  tan2 x )  0  tan x  x Cách 2: Dùng công thức hạ bậc đưa về phương trình bậc nhất với sin 2x và cos 2x (dạng 1). Bài 1. Giải các phương trình sau  2 sin2 x  sin x cos x  3 cos2 x  0  2 sin2 x  3 sin x cos x  cos2 x  0  sin2 x  10 sin x cos x  21 cos2 x  0  2 sin2 x  5 sin x cos x  3 cos2 x  0 Hướng dẫn giải: 2 2  2 sin x  sin x cos x  3 cos x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 2  0 nên cos x  0 không thỏa mãn. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được:   tan x  1 x    k    4 (k  ) . 2 tan2 x  tan x  3  0    3  tan x   x  arctan  3   k    2  2   Cách 2: PT  2(1  cos 2x )  sin 2x  3(1  cos 2x )  0  sin 2x  5 cos 2x  1 Đặt t  tan x khi đó sin 2x  2t 1t2 ; cos 2 x  . Phương trình trở thành 1  t2 1  t2 t  1  . 2t 2  t  3  0   t   3  2  2 sin2 x  3 sin x cos x  cos2 x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 2  0 nên cos x  0 không thỏa mãn. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được:   tan x  1 x    k    4 (k  ) . 2 tan2 x  3 tan x  1  0    1  tan x  x  arctan  1   k      2  2    sin2 x  10 sin x cos x  21 cos2 x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó phương trình trở thành 1  0 nên cos x  0 không t/m. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được:  tan x  3 x  arctan 3  k   tan x  10 tan x  21  0     (k  ) . tan x  7  x  arctan 7  k   2 sin2 x  5 sin x cos x  3 cos2 x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó phương trình trở thành 2  0 nên cos x  0 không t/m. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được:   tan x  1 x    k    4  (k  ) . 2 tan2 x  5 tan x  3  0    3  tan x  x  arctan  3   k    2  2   2 Bài 2. Giải các phương trình sau  sin2 x  (1  3)sin x cos x  3 cos2 x  0  3 sin2 x  4 sin 2x  4 cos2 x  0 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 13 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498)  3 sin2 x  4 sin x cos x  5 cos2 x  2 FB: thayHanSP1  3 sin2 x  4 sin 2x  (8 3  3) cos2 x  3 Hướng dẫn giải:  sin2 x  (1  3)sin x cos x  3 cos2 x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó phương trình trở thành 1  0 nên cos x  0 không t/m. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được:  tan x  1 2  tan x  (1  3) tan x  3  0    tan x  3  x     k   4 (k  ) .   x   k   3   PT  3 sin2 x  8 sin x cos x  4 cos2 x  0 2 + Xét cos x  0 (tức sin x  1 ): Khi đó phương trình trở thành 3  0 nên cos x  0 không t/m. 2 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: x  arctan(2)  k   tan x  2      3 tan2 x  8 tan x  4  0    x  arctan  2   k  (k  ) .  tan x   2   3   3   3 sin2 x  4 sin x cos x  5 cos2 x  2 + Xét cos x  0 (tức sin2 x  1 ): Khi đó phương trình trở thành 3  2 nên cos x  0 không t/m. + Xét cos x  0 , chia hai vế phương trình cho cos2 x ta được:   tan x  1 x    k  2 2  3 tan x  4 tan x  5  2(1  tan x )   (k  ) .  4  tan  3 x  arctan 3   x k    PT  3 sin2 x  8 sin x cos x  (8 3  3) cos2 x  3 2 + Xét cos x  0 (tức sin x  1 ): Khi đó phương trình trở thành 3  3 nên cos x  0 thỏa mãn.   k  là nghiệm của phương trình. 2 + Xét cos x  0 , chia hai vế phương trình cho cos2 x ta được: Tức là x    3 tan2 x  8 tan x  8 3  3  3(1  tan2 x )  tan x  3  x  Vậy phương trình có nghiệm: x    k  (k  ) . 3    k , x   k . 2 3 DẠNG 3. PHƯƠNG TRÌNH BẬC BA VỚI SINX VÀ COSX  Dạng phương trình: a sin 3 x  b cos 3 x  c sin2 x cos x  d cos2 x sin x  e sin x  f cos x  0  Cách giải: + Xét cos x  0 có là nghiệm phương trình không? 3 + Xét cos x  0 , chia hai vế phương trình cho cos x với chú ý: Bài 1. Giải các phương trình sau  sin x  4 sin 3 x  cos x  0 3  2 cos x  sin 3x 1  1  tan2 x . 2 cos x  2 sin 3 x  cos x  4 cos3 x  2 sin3 x  3 sin x  0 Hướng dẫn giải: Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 14 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) FB: thayHanSP1 3  sin x  4 sin x  cos x  0 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 3  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: tan x (1  tan2 x )  4 tan 3 x  (1  tan2 x )  0  3 tan 3 x  tan2 x  tan x  1  0  (tan x  1)(3 tan2 x  2 tan x  1)  0  tan x  1  x    k  (k  ) . 4 Nhận xét: Khi giải phương trình bậc 3 các em thường bấm máy tính để ra nghiệm ngay, nên các em 3 2 biến đổi phương trình 3t  t  t  1  0  t  1 . Như thế liệu đã đầy đủ chưa? Câu trả lời là chưa đủ vì chúng ta không hề học công thức nghiệm phương trình bậc 3. Các em cần phải phân tích thành nhân tử trước khi đưa ra nghiệm. Vậy làm thế nào để phân tích nhanh nhất? Bước 1: Dùng máy tính 570ES PLUS thu được nghiệm như sau t  1 , t   1  0, 47i (1 nghiệm 3 1 nhé! 3 Bước 2: Viết nhân tử: do PT có nghiệm t  1 nên có một nhân tử (t  1) , vậy nhân tử còn lại là gì? thực và 2 nghiệm phức). Chú ý đến số  Dựa vào hệ số đầu tiên và cuối cùng trong phương trình bậc 3 ta thu được hệ số đầu tiên và cuối cùng của nhân tử còn lại, tức là có nhân tử nữa (3t 2  Bt  1) . Để tìm B ta dựa vào phần thực của 1 B từ đó suy ra B  2 . Vậy ta lập tức phân tích phương trình thành  3 2A (t  1)(3t 2  2t  1)  t  1 . nghiệm phức còn lại  3  2 sin x  cos x + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 2  0 nên cos x  0 không thỏa mãn. + Xét cos x  0 , chia hai vế phương trình cho cos3 x ta được: 2 tan 3 x  1  tan2 x  2 tan 3 x  tan 2 x  1  0  (tan x  1)(2 tan2 x  tan x  1)  0  tan x  1  x    k  (k  ) . 4  2 cos3 x  sin 3x  2 cos3 x  3 sin x  4 sin 3 x + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 0  1 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: 2  3 tan x (1  tan2 x )  4 tan3 x  tan 3 x  3 tan x  2  0   tan x  1 x    k  2   (tan x  1) (tan x  2)  0   (k  ) .  4   tan x  2 x arctan( 2) k  .     Nhận xét: Khi bấm máy tính giải phương trình t 3  3t  2  0 , chúng ta thu được 2 nghiệm t  1, t  2 . Khi đó phân tích phương trình thành t 3  3t  2  (t  1)(t  2) . Như thế liệu đầy đủ chưa? Các em hãy để ý bậc ở hai vế để tự đưa ra câu trả lời nhé. Như vậy là đa thức này còn có 1 nhân tử nữa, theo các em nhân tử này là t  1 hay t  2 . Câu trả lời là t  1 , vì sao lại như vậy? Rất dễ dàng thôi nhân tử thứ ba này là t  2 thì số hạng tự do của đa thức ban đầu phải là 4 , không ổn rồi. Vậy kết quả là t 3  3t  2  (t  1)(t  2)(t 1)  (t 1)2 (t  2) .  4 cos3 x  2 sin 3 x  3 sin x  0 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 1  0 nên cos x  0 không thỏa mãn. + Xét cos x  0 , chia hai vế phương trình cho cos3 x ta được: 4  2 tan3 x  3 tan x (1  tan2 x )  0  tan 3 x  3 tan x  4  0 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 15 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com  (tan x  1)(tan2 x  tan x  4)  0  tan x  1  x  Bài 2. Giải các phương trình sau  sin x sin 2x  sin 3x  6 cos 3 x 3  6 sin x  2 cos x  5 sin 2x cos x FB: thayHanSP1   k  (k  ) . 4  cos 3 x  sin3 x  sin x  cos x  cos 3 x  sin x  3 sin2 x cos x  0 Hướng dẫn giải:  sin x sin 2x  sin 3x  6 cos3 x  2 sin2 x cos x  3 sin x  4 sin 3 x  6 cos3 x + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 1  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: 2 tan2 x  3 tan x (1  tan2 x )  4 tan 3 x  6  tan 3 x  2 tan2 x  3 tan x  6  0  x    k   tan x  1  4      (tan x  2)(tan2 x  3)  0   tan x  3  x   k  (k  ) . 3    tan x   3    x    k  3   PT  cos3 x  sin3 x  sin x  cos x  0 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 2  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: 1  tan3 x  (tan x  1)(1  tan2 x )  0  1  tan3 x  (tan 3 x  tan2 x  tan x  1)  0 x  k   tan x  0  (k  ) .   tan2 x  tan x  0     tan x   1 x k      4  3  6 sin x  2 cos x  5 sin 2x cos x  6 sin x  2 cos3 x  10 sin x cos2 x + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 6  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: 6 tan x (1  tan2 x )  2  10 tan x  6 tan 3 x  4 tan x  2  0  (tan x  1)(6 tan2 x  6 tan x  2)  0  tan x  1  x    k  (k  ) . 4  cos 3 x  sin x  3 sin2 x cos x  0 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 1  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: 1  tan x (1  tan2 x )  3 tan2 x  0  2 tan 3 x  tan x  1  0  (tan x  1)(2 tan2 x  2 tan x  1)  0  tan x  1  x  Bài 3. Giải các phương trình sau  cos3 x  4 sin3 x  3 cos x sin2 x  sin x  0  2 sin x  2 3 cos x  3 1  cos x sin x   k  (k  ) . 4  1  3 tan x  2 sin 2x  tan x sin2 x  2sin2 x  3(cos2x  sin x cos x ) Hướng dẫn giải: 3 3 2  cos x  4 sin x  3 cos x sin x  sin x  0 + Xét cos x  0 (tức sin x  1 ): Khi đó PT trở thành 1  0 nên cos x  0 không thỏa mãn. 3 + Xét cos x  0 , chia hai vế phương trình cho cos x ta được: Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 16 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) 3 2 2 3 FB: thayHanSP1 2 1  4 tan x  3 tan x  tan x (1  tan x )  0  3 tan x  3 tan x  tan x  1  0   x     k   tan x  1   4    3 2  x   k  (k  ) .  (tan x  1)(3 tan x  1)  0   tan x  6 3      x    k   tan x   3  6  3  Điều kiện: cos x  0 . Khi đó phương trình trở thành: cos x  3 sin x  4 sin x cos2 x 3 Chia hai vế phương trình cho cos x ta được: (1  3 tan x )(1  tan2 x )  4 tan x  3 tan 3 x  tan2 x  tan x  1  0  (tan x  1)(3 tan2 x  2 tan x  1)  0  tan x  1  x    (t/m), (k  ) . 4  Điều kiện: cos x  0 . PT trở thành: 2 sin2 x cos x  2 3 cos2 x sin x  3 sin x  cos x 3 Chia hai vế phương trình cho cos x ta được: 2 tan2 x  2 3 tan x  ( 3 tan x  1)(tan2 x  1)  3 tan3 x  tan2 x  3 tan x  1  0   x    k    4  tan x  1     (tan2 x  1)( 3 tan x  1)  0   tan x  1  x    k  (t/m), (k  ) .  4    3   tan x  x   k   3 6   Điều kiện: cos x  0 . PT trở thành: sin 3 x  2 sin2 x cos x  3(2 cos3 x  sin x cos2 x  cos x ) 3 Chia hai vế phương trình cho cos x ta được: tan3 x  2 tan2 x  3(2  tan x  1  tan2 x )  tan 3 x  tan2 x  3 tan x  3  0  x    k   tan x  1  4     2  (tan x  1)(tan x  3)  0   tan x  3  x   k  (t/m), (k  ) . 3    tan x   3    x    k  3  Bài 4. Giải các phương trình sau  cos3 x  sin3 x  cos2 x  sin2 x  cos 6 x  sin 6 x   cos 3 x  sin 3 x  cos 2x 13 cos2 2x 8  sin 4 x  cos4 x    7   cot x   cot   x    8 3   6 Hướng dẫn giải: 3 3 2 2  PT  cos x  sin x  cos x  sin x  (cos x  sin x )(1  sin x cos x  cos x  sin x )  0  cos x  sin x (1)   1  sin x cos x  sin x  cos x  0 (2)     Giải (1): cos x  cos   x   x   x  k 2  x   k  .  2  2 4 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 17 ThS. Trần Mạnh Hân (0974514498) www.MATHVN.com FB: thayHanSP1 2 t 1 . Khi đó (2)  2  (t 2  1)  2t  0 2   1  t 2  2t  1  0  t  1  sin x  cos x  1  sin x     4  2  x  k 2 x      k 2   4 4 (k  ) .   x    k 2 x    3  k 2   2 4 4    Vậy phương trình có nghiệm: x   k ; x  k 2; x   k 2 (k  ). 4 2 2 2  PT  (cos x  sin x )(1  sin x cos x )  cos x  sin x  (cos x  sin x )(1  sin x cos x  sin x  cos x )  0 Giải (2): Đặt t  sin x  cos x  sin x cos x   sin x  cos x  0  tan x  1  x    1  sin x cos x  sin x  cos x  0   k 4 1  t2 ta có: 2  t 2  1  2t  0  t  1 2  x  k 2 x       k 2     1   4 4  sin x  cos x  1  sin x        x  3  k 2 4  x    5  k 2 2   2 4 4   3  k 2 (k  ). Vậy phương trình có nghiệm: x    k ; x  k 2; x  4 2 13  PT  (cos2 x  sin2 x )(cos 4 x  sin 4 x  sin2 x cos2 x )  cos2 2x 8   1 13 13  cos 2x (1  sin2 x cos2 x )  cos2 2x  cos 2x 1  sin2 2x  cos 2x   0   4 8 8 Đặt t  sin x  cos x  sin x cos x      k  x   k 2 4 2 2 2  8  2 sin 2x  13 cos 2x  0  2 cos 2x  13 cos 2x  6  0 1   cos 2x  , cos 2x  6 (loại)  x    k  . 2 6    Vậy phương trình có nghiệm: x   k ; x    k  (k  ). 4 2 6          2  0  Điều kiện: sin x   sin   x   0  sin x   cos x    0  sin 2x       3   6 3  3  3   cos 2x  0  2x   1  2 sin2 x cos2 x  7 1 7 1 1  1  sin2 2x   sin2 2x   sin 2x   8 2 8 4 2 Vậy phương trình có nghiệm: x  5  7  k ; x   k ; x    k ; x   k  (k  ). 12 12 12 12 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 18 www.MATHVN.com ThS. Trần Mạnh Hân (0974514498) DẠNG 4. PHƯƠNG TRÌNH ĐỐI XỨNG VỚI SINX VÀ COSX  Dạng phương trình: FB: thayHanSP1 f (sin x  cos x , sin x cos x )  0  Cách giải: t2 1 + Đặt t  sin x  cos x  sin x cos x  2 1t2 + Đặt t  sin x  cos x  sin x cos x  . Đưa về phương trình ẩn t . 2   Chú ý: Nếu t  sin x  cos x  2 sin x   thì  2  t  2 .  4  Bài 1. Giải các phương trình sau  2(sin x  cos x )  sin 2x  1  0  sin x cos x  6(sin x  cos x  1)  4  tan x  2 2 sin x  1  sin 2x  2 sin(x  )  1 Hướng dẫn giải:  2(sin x  cos x )  sin 2x  1  0  2(sin x  cos x )  2 sin x cos x  1  0   t2 1 2 sin x    sin x cos x   2 t  2  4  2 t  0 (t/m) Phương trình trở thành: 2t  (t 2  1)  1  0  t 2  2t  0   t  2 (lo¹i)    Khi đó sin x  cos x  0  sin x    0  x    k   4  4  Đặt t  sin x  cos x   Vậy phương trình có nghiệm:  sin x cos x  6(sin x  cos x  1)   Đặt t  sin x  cos x  2 sin x    1  t2   sin x cos x  4  2  2 t  2  t  1 (t/m)  Phương trình trở thành: 1  t  12(t  1)  t  12t  13  0   t  13 (lo¹i)   1 Vì vậy sin x  cos x  1  sin x     4  2 2 Vậy phương trình có nghiệm: x  2   k ; x    k 2 (k  ). 2  4  sin 2x  2 sin(x  )  1  2 sin x cos x  sin x  cos x  1    1  t2  Đặt t  sin x  cos x  2 sin x    sin x cos x   4  2  2 t  2  t  0 (t/m) Phương trình trở thành: 1  t  t  1  t  t  0   t  1 (t/m) 2 2 Trường THPT Nguyễn Hữu Tiến - Duy Tiên - Hà Nam www.DeThiThuDaiHoc.com 19
- Xem thêm -