Đăng ký Đăng nhập
Trang chủ Khoa học tự nhiên Toán học Bat dang thuc_nguyễn văn mậu (SÁCH CỦA THẦY MẬU)...

Tài liệu Bat dang thuc_nguyễn văn mậu (SÁCH CỦA THẦY MẬU)

.PDF
330
299
78

Mô tả:

Bất đẳng thức có vị trí đặc biệt trong toán học. Trong hầu hết các cuộc thi học sinh giỏi các bài toán liên quan đến bất đẳng thức cũng hay được đề cập và thường thuộc loại khó và rất khó.Để đáp ứng nhu cầu bồi dưỡng giáo viên và bồi dưỡng học sinh giỏi tài liệu này cung cấp một số cơ sở dữ liệu về bất đẳng thức và một số vấn đề đại số liên quan đồng thời cũng phân loại từng dạng toán bất đẳng thức tho nhận dạng cũng như thuật toán để giải chúng. Lời nói đầu Các vấn đề liên quan đến bất đẳng thức phận quan trọng giải tích đại số Nhiều dạng tốn hình học, lượng giác nhiều mơn học khác đòi hỏi giải vấn đề ước lượng, cực trị tối ưu, Các học sinh sinh viên thường phải đối mặt với nhiều dạng tốn loại khó liên quan đến chuyên đề Bất đẳng thức có vị trí đặc biệt tốn học khơng đối tượng để nghiên cứu mà đóng vai trò cơng cụ đắc lực mơ hình tốn học liên tục mơ hình tốn học rời rạc lý thuyết phương trình, lý thuyết xấp xỉ, lý thuyết biểu diễn, Trong hầu hết kỳ thi học sinh giỏi toán quốc gia, thi Olympic Toán khu vực quốc tế, thi Olympic Toán sinh viên trường đại học cao đẳng, toán liên quan đến bất đẳng thức hay đề cập thường thuộc loại khó khó Các tốn ước lượng tính giá trị cực trị (cực đại, cực tiểu) tổng, tích tốn xác định giới hạn số biểu thức cho trước thường có mối quan hệ nhiều đến tính tốn, ước lượng (bất đẳng thức) tương ứng Lý thuyết bất đẳng thức đặc biệt, tập bất đẳng thức phong phú đa dạng Hiện có hàng trăm giáo trình sách chuyên đề, tham khảo đại số, giải tích, số học hình học trình bày lý thuyết tập bất đẳng thức Gần đây, số lượng sách tham khảo chuyên đề bất đẳng thức nhiều tác giả viết khai thác theo chủ đề quan điểm phân loại khác Tuy vậy, tài liệu bất đẳng thức chuyên đề chọn lọc cho giáo viên học sinh hệ Chuyên Toán bậc trung học phổ thơng chưa có nhiều, chưa thể đầy đủ hệ thống ý tưởng bản, cách thức tiếp cận số hướng ứng dụng theo dạng toán phương pháp giải điển hình Để đáp ứng cho nhu cầu bồi dưỡng giáo viên bồi dưỡng học sinh giỏi nhằm đáp ứng yêu cầu sáng tạo dạng tập chuyên đề bất đẳng thức tốn cực trị, chúng tơi viết sách nhỏ nhằm cung cấp số sở liệu bất đẳng thức số vấn đề đại số liên quan đến bất đẳng thức Đồng thời, cho phân loại số dạng toán bất đẳng thức theo nhận dạng thuật toán để giải chúng Đây giảng mà tác giả bồi dưỡng cho giáo viên giảng dạy chuyên toán cho học sinh, sinh viên đội tuyển thi Olympic Toán quốc gia, khu vực quốc tế Một số dạng tập chọn lọc đề kỳ thi học sinh giỏi quốc gia Olympic Toán quốc tế Một số tốn minh hoạ khác trích từ tạp chí Tốn học Tuổi trẻ
Lời nói đầu Các vấn đề liên quan đến bất đẳng thức là một bộ phận quan trọng của giải tích và đại số. Nhiều dạng toán của hình học, lượng giác và nhiều môn học khác cũng đòi hỏi giải quyết các vấn đề về ước lượng, cực trị và tối ưu, ... Các học sinh và sinh viên thường phải đối mặt với nhiều dạng toán loại khó liên quan đến chuyên đề này. Bất đẳng thức có vị trí đặc biệt trong toán học không chỉ như là những đối tượng để nghiên cứu mà còn đóng vai trò như là một công cụ đắc lực của các mô hình toán học liên tục cũng như các mô hình toán học rời rạc trong lý thuyết phương trình, lý thuyết xấp xỉ, lý thuyết biểu diễn, ... Trong hầu hết các kỳ thi học sinh giỏi toán quốc gia, thi Olympic Toán khu vực và quốc tế, thi Olympic Toán sinh viên giữa các trường đại học và cao đẳng, các bài toán liên quan đến bất đẳng thức cũng hay được đề cập và thường thuộc loại khó hoặc rất khó. Các bài toán về ước lượng và tính giá trị cực trị (cực đại, cực tiểu) của các tổng, tích cũng như các bài toán xác định giới hạn của một số biểu thức cho trước thường có mối quan hệ ít nhiều đến các tính toán, ước lượng (bất đẳng thức) tương ứng. Lý thuyết bất đẳng thức và đặc biệt, các bài tập về bất đẳng thức rất phong phú và cực kỳ đa dạng. Hiện có hàng trăm giáo trình cơ bản và sách chuyên đề, tham khảo về đại số, giải tích, số học và hình học trình bày lý thuyết và bài tập về bất đẳng thức. Gần đây, số lượng các sách tham khảo và chuyên đề về bất đẳng thức được rất nhiều tác giả viết và khai thác theo những chủ đề và các quan điểm phân loại khác nhau. Tuy vậy, các tài liệu về bất đẳng thức như là một chuyên đề chọn lọc cho giáo viên và học sinh hệ Chuyên Toán bậc trung học phổ thông thì chưa có nhiều, còn chưa thể hiện được đầy đủ hệ thống các ý tưởng cơ bản, cách thức tiếp cận và một số hướng ứng dụng theo các dạng toán cũng như phương pháp giải điển hình. Để đáp ứng cho nhu cầu bồi dưỡng giáo viên và bồi dưỡng học sinh giỏi và nhằm đáp ứng yêu cầu sáng tạo các dạng bài tập mới về chuyên đề bất đẳng thức và các bài toán cực trị, chúng tôi viết cuốn sách nhỏ này nhằm cung cấp một số cơ sở dữ liệu cơ bản về bất đẳng thức và một số vấn đề đại số liên quan đến bất đẳng thức. Đồng thời, cũng cho phân loại một số dạng toán về bất đẳng thức 3 4 theo nhận dạng cũng như thuật toán để giải chúng. Đây cũng là bài giảng mà tác giả đã bồi dưỡng cho các giáo viên giảng dạy chuyên toán và cho học sinh, sinh viên các đội tuyển thi Olympic Toán quốc gia, khu vực và quốc tế. Một số dạng bài tập được chọn lọc là các đề ra của các kỳ thi học sinh giỏi quốc gia và Olympic Toán quốc tế. Một số các bài toán minh hoạ khác được trích từ các tạp chí Toán học và Tuổi trẻ, Toán học trong nhà trường, Kvant, Mathematica, các sách giáo khoa và sách giáo trình cơ bản, các đề thi học sinh giỏi quốc gia và quốc tế cũng như một số đề thi Olympic Toán sinh viên trong những năm gần đây (xem [1]-[19]). Cuốn sách gồm phần mở đầu, 9 chương và phụ lục. Chương 1. Bất đẳng thức Cauchy Chương 2. Hàm đơn điệu và tựa đơn điệu Chương 3. Bất đẳng thức giữa các trung bình cộng và nhân Chương 4. Hàm lồi, lõm và tựa lồi, lõm Chương 5. Bất đẳng thức Karamata Chương 6. Sắp thứ tự một số bộ số có trọng Chương 7. Bất đẳng thức hàm Chương 8. Bất đẳng thức trong dãy số Chương 9. Bất đẳng thức tích phân Phụ lục. Bảng các bất đẳng thức liên quan Trong tài liệu này, chúng tôi sử dụng một số kỹ thuật và bài tập trích từ các báo cáo đăng trong Kỷ yếu Hội nghị khoa học về chuyên đề Bất đẳng thức ([17]-[30]). Ngoài ra, chúng tôi cũng đưa vào xét một số vấn đề liên quan đến hệ thống ứng dụng như là một cách tiếp cận của phương pháp nhằm giúp các độc giả hiểu sâu sắc hơn cơ sở và cấu trúc của lý thuyết bất đẳng thức. Tuy nhiên, trong tài liệu này không đề cập nhiều và sâu đến các bài toán có nội dung liên quan đến kiến thức hiện đại của giải tích cũng như không đề cập đến những bất đẳng thức và các bài toán cực trị trên các tập rời rạc có ràng buộc phức tạp của lý thuyết quy hoạch và tối ưu. Các dạng bất đẳng thức số học và hình học cũng không có mặt trong tài liệu này. Cuốn sách dành cho học sinh năng khiếu Toán học bậc trung học phổ thông, các sinh viên và học viên cao học, một số đề mục được viết dành riêng cho các thầy giáo và cô giáo trực tiếp bồi dưỡng học sinh giỏi Toán. Trong cuốn sách này, có trình bày một số kết qủa mới chưa có trong các sách hiện hành, chủ yếu trích từ kết quả của tác giả và đồng nghiệp tại các seminar khoa học của Hệ THPT Chuyên Toán - Tin, Đại Học Khoa Học Tự Nhiên Hà Nội và một số báo cáo đăng trong Kỷ yếu Hội Nghị Khoa Học "Các chuyên đề Toán chọn lọc của Hệ THPT Chuyên", nên đòi hỏi độc giả cũng phải giành khá nhiều thời gian tìm hiểu thì mới lĩnh hội được đầy đủ ý tứ và cách thức tiếp cận của phương pháp. 5 Tuy nhiên, bạn đọc cũng có thể bỏ qua các đề mục mới để tập trung đọc các phần có nội dung quen thuộc trước rồi sau đó hãy quay lại phần kiến thức nâng cao. Trong cuốn sách này, tên gọi của các bất đẳng thức cổ điển được viết theo cách gọi truyền thống lấy từ các sách chuyên khảo và chuyên đề hiện hành và không phiên âm tên riêng ra tiếng Việt. Tác giả xin bày tỏ lòng cảm ơn sâu sắc tới PGS TS Trần Huy Hổ, PGS TS Nguyễn Thuỷ Thanh và các thành viên Seminar Giải tích - Đại số cũng như seminar Các chuyên đề Toán phổ thông, đã cho nhiều ý kiến đóng góp để cuốn sách được hoàn chỉnh. Tác giả đặc biệt cảm ơn anh Nguyễn Xuân Bình và chị Phan Thị Minh Nguyệt đã đọc kỹ bản thảo và có nhiều ý kiến quý báu để giúp tác giả chỉnh lý và hiệu đính cuốn sách. Tác giả sẽ vô cùng biết ơn các bạn đọc có ý kiến đóng góp về nội dung cũng như cách thức trình bày của cuốn sách. Mọi góp ý xin gửi về địa chỉ: Nhà xuất bản Giáo dục, 81 Trần Hưng Đạo, Hà Nội. Hà Nội, ngày 1 tháng 1 năm 2006 Mục lục Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chắằng 1.1 1.2 1.3 1.4 1.5 1.6 1 Bất đẳng thức Cauchy Tam thức bậc hai . . . . . . . . . . . . . . . . . . . Bất đẳng thức Cauchy . . . . . . . . . . . . . . . . Dạng phức và dạng đảo của bất đẳng thức Cauchy Tam thức bậc (α) và tam thức bậc (α, β) . . . . . Nhận xét về một số bất đẳng thức liên quan . . . . Phương pháp bất đẳng thức Cauchy . . . . . . . . 1.6.1 Độ gần đều và sắp thứ tự dãy cặp điểm . . 1.6.2 Kỹ thuật tách và ghép bộ số . . . . . . . . 1.6.3 Thứ tự và sắp lại thứ tự của bộ số . . . . . 1.6.4 Điều chỉnh và lựa chọn tham số . . . . . . . 1.7 Bài tập . . . . . . . . . . . . . . . . . . . . . . . . Chắằng 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 20 21 25 28 33 33 37 45 48 54 2 Hàm đơn điệu và tựa đơn điệu Hàm đơn điệu . . . . . . . . . . . . . . . . . . . . . . Hàm tựa đơn điệu . . . . . . . . . . . . . . . . . . . . Hàm đơn điệu từng khúc và phép đơn điệu hoá hàm số Hàm đơn điệu tuyệt đối . . . . . . . . . . . . . . . . . Hàm đơn điệu có tính tuần hoàn . . . . . . . . . . . . Một số ứng dụng của hàm đơn điệu . . . . . . . . . . Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 65 67 78 80 81 83 . . . . . . 87 87 88 89 94 94 95 . . . . . . . . . . . Chắằng 3 Bất đẳng thức giữa các trung bình cộng và nhân 3.1 Định lí về các giá trị trung bình cộng và nhân . . . . . . . 3.1.1 Quy nạp kiểu Cauchy . . . . . . . . . . . . . . . . 3.1.2 Một số dạng đa thức đối xứng sơ cấp . . . . . . . 3.1.3 Quy nạp kiểu Ehlers . . . . . . . . . . . . . . . . . 3.1.4 Đồng nhất thức Hurwitz . . . . . . . . . . . . . . . 3.1.5 Đẳng thức (phương trình) hàm . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . Mục lục 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 97 98 99 100 102 106 107 113 120 Chắằng 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4 Hàm lồi, lõm và tựa lồi, lõm Các tính chất cơ bản của hàm lồi . . . . . . . . . . . . . Thứ tự sắp được của dãy số sinh bởi hàm lồi . . . . . . Hàm lồi, lõm bậc cao . . . . . . . . . . . . . . . . . . . . Biểu diễn hàm lồi và lõm . . . . . . . . . . . . . . . . . Một số lớp hàm số biểu diễn được dưới dạng tuyến tính Hàm tựa lồi và tựa lõm . . . . . . . . . . . . . . . . . . Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 124 131 134 136 138 144 151 Chắằng 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5 Bất đẳng thức Karamata Định lí Karamata . . . . . . . . . . . . . . . Bất đẳng thức đan dấu . . . . . . . . . . . Độ gần đều và thứ tự sắp được của một dãy Điều chỉnh từng phần bộ biến số . . . . . . Một số định lí mở rộng đối với hàm lồi . . . Các định lí dạng Karamata . . . . . . . . . Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 153 158 159 164 174 181 190 Chắằng 6.1 6.2 6.3 6.4 6.5 6.6 6 Sắp thứ tự một số bộ số có trọng Bất đẳng thức Abel . . . . . . . . . . . . . . . . . Một số quy luật sắp thứ tự bộ số có trọng . . . . . Sắp thứ tự và ước lượng phần tử trong bộ số . . . Sắp thứ tự các trung bình của bộ số với trọng . . . Sắp thứ tự các tổng của bộ số theo bậc của chúng Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 . 192 . 194 . 202 . 211 . 216 . 217 3.2 3.3 3.4 3.5 3.1.6 Đồng nhất thức Jacobsthal . . . . . . 3.1.7 Cực trị của hàm số . . . . . . . . . . . 3.1.8 Hàm exponent . . . . . . . . . . . . . 3.1.9 Hoán vị bộ số . . . . . . . . . . . . . . Bất đẳng thức AG suy rộng . . . . . . . . . . Hàm phân thức chính quy . . . . . . . . . . . Một số kỹ thuật vận dụng bất đẳng thức AG 3.4.1 Điều chỉnh và lựa chọn tham số . . . . 3.4.2 Kỹ thuật tách, ghép và phân nhóm . . Bài tập . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . các tam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chắằng 7 Bất đẳng thức hàm 219 7.1 Hàm khoảng cách . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.1.1 Hàm khoảng cách một biến . . . . . . . . . . . . . . . . . . 222 7.1.2 Hàm khoảng cách hai biến . . . . . . . . . . . . . . . . . . . 223 8 Mục lục 7.2 7.3 7.4 7.5 Chắằng 8.1 8.2 8.3 8.4 7.1.3 Hàm khoảng cách nhiều biến . . . . . . . . Bất đẳng thức hàm liên quan đến tam giác . . . . 7.2.1 Hàm tựa đồng biến dạng hàm số sin . . . . 7.2.2 Hàm tựa lõm dạng hàm số cosin . . . . . . Hàm số bảo toàn bất đẳng thức trong hình học . . 7.3.1 Hàm số chuyển đổi các tam giác . . . . . . 7.3.2 Nhận xét về hàm liên quan đến diện tích đa Bất phương trình hàm với cặp biến tự do . . . . . Bài tập . . . . . . . . . . . . . . . . . . . . . . . . 8 Bất đẳng thức trong dãy số Dãy sinh bởi hàm số . . . . . . . . . . Ước lượng tích và tổng của một số dãy Bất đẳng thức trong tập rời rạc . . . . Bài tập . . . . . . . . . . . . . . . . . . . số . . . . . . . . . . . . . . . . . . . . . . . . Chắằng 9 Bất đẳng thức tích phân 9.1 Ước lượng một số biểu thức chứa tích phân . . . . 9.2 Phương pháp tích phân trong bất đẳng thức . . . . 9.3 Phương pháp tích phân trong các bài toán cực trị 9.4 Bài tập . . . . . . . . . . . . . . . . . . . . . . . . Phụ lục: Bảng các bất đẳng thức liên quan . . . . Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 226 227 229 238 238 245 246 254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 257 265 273 280 . . . . . . 285 . 285 . 298 . 309 . 318 . 320 . 330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chương 1 Bất đẳng thức Cauchy 1.1 Tam thức bậc hai Bất đẳng thức cơ bản và cũng là quan trọng nhất trong chương trình đại số bậc trung học phổ thông chính là bất đẳng thức dạng sau đây x2 > 0, ∀x ∈ R. (1.1) Dấu đẳng thức xảy ra khi và chỉ khi x = 0. Gắn với bất đẳng thức (1.1) là bất đẳng thức dạng sau (x1 − x2 )2 > 0, ∀x1 , x2 ∈ R, hay x21 + x22 > 2x1 x2 , ∀x1 , x2 ∈ R. Dấu đẳng thức xảy ra khi và chỉ khi x1 = x2 . Bất đẳng thức (1.1) là dạng bậc hai đơn giản nhất của bất đẳng thức bậc hai mà học sinh đã làm quen ngay từ chương trình lớp 9. Định lí Viete đóng vai trò rất quan trọng trong việc tính toán và ước lượng giá trị của một số biểu thức dạng đối xứng theo các nghiệm của phương trình bậc hai tương ứng. Đặc biệt, trong chương trình Đại số lớp 10, mảng bài tập về ứng dụng định lí (thuận và đảo) về dấu của tam thức bậc hai là công cụ hữu hiệu của nhiều dạng toán ở bậc trung học phổ thông. Xét tam thức bậc hai f (x) = ax2 + bx + c, a 6= 0. Khi đó  b 2 ∆ af (x) = ax + − , 2 4 với ∆ = b2 − 4ac. Từ đẳng thức này, ta có kết quả quen thuộc sau. 9 10 Chương 1. Bất đẳng thức Cauchy Định lí 1.1. Xét tam thức bậc hai f (x) = ax2 + bx + c, a 6= 0. i) Nếu ∆ < 0 thì af (x) > 0, ∀x ∈ R. ii) Nếu ∆ = 0 thì af (x) > 0 ∀x ∈ R. Dấu đẳng thức xảy ra khi và chỉ khi b x=− . 2a iii) Nếu ∆ > 0 thì af (x) = a2 (x − x1 )(x − x2 ) với x1,2 √ b ∆ =− ∓ . 2a 2|a| (1.2) Trong trường hợp này, af (x) < 0 khi x ∈ (x1 , x2 ) và af (x) > 0 khi x < x1 hoặc x > x2 . Ta nhắc lại kết quả sau. Định lí 1.2 (Định lí đảo). Điều kiện cần và đủ để tồn tại số α sao cho af (α) < 0 là ∆ > 0 và x1 < α < x2 , trong đó x1,2 là các nghiệm của f (x) xác định theo (1.2). Nhận xét rằng, các định lí trên đều được mô tả thông qua bất đẳng thức (kết quả so sánh biệt thức ∆ với 0). Các định lí sau đây cho ta tiêu chuẩn nhận biết, thông qua biểu diễn hệ số, khi nào thì tam thức bậc hai f (x) = ax2 + bx + c, a 6= 0, có nghiệm. Định lí 1.3. Với mọi tam thức bậc hai f (x) có nghiệm thực đều tồn tại một nguyên hàm F (x), là đa thức bậc ba, có ba nghiệm đều thực. Chứng minh. Khi f (x) có nghiệm kép, tức f (x) = a(x − x0 )2 , thì ta chỉ cần chọn nguyên hàm dưới dạng a F (x) = (x − x0 )3 . 3 Khi f (x) có hai nghiệm phân biệt, tức f (x) = a(x − x1 )(x − x2 ), x1 < x2 , a 6= 0, ta chọn nguyên hàm F (x) thoả mãn điều kiện F x + x  1 2 = 0. 2 Khi đó, rõ ràng hàm F (x) có  cực đạivà cực tiểu lần lượt tại x1 và x2 và điểm uốn 2 của đồ thị tương ứng là M x1 +x 2 , 0 . Từ đây suy ra điều cần chứng minh. 11 1.1. Tam thức bậc hai Định lí 1.4. Tam thức bậc hai f (x) = 3x2 + 2bx + c có nghiệm (thực) khi và chỉ khi các hệ số b, c có dạng ( b=α+β+γ (1.3) c = αβ + βγ + γα Chứng minh. Điều kiện đủ là hiển nhiên vì theo bất đẳng thức Cauchy, ta có ∆0 =b2 − 3c = (α + β + γ)2 − 3(αβ + βγ + γα) =α2 + β 2 + γ 2 − (αβ + βγ + γα) 1 1 1 = (α − β)2 + (β − γ)2 + (γ − α)2 > 0. 2 2 2 Điều kiện cần. Giả sử phương trình bậc hai có nghiệm thực x1 , x2 . Khi đó, tồn tại đa thức bậc ba có ba nghiệm thực, là nguyên hàm của f (x), tức là: F (x) = (x + α)(x + β)(x + γ). Từ đây ta suy ra điều cần chứng minh. Tiếp theo, trong chương này, ta xét các dạng toán cơ bản về bất đẳng thức và cực trị có sử dụng tính chất của tam thức bậc hai. Xét đa thức thuần nhất bậc hai hai biến (xem như tam thức bậc hai đối với x) F (x, y) = ax2 + bxy + cy 2 , a 6= 0, ∆ : = (b2 − 4ac)y 2 . Khi đó, nếu ∆ 6 0 thì aF (x, y) > 0, ∀x, y ∈ R. Vậy khi b2 6 4ac và a < 0 thì hiển nhiên ax2 + cy 2 > |bxy|, ∀x, y ∈ R. Trường hợp riêng, khi a = c = 1, b = ±2 thì ta nhận lại được kết quả x2 + y 2 > 2|xy| hay u+v √ > uv, u, v > 0. 2 Về sau, ta sử dụng các tính chất của dạng phân thức bậc hai y= a1 x2 + b1 x + c1 a2 x2 + b2 x + c2 12 Chương 1. Bất đẳng thức Cauchy với điều kiện a2 > 0, f2 (x) = a2 x2 + b2 x + c2 > 0, ∀x ∈ R, để tìm cực trị của một số dạng toán bậc hai. Bài toán 1.1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số a1 x2 + b1 x + c1 a2 x2 + b2 x + c2 y= với điều kiện a2 > 0, f2 (x) = a2 x2 + b2 x + c2 > 0, ∀x ∈ R. c1 a1 Giải. Nhận xét rằng khi x = 0 thì y(0) = và khi x → ∞ thì y → . Tiếp c2 a2 a1 c1 theo, ta xét các giá trị y 6= và y 6= . c2 a2 c1 a1 Giả sử y là một giá trị của biểu thức, y 6= và y 6= . Khi đó phương trình c2 a2 tương ứng a1 x2 + b1 x + c1 =y a2 x2 + b2 x + c2 phải có nghiệm, hay phương trình (a2 y − a1 )x2 + (b2 y − b1 )x + (c2 y − c1 ) = 0 (1.4) phải có nghiệm. Do (1.4) là phương trình bậc hai nên điều này tương đương với ∆ = (b2 y − b1 )2 − 4(a2 y − a1 )(c2 y − c1 ) > 0 hay g(y) := (b22 − 4a2 c2 )y 2 + 2(b1 b2 + 2a2 c1 + 2a1 c2 )y + b21 − 4a1 c1 > 0 phải có nghiệm. Vì g(y) có b22 − 4a2 c2 < 0 nên theo Định lí đảo của tam thức bậc hai, thì ∆0 = (b1 b2 + 2a1 c2 + a2 c1 )2 − (4a1 c1 − b21 )(4a2 c2 − b22 ) > 0. và y1 6 y 6 y2 , (1.5) 13 1.1. Tam thức bậc hai với y1,2 b1 b2 + 2a2 c1 + 2a1 c2 ± = b22 − 4a2 c2 √ ∆0 , và ∆0 được tính theo công thức (1.5). Suy ra max y = y2 và min y = y1 , đạt được khi ứng với mỗi j (j = 1, 2), xảy ra đồng thời   ∆ = (b2 yj − b1 )2 − 4(a2 yj − a1 )(c2 yj − c1 ) = 0, 1 b y − b1  xj = − 2 j . 2 a2 yj − a1 Xét một vài ví dụ minh hoạ sau đây. Ví dụ 1.1. Cho x, y là các số thực sao cho 2x2 + y 2 + xy > 1. Tìm giá trị nhỏ nhất của biểu thức M = x2 + y 2 . Giải. Đặt 2x2 + y 2 + xy = a, a > 1. Khi đó M x2 + y 2 = 2 a 2x + y 2 + xy 1 M = . a 2 2) Nếu y = 6 0 suy ra 1) Nếu y = 0 thì M t2 + 1 x = 2 , t= a 2t + t + 1 y Ta chỉ cần xác định các giá trị 1 M < , sao cho phương trình a 2 t2 + 1 M = 2 a 2t + t + 1 có nghiệm. Nghĩa là phương trình  M  M M 2 − 1 t2 + t+ −1=0 a a a 14 Chương 1. Bất đẳng thức Cauchy có nghiệm. Thế thì biệt thức ∆ phải không âm. Ta có ∆=  M 2 a  M  M  −4 2 −1 −1 >0 a a hay M   M 2 + 12 − 4 > 0. −7 a a Giải bất phương trình bậc hai này ta được √ √ 6−2 2 M 6+2 2 6 6 . 7 a 7 Suy ra √ √ 6−2 2 6−2 2 M> a> = M0 . 7 7 √ 6−2 2 , đạt được khi và chỉ khi Vậy min M = 7  (  x = M1 y√ x = M1 y ⇔ 2(1 − 2M0 )  , 2x2 + y 2 + xy = 1 y = ± p 2 − 7M0 + 7M02 với M1 = −M0 . 2(2M0 − 1) Ví dụ 1.2. Cho x2 + y 2 + xy = 1. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A = x2 − xy + 2y 2 . Giải. Ta có thể viết A dưới dạng A= x2 − xy + 2y 2 . x2 + xy + y 2 1) Nếu y = 0 thì A = 1. 2) Nếu y 6= 0 thì A= t2 − t + 2 x , t= 2 t +t+1 y 15 1.1. Tam thức bậc hai Cần xác định A để phương trình A= t2 − t + 2 t2 + t + 1 có nghiệm. Điều đó tương đương với việc phương trình (A − 1)t2 + (A + 1)t + A − 2 = 0 có nghiệm, tức là ∆ = (A + 1)2 − 4(A − 1)(A − 2) > 0. Từ đó, ta được √ √ 7−2 7 7+2 7 6A6 3 3 √ 7+2 7 Vậy max A = , đạt được khi 3  x = A2 + 1 y 2(1 − A2 )  2 x + y 2 + xy = 1    x = A2 + 1 y 2(1 − A2 ) hay 2(A2 − 1)   y = ± p 7 − 6A2 + 3A22 √ 7−2 7 , đạt được khi và min A = 3  x = A1 + 1 y 2(1 − A1 )  2 x + y 2 + xy = 1   x =  A1 + 1 y 2(1 − A1 ) hay 2(A1 − 1)   y = ± p 7 − 6A1 + 3A21 trong đó A1 , A2 lần lượt là giá trị nhỏ nhất và giá trị lớn nhất. Ví dụ 1.3. Cho x2 + y 2 − xy = 1. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức M = x4 + y 4 − x2 y 2 . Giải. Từ giả thiết suy ra 1 = x2 + y 2 − xy > 2xy − xy = xy 1 = (x + y)2 − 3xy > −3xy 16 Chương 1. Bất đẳng thức Cauchy Từ đó ta có − 13 6 xy 6 1. Mặt khác, từ giả thiết ta có x2 + y 2 = 1 + xy nên x4 + y 4 = −x2 y 2 + 2xy + 1 x4 + y 4 − x2 y 2 = −2t2 + 2t + 1, t = xy Vậy cần tìm giá trị lớn nhất, nhỏ nhất của tam thức bậc hai 1 f (t) = −2t2 + 2t + 1; − 6 t 6 1. 3 Ta có max M = f 1 2 3 = , 2 đạt được khi và chỉ khi 1 xy = , và x2 + y 2 − xy = 1 2 hay là ) ( √  5 ∓ 1 √5 ± 1   √5 ∓ 1 √5 ± 1  √ , √ , − √ ,− √ (x, y) ∈ 2 2 2 2 2 2 2 2 Vậy nên  1 1 min M = f − = , 3 9 đạt được khi và chỉ khi ( xy = − 13 x2 + y 2 − xy = 1 hay ( √ x = ± 33 √ y=∓ 3 3 . Bài toán 1.2 (Thi HSG Toán Việt Nam 2003). Cho hàm số f xác định trên tập số thực R, lấy giá trị trên R và thoả mãn điều kiện f (cot x) = sin 2x + cos 2x, x ∈ (0, π). Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f (sin2 x)f (cos2 x). Giải. Ta có f (cot x) = sin 2x + cos 2x 2 cot x cot2 x − 1 + 2 cot x + 1 cot2 x + 1 cot2 x + 2 cot x − 1 = , ∀x ∈ (0; π) cot2 x + 1 = 17 1.1. Tam thức bậc hai Với mỗi t ∈ R đều tồn tại x ∈ (0, π) sao cho cot x = t, ta được f (t) = t2 + 2t − 1 , ∀t ∈ R. t2 + 1 Do đó sin4 2x + 32 sin2 2x − 32 , ∀x ∈ R. sin4 2x − 8 sin2 2x + 32 h 1i 1 Đặt u = sin2 2x. Dễ thấy, x ∈ R khi và chỉ khi u ∈ 0, . Vì vậy 4 4 g(x) = f (sin2 x)f (cos2 x) = min g(x) = x∈R min h(u) và max g(x) = max h(u), x∈R 06u61/4 06u61/4 trong đó h(u) = u2 + 8u − 2 . u2 − 2u + 2 Ta tính dạo hàm của hàm h(u) h0 (u) = 2(−5u2 + 4u + 6) . (u2 − 2u + 2)2 h 1i Ta dễ dàng chứng minh được h0 (u) > 0 ∀u ∈ 0, . Suy ra hàm h(u) đồng biến 4 h 1i h 1i trên 0, . Vì vậy, trên 0, , ta có 4 4 min h(u) = h(0) = −1 và 1 1 max h(u) = h = . 4 25 1 Do đó min g(x) = −1, đạt được chẳng hạn khi x = 0 và max g(x) = , đạt được 25 π chẳng hạn khi x = . 4 Bài toán 1.3 (Thi HSG Toán Việt Nam 2003). Cho hàm số f xác định trên tập hợp số thực R, lấy giá trị trên R và thoả mãn điều kiện f (cot x) = sin 2x + cos 2x, ∀x ∈ (0, π). Hãy tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số g(x) = f (x)f (1 − x) trên đoạn [−1; 1]. 18 Chương 1. Bất đẳng thức Cauchy Ta có f (cot x) = sin 2x + cos 2x 2 cot x cot2 x − 1 + cot2 x + 1 cot2 x + 1 cot2 x + 2 cot x − 1 = , ∀x ∈ (0; π) cot2 x + 1 = Từ đó, với lưu ý rằng với mỗi t ∈ R đều tồn tại x ∈ (0, π) sao cho cot x = t, ta được t2 + 2t − 1 f (t) = , ∀t ∈ R. t2 + 1 Dẫn tới, g(x) = f (x)f (1 − x) = x2 (1 − x)2 + 8x(1 − x) − 2 , ∀x ∈ R. x2 (1 − x)2 − 2x(1 − x) + 2 Đặt u = x(1 − x). Dễ thấy, khi x chạy qua [−1, 1] thì u chạy qua h − 2, Vì vậy, min g(x) = −16x61 min h(u) và −26u6 14 max g(x) = max h(u), −16x61 −26u6 41 trong đó h(u) = Ta có h0 (u) = u2 + 8u − 2 . u2 − 2u + 2 2(−5u2 + 4u + 6) (u2 − 2u + 2)2 Từ việc khảo sát dấu của h0 (u) trên [−2; 1/4], ta thu được √ ! √ 2 − 34 min h(u) = h = 4 − 34 1 5 −26u6 4 và max h(u) = max{h(−2); h(1/4)} = −26u6 41 Vậy, trên [−1; 1], ta có min g(x) = 4 − √ 1 . 25 34 và max g(x) = 1 . 25 1i . 4 19 1.1. Tam thức bậc hai Bài toán 1.4 (MO Nga 1999). Cho hàm số f (x) = x2 + ax + b cos x. Tìm tất cả các giá trị của a, b sao cho phương trình f (x) = 0 và f (f (x)) = 0 có cùng một tập hợp nghiệm thực (khác rỗng). Giải. Giả sử r là một nghiệm của f (x). Khi đó b = f (0) = f (f (x)) = 0. Do đó f (x) = x(x + a), suy ra hoặc r = 0 hoặc r = −a. Vì vậy f (f (x)) = f (x)(f (x) + a) = x(x + a)(x2 + ax + a). Ta chọn a sao cho x2 + ax + a không có nghiệm thực nằm giữa 0 và −a. Thật vậy nếu 0 hoặc −a là nghiệm của phương trình x2 + ax + a = 0, thì phải có a = 0 và khi đó f (f (x)) không có nghiệm nào khác. Nói cách khác, ∆ = a2 − 4a < 0 hay 0 < a < 4. Vậy với 0 6 a < 4 thì hai phương trình đã cho có cùng tập hợp nghiệm x = 0, x = −a. Bài toán 1.5. Cho tam thức bậc hai f (x) = ax2 + bx + c thoả mãn điều kiện |f (−1)| 6 1, |f (0)| 6 1, |f (1)| 6 1. Tìm giá trị lớn nhất của |f (x)| với x ∈ [−1; 1]. Giải. Ta có i h f (1) − f (−1) i 2 f (x) = − f (0) x + x + f (0) 2 2 f (1) 2 f (−1) 2 = (x + x) + (x − x) + f (0)(1 − x2 ) 2 2 h f (1) + f (−1) Suy ra 1 1 f (x) 6 |x2 + x| + |x2 − x| + |1 − x2 | 2 2 1 2 = (|x + x| + |x2 − x|) + |1 − x2 | 2 Vì x ∈ [−1; 1] nên (x2 + x)(x2 − x) = x2 (x2 − 1) 6 0. Do đó 1 2 1 (|x + x| + |x2 − x|) + |1 − x2 | = |x2 + x − x2 + x| + 1 − x2 2 2 = |x| + 1 − x2 5 5 = −(|x| − 21 )2 + 6 . 4 4 5 5 Suy ra |f (x)| 6 . Vậy max |f (x)| = . −16x61 4 4 20 Chương 1. Bất đẳng thức Cauchy 1.2 Bất đẳng thức Cauchy Tiếp theo, thực hiện theo ý tưởng của Cauchy1 đối với tổng n n n n X X X X 2 2 2 (xi t − yi ) = t xi − 2t xi yi + yi2 , i=1 i=1 i=1 i=1 ta nhận được tam thức bậc hai dạng f (t) = t2 n X x2i − 2t i=1 n X xi yi + i=1 n X yi2 > 0, ∀t ∈ R, i=1 nên ∆ 6 0. Định lí 1.5. Với mọi bộ số (xi ), (yi ), ta luôn có bất đẳng thức sau n X x i yi 2 6 i=1 n X x2i n  X i=1  yi2 . (1.6) i=1 Dấu đẳng thức trong (1.6) xảy ra khi và chỉ khi hai bộ số (xi ) và (yi ) tỷ lệ với nhau, tức tồn tại cặp số thực α, β, không đồng thời bằng 0, sao cho αxi + βyi = 0, ∀i = 1, 2, . . . , n. Bất đẳng thức (1.6) thường được gọi là bất đẳng thức Cauchy2 (đôi khi còn gọi là bất đẳng thức Bunhiacovski, Cauchy - Schwarz hoặc Cauchy-Bunhiacovski). Nhận xét rằng, bất đẳng thức Cauchy cũng có thể được suy trực tiếp từ đồng nhất thức Lagrange sau đây Định lí 1.6 (Lagrange). Với mọi bộ số (xi ), (yi ), ta luôn có đồng nhất thức: n X i=1 x2i n  X n  X 2 yi2 − xi yi = n X i=1 i,j=1, i + , E1 (x + y) E1 (x) E1 (y) trong đó E1 (x) := n X xi , E2 (x) := i=1 n X xi xj . i,j=1;i6=j Về sau, ta đặc biệt quan tâm đến trường hợp tương ứng với hai cặp số (1, 1) và (a, b). Khi đó bất đẳng thức Cauchy trùng với bất đẳng thức giữa trung bình cộng và trung bình nhân. Hệ quả 1.2. Với mọi cặp số dương (a, b), ta luôn có bất đẳng thức sau √ √ 2(a + b) > ( a + b)2 , hay 1.3 √ a + b > 2 ab. Dạng phức và dạng đảo của bất đẳng thức Cauchy Trước hết, ta có nhận xét rằng từ một đẳng thức đã cho đối với bộ số thực ta đều có thể mở rộng (theo nhiều cách thức khác nhau) thành một đẳng thức mới cho bộ số phức. Chẳng hạn, ta có thể coi mọi số thực a đã cho như là phần thực của một số phức z = a + ib (b ∈ R). Ta nêu một số đồng nhất thức về sau cần sử dụng. 22 Chương 1. Bất đẳng thức Cauchy Định lí 1.7. Với mọi bộ số (aj , bj , uj , vj ), ta luôn có đẳng thức sau: n X n X aj uj j=1 j=1 X = bj vj − n X aj bj j=1 n X uj vj j=1 (aj bk − bj ak )(uj vk − uk vj ). (1.7) 16j aj bj . j=1 (1.9) j=1 Giả sử ta có bộ các cặp số dương (ak , bk ) sao cho ak ∈ [α, β], α > 0, k = 1, 2, . . . , n. bk Khi đó, theo Định lí đảo của tam thức bậc hai thì   ak  ak β− −α >0 bk bk hay a2k + αβb2k 6 (α + β)ak bk , k = 1, 2, . . . , n. Từ đây suy ra n X a2k + αβ k=1 n X b2k 6 (α + β) k=1 n X ak bk . k=1 Theo bất đẳng thức Cauchy, thì n X k=1 a2k 1  2 αβ n X k=1 b2k 1 2 n n k=1 k=1 X  1 X 2 6 ak + αβ b2k . 2
- Xem thêm -

Tài liệu liên quan