Đăng ký Đăng nhập
Trang chủ Bất đẳng thức lojasiewicz, tương đương topo và đa diện newton...

Tài liệu Bất đẳng thức lojasiewicz, tương đương topo và đa diện newton

.PDF
73
323
56

Mô tả:

MINISTRY OF EDUCATION AND TRAINING DALAT UNIVERSITY LOJASIEWICZ INEQUALITIES, TOPOLOGICAL EQUIVALENCES AND NEWTON POLYHEDRA Speciality: Mathematical Analysis Speciality code: 62.46.01.02 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS DALAT, 2017 MINISTRY OF EDUCATION AND TRAINING DALAT UNIVERSITY BUI NGUYEN THAO NGUYEN LOJASIEWICZ INEQUALITIES, TOPOLOGICAL EQUIVALENCES AND NEWTON POLYHEDRA Speciality: Mathematical Analysis Speciality code: 62.46.01.02 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS Supervisors: 1. Assoc. Prof. Pham Tien Son 2. Dr. Dinh Si Tiep DALAT, 2017 Declaration of Authorship ˜ ˙ ’ I, B`i Nguyˆn Thao Nguyˆn, declare that this thesis titled, “LOJASIEWICZ INu e e EQUALITIES, TOPOLOGICAL EQUIVALENCES AND NEWTON POLYHEDRA” and the work presented in it are my own. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly attributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. • Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: i Abstract LOJASIEWICZ INEQUALITIES, TOPOLOGICAL EQUIVALENCES AND NEWTON POLYHEDRA ˜ ˙ ’ by B`i Nguyˆn Thao Nguyˆn u e e The goals of this thesis are to study Lojasiewicz inequalities and topological equivalences (local and at infinity) for a class of functions satisfying non-degenerate conditions. Singularity Theory and Semi-algebraic Geometry are main tools for our study. Our main results include: - Establishing a formula for computing the Lojasiewicz exponent of a non-constant analytic function germ f in terms of the Newton polyhedron of f in the case where f is non-negative and non-degenerate. - Investigating into the sub-analytically bi-Lipschitz topological G-equivalence for function germs from (Rn , 0) to (R, 0), where G is one of the classical Mather’s groups. - Giving a sufficient condition for a deformation of a polynomial function f in terms of its Newton polyhedron at infinity to be analytically (smooth in the complex case) trivial at infinity. Keywords and phrases: Lojasiewicz inequalities, topological equivalences, non-degenerate conditions, Newton polyhedra, sub-analytically, bi-Lipschitz, analytically trivial at infinity. ii Acknowledgements First and foremost, I would like to express my sincere gratitude for my supervisors, ´ i e Assoc. Prof. Pham Tiˆn So.n and Dr. Dinh S˜ Tiˆp, who always support and encourage e . . me. Thank you for your helpful suggestions, your ideas and the interesting discussions that we have had on the material of this work. Thank you so much. I am also grateful to my teachers in the Department of Mathematics and Informatics at Da Lat University. Thank for your attractive lectures which encourage me to pursue scientific research. Finally, I take this opportunity to express the profound gratitude from my heart to my family. iii Introduction The main purposes of this thesis are to study Lojasiewicz inequalities and topological equivalences (local and at infinity) for a class of functions satisfying non-degenerate conditions in terms of Newton polyhedra with some tools of Singularity Theory and Semi-Algebraic Geometry. In details, let f : (Rn , 0) → (R, 0) be an analytic function defined in a neighborhood of the origin 0 ∈ Rn . The Classical Lojasiewicz inequality [2, 34] asserts that there exist some constants δ > 0, c > 0, and l > 0 such that |f (x)| ≥ cd(x, f −1 (0))l x ≤ δ, for all where d(x, f −1 (0)) := inf{ x − y | y ∈ f −1 (0)}, and · denotes the usual Euclidean norm in Rn . The Lojasiewicz exponent of f at the origin 0 ∈ Rn , denoted by L0 (f ), is the infimum of the exponents l satisfying the above Lojasiewicz inequality. Bochnak and Risler [8] proved that L0 (f ) is a positive rational number. Moreover, the Lojasiewicz exponent L0 (f ) is attained, i.e., there are some positive constants c and δ such that |f (x)| ≥ cd(x, f −1 (0))L0 (f ) for x ≤ δ. The Lojasiewicz inequality plays an important role in many problems of mathematics, such as Singularity Theory (C 0 -sufficiency of jets, [7, 29, 32]); the complexity of the representations of positive polynomials (Schm¨dgen’s and Putinar’s Positivstellens¨tze u a [41, 52]). Hence, the computation and estimation of the Lojasiewicz exponent are interesting problems. In the case where f is an analytic function in two variables, a formula for computing the Lojasiewicz exponent L0 (f ) was given by Kuo in the paper [31] (see also the paper [21] for the Lojasiewicz exponent at infinity). If f is a polynomial of degree d iv in n variables with an isolated zero at the origin, Gwozdziewicz [25] (see also [27]) prove that: L0 (f ) ≤ (d − 1)n + 1. In the general case, when f may have a non-isolated singularity at the origin, Pham . [47], Kurdyka and Spodzieja [33] have the following explicit estimate: L0 (f ) ≤ max{d(3d − 4)n−1 , 2d(3d − 3)n−2 }. In general, as far as we know, there is no method to determine L0 (f ). In the thesis, we will establish a formula for the Lojasiewicz exponent of non-negative and non-degenerate analytic functions. Another problem which attracts our studies is the classification of functions by equivalence relations which is a fundamental problem in Singularity Theory. Many authors have focused their attention on this problem, and many characteristics and invariants of G-equivalence are established, where G is one of the classical Mather’s groups [35, 36], i.e., G = A, K, C, or V. The classification problem with respect to C 0 -G-equivalence relations has been wellstudied. For C ∞ -stable map germs, Mather in [36] proved that C 0 -K-equivalence implies C 0 -A-equivalence. For analytic function germs with isolated singularities in two or three variables, it is was proved by King in [26] (see also [1, 46]) that C 0 -V-equivalence implies C 0 -A-equivalence. On the other hand, in [43], it is pointed out by Nishimura that C 0 V-equivalence of smooth functions with isolated singularities implies C 0 -K-equivalence. Recently, new works have also treated such theme [1, 3, 4, 5, 13, 14, 15, 50, 56]. In this work, we are interested in the sub-analytically, bi-Lipschitz C 0 -G-equivalence of continuous sub-analytic function germs from (Rn , 0) to (R, 0) and bi-Lipschitz K-equivalence invariances of the Lojasiewicz exponent and the multiplicity. We also give a condition for analytic function germs in terms of their Newton polyhedra to be sub-analytically bi-Lipschitz C-equivalent to their Newton principal parts. In the thesis, we also focus on the C 0 -sufficiency of jets. Recall that the k-jet of a C r -function in the neighborhood of 0 ∈ Rn is identified with its k-th Taylor polynomial at 0, then the function is called a realization of the jet. The k-jet is said to be C p sufficient in the C r class (p ≤ r), if for any two of its C r -realizations f and g there exists a C p diffeomorphism ϕ of neighborhood of 0, such that f ◦ ϕ = g in some neighborhood of 0. Kuiper [32] , Kuo [29], Bochnak and Lojasiewics [7] proved the followings: v Let f : (Rn , 0) → (R, 0) be a C k -function defined in a neighborhood of 0 ∈ Rn with f (0) = 0. Then, two following conditions are equivalent: (i) There are positive constants C and r such that f (x) ≥ C x k−1 for x ≤ r. (ii) The k-jet of f is sufficient in the C k class. Analogous results in the case of complex analytic functions were proved by Chang and Lu [11], Teissier [55], and by Bochnak and Kucharz [6]. Similar considerations are also carried out for polynomial mappings in two variables in a neighborhood of infinity by Cassou-Nogu`s and H` [10]: e a Let f be a polynomial in C[z1 , z2 ]. Then, two following conditions are equivalent: (i) There are positive constants C and R such that f (x) ≥ C x k−1 for x ≥ R. such that for every polynomial P ∈ (ii) There exists a positive constant C[z1 , z2 ] of degree less or equal k, whose modules of coefficients of monomials of degree k are less or equal , the links at infinity of almost all fibers f −1 (λ) and (f + P )−1 (λ), λ ∈ C are isotopic. Let us recall that the links at infinity of the fiber of f ∈ C[z1 , z2 ] is the set f −1 (λ) ∩ {(x, y) ∈ C2 | |x|2 + |y|2 = R2 } for R sufficiently large. The result of Cassou-Nogu`s and H` is recently generalised by Skalski [54], Rodak e a and Spodzieja [49]. In this thesis, we will give a version at infinity of the above result for a class of polynomial maps, which are Newton non-degenerate at infinity. The results attended in this thesis assert that the topological, analytic and geometric properties of analytic function germs and polynomials can be described by their Newton polyhedra, see also [16, 17, 18, 20, 21, 24, 28, 37, 44, 45, 58, 59]. vi In details, this thesis is divided into four chapters and a list of references. Chapter 1 recalls some notions and results of Semi-algebraic Geometry, Sub-analytic Geometry, Newton polyhedra and non-degeneracy conditions as well as of Differential equations that are useful for subsequent studies. Chapter 2 establishes a formula for computing the Lojasiewicz exponent of a nonconstant analytic function germ f in terms of its Newton polyhedron in the case where f is non-negative and non-degenerate (see Theorem 2.3). Chapter 3 investigates the sub-analytically bi-Lipschitz topological G-equivalence for function germs from (Rn , 0) to (R, 0), where G is one of the classical Mather’s groups. The mains results of this chapter are Theorem 3.3, Theorem 3.13 and Theorem 3.16. Chapter 4 gives a sufficient condition for a deformation of a polynomial function f in terms of its the Newton boundary at infinity to be analytically (smooth in the complex case) trivial at infinity (see Theorem 4.2). The results presented in this thesis are written on three papers done by myself ´ jointly with my supervisor, Assoc. Prof. Pham Tiˆn So.n. They were published in e . the journals including International Journal of Mathematics [BP-1], Houston Journal of Mathematics [BP-2] and Annales Polonici Mathematici [BP-3]. vii Contents Declaration of Authorship i Abstract ii Acknowledgements iii Introduction iv 1 Preliminaries 1.1 1 Semi-algebraic sets and maps . . . . . . . . . . . . . . . . . . . . 1 1.1.2 The Tarski–Seidenberg theorem . . . . . . . . . . . . . . . . . . . 2 1.1.3 Cell decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.4 Other results of Semi-algebraic Geometry . . . . . . . . . . . . . . 5 Sub-analytic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Semi-analytic sets and maps . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Sub-analytic sets and maps . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Newton polyhedra and non-degeneracy conditions . . . . . . . . . . . . . 10 1.3.1 Newton polyhedra and non-degeneracy conditions at the origin . . 10 1.3.2 1.3 1 1.1.1 1.2 Semi-algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . Newton polyhedra and the Kouchnirenko non-degeneracy condition at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 11 Differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 viii 2 Computation of the Lojasiewicz exponent of non-negative and nondegenerate analytic functions 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Computation of the Lojasiewicz exponent of non-negative and non-degenerate analytic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 16 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 The sub-analytically topological types of function germs 29 3.1 G-equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Sub-analytically topological types . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Bi-Lipschitz K-equivalence invariances of the Lojasiewicz exponent and the multiplicity . . . . . . . . . . . . . . 3.4 37 Sub-analytically bi-Lipschitz C-equivalence and non-degeneracy conditions 38 4 Analytically principal part of polynomials at infinity 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Main Theorem 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions 54 List of Author’s Related Papers 55 Bibliography 56 Table of Notations 61 Index 62 ix Chapter 1 Preliminaries This chapter recalls some notions and results of Semi-algebraic Geometry, Subanalytic Geometry, Newton polyhedra and non-degeneracy conditions, and Differential equations. A detailed expositon, and proofs, can be found in [9, 23, 24, 28, 34, 37, 57]. 1.1 Semi-algebraic Geometry This section begins with basic definitions of semi-algebraic sets and maps. Some notions and results of Semi-algebraic Geometry such as Tarski–Seidenberg theorem, Cell Decomposition, Curve Selection Lemma and Lojasiewicz inequalities... are also presented. A more detailed discussion and proofs can be found in [9, 34, 38, 40, 53, 57]. 1.1.1 Semi-algebraic sets and maps Definition 1.1. (See [9, Definition 2.1.4]) A subset of Rn is called semi-algebraic if it is a finite union of sets of the form {x ∈ Rn | f1 (x) = 0; fi (x) > 0, i = 2, . . . , k}, where all fi are polynomials in R[x]. Example 1.2. (i) The semi-algebraic subsets of R are the unions of finitely many points and open intervals. (ii) Any algebraic subsets of Rn (defined by polynomial equations) are semi-algebraic. 1 (iii) Let f (b, c, x) = x2 + bx + c be a polynomial. The set {(b, c) ∈ R2 | f has exactly 2 distinct real roots} is semi-algebraic in R2 . (iv) The following sets are not semi-algebraic {(x, y) ∈ R2 | y = sin x}, {(x, y) ∈ R2 | y = ex }, {(x, y) ∈ R2 | y = nx, n ∈ N}. The following properties of semi-algebraic sets are elementary. Proposition 1.3. Let A and B be semi-algebraic subsets of Rn . Then the sets A ∪ B, A ∩ B and Rn \ A are also semi-algebraic. Definition 1.4. (See [9, Definition 2.2.5]) Let A ⊂ Rn and B ⊂ Rm be semi-algebraic sets. A map f : A → B is said to be semi-algebraic if its graph Graph(f ) = {(x, y) ∈ A × B | y = f (x)} is semi-algebraic in Rn × Rm . 1.1.2 The Tarski–Seidenberg theorem Theorem 1.5. (Tarski–Seidenberg theorem, [9, Theorem 2.2.1]) Let A be a semialgebraic subset of Rn+m and π : Rn ×Rm → Rn , the projection on the first n coordinates. Then π(A) is a semi-algebraic subset of Rn . Let x, y, z be variables ranging over the sets X, Y, Z, respectively and let φ(x, y, z) and ϕ(x, y, z) be formulas (conditions on (x, y, z)) defining the sets φ := {(x, y, z) ∈ X × Y × Z | φ(x, y, z) holds }, ϕ := {(x, y, z) ∈ X × Y × Z | ϕ(x, y, z) holds }. Then we can construct new formulas as below: • The disjunction of φ and ϕ, denoted by φ ∨ ϕ, defines the set φ ∪ ϕ. • The conjunction of φ and ϕ, denoted by φ ∧ ϕ, defines the set φ ∩ ϕ. 2 • The negation of φ, denoted by ¬φ, defines the complement X × Y × Z \ φ. • The existential quantification over z of φ(x, y, z), denoted by ∃zφ(x, y, z), defines the set {(x, y) ∈ X × Y | there exists z ∈ Z such that φ(x, y, z) holds }. • The universal quantification over z of φ(x, y, z), denoted by ∀zφ(x, y, z), defines the set {(x, y) ∈ X × Y | for all z ∈ Z the condition φ(x, y, z) holds }. Definition 1.6. A first-order formula (of the language of ordered fields with parameters in R) is obtained by the following rules. (1) If f ∈ R[x1 , . . . , xn ], then f = 0 and f > 0 are first-order formulas. (2) If φ and ϕ are first-order formulas, then φ ∨ ϕ, φ ∧ ϕ and ¬φ are also first-order formulas. (3) If φ is a first-order formula and x is a variable ranging over R, then ∃xφ and ∀xφ are first-order formulas. The formulas obtained by using only rules (1) and (2) are called quantifier-free formulas. With the above notion, we have Theorem 1.7 (Logical formulation of the Tarski–Seidenberg theorem). If φ(x) is a first-order formula, then the set {x ∈ Rn | φ(x) holds} is semi-algebraic. The following properties of semi-algebraic sets and maps follow from the Tarski– Seidenberg theorem. Proposition 1.8. ([9, Proposition 2.2.2]) The following two statements hold. (i) If A and B are semi-algebraic sets, then A × B is also semi-algebraic. (ii) The closure, the interior and the boundary of a semi-algebraic set are semi-algebraic. (iii) Images and inverse images of semi-algebraic sets under semi-algebraic maps are semi-algebraic. (iv) Compositions of semi-algebraic maps are semi-algebraic. (v) The sum and product of two semi-algebraic functions are semi-algebraic. 3 Example 1.9. (i) Let A ⊂ Rn be a semi-algebraic set. If F : A → Rm is a polynomial mapping, it is semi-algebraic. (ii) Let A ⊂ Rn , A = ∅ be a semi-algebraic set. Then the distance function d(·, A) : Rn → R, x → d(x, A) := inf{ x − a | a ∈ A} is continuous semi-algebraic. 1.1.3 Cell decomposition Analytic cells are non-empty semi-algebraic sets of an especially simple nature. They are defined inductively as follows: • Analytic cells in R are points or open intervals (a, b), −∞ ≤ a < b ≤ +∞. • Let C ⊂ Rn−1 be an analytic cell. If f, g : C → R are analytic semi-algebraic functions such that f < g on C, then the cylinder (f, g) := {(x, t) ∈ C × R | f (x) < t < g(x)} as well as (−∞, f ) := {(x, t) ∈ C × R | − ∞ < t < f (x)} and (g, +∞) := {(x, t) ∈ C × R | g(x) < t < +∞} are analytic cells in Rn . If f : C → R is an analytic semi-algebraic function, then its graph Graph(f ) = {(x, t) ∈ C × R | t = f (x)} is an analytic cells in Rn . Finally, C × R ⊂ Rn is an analytic cell. An analytic cell decomposition of Rn is defined by induction on n: • An analytic cell decomposition of R is a finite collection of open intervals and points: {(−∞, a1 ), {a1 }, (a1 , a2 ), . . . , {ak }, (ak , +∞)}, where a1 < a2 < · · · < ak are points in R. 4 • Assuming that the class of analytic cell decomposition of Rn−1 has been defined, an analytic cell decomposition of Rn is finite partition P of Rn into analytic cells such that π(P) := {π(C) | C ∈ P} is an analytic cell decomposition of Rn−1 , where π : Rn → Rn−1 is the projection on the first (n − 1) coordinates. We say that a decomposition P of Rn partitions a set A ⊂ Rn if A is a disjoint union of cells in P. Theorem 1.10. (Analytic Cell Decomposition, [57, Theorem 2.11]) Let A1 , . . . , Ak be semi-algebraic subsets of Rn . Then there is an analytic cell decomposition of Rn partitioning each Ai . Theorem 1.11. (Finiteness of the number of connected components, [57, Proposition 2.18]) Every semi-algebraic set has a finite number of connected components and each such component is semi-algebraic. 1.1.4 Other results of Semi-algebraic Geometry Theorem 1.12. (Monotonicity Theorem, [57, Theorem 1.3]) Let f : (a, b) → R be a semi-algebraic function. Then there are a = a0 < a1 < · · · < as < as+1 = b such that, for each i = 0, . . . , s, the restriction f|(ai ,ai+1 ) is analytic, and either constant, or strictly monotone. Theorem 1.13. Curve Selection Lemma (Monotonicity Theorem, [9, Theorem 2.5.5]) ¯ Let S be a semi-algebraic subset of Rn and x0 ∈ S \ S. Then there exists a real analytic semi-algebraic curve φ : (0, ) → S with φ(0) = x0 and with φ(t) ∈ S for t ∈ (0, ). Theorem 1.14 (Curve Selection Lemma at infinity, [40]). Let S ⊂ Rn be a semialgebraic set, and let f := (f1 , . . . , fp ) : Rn → Rp 5 be a semi-algebraic map. Assume that there exists a sequence {xk } such that xk ∈ S, limk→∞ xk = ∞ and limk→∞ f (xk ) = y ∈ (R)p , where R := R ∪ {±∞}. Then there exists a smooth semi-algebraic curve φ : (0, ) → Rn such that φ(t) ∈ S for all t ∈ (0, ), limt→0 γ(t) = ∞ and limt→0 f (γ(t)) = y. (i) Let f : (0, ) → R be a semi- Theorem 1.15 (Growth Dichotomy Lemma, [40]). algebraic function with f (t) = 0 for all t ∈ (0, ). Then there exists some constants a = 0 and α ∈ Q such that f (t) = atα + o(tα ) as t → 0+ . (ii) Let f : (r, +∞) → R be a semi-algebraic function with f (t) = 0 for all t ∈ (r, +∞). Then there exist some constants a = 0 and α ∈ Q such that f (t) = atα + o(tα ) as t → +∞. Theorem 1.16. (Lojasiewicz inequality, [9, Corollary 2.6.7]) Let K be a compact semialgebraic subset of Rn . Let f, g : K → R be continuous semi-algebraic functions such that f −1 (0) ⊂ g −1 (0). Then there exist α > 0 and C > 0 such that |f (x)| ≥ C|g(x)|α ∀x ∈ K. Theorem 1.17 (Classical Lojasiewicz inequality). Let K be a compact semi-algebraic subset of Rn and f : K → R be a continuous semi-algebraic function. Then there exist α > 0 and C > 0 such that |f (x)| ≥ Cd(x, f −1 (0))α ∀x ∈ K. Theorem 1.18 (Lojasiewicz gradient inequality). Let f be a semi-algebraic function of class C 1 in a neighborhood of 0 ∈ Rn such that f (0) = 0. Then there exist some constants C > 0 and α ∈ [0, 1) such that, for all x in a neighborhood of 0, | f (x)| ≥ C|f (x)|α . 1.2 Sub-analytic Geometry We begin by recalling some notions of semi-analytic sets and maps. Then, after presenting some definitions and properties of sub-analytic sets and maps, we complete this section by the results of triangulation. For more details the reader is referred to [2, 53, 57]. 6 1.2.1 Semi-analytic sets and maps Let M be a real analytic manifold, Hausdorff with a countable basis. The ring of real analytic functions on M will be denoted by O(M ). Definition 1.19. ([2, Definition 2.1]) A subset X of M is called semi-analytic if each a ∈ M has a neighborhood U such that p q {x ∈ U : fij (x) sij 0}, X ∩U = i=1 j=1 where p, q ∈ N, fij ∈ O(U ) and sij ∈ {=, >}, 1 i p, 1 j q. Definition 1.20. ([2, Definition 2.3]) Let X be a subset of M . A map f : X → Rm is said to be semi-analytic if its graph Graph(f ) = {(x, y) ∈ X × Rm | y = f (x)} is a semi-analytic subset of M × Rm . Example 1.21. (i) An analytic subset of M (defined by analytic equations) is semi- analytic in M . (ii) A semi-algebraic subset of Rn is semi-analytic in Rn . (iii) The set {(x, y) ∈ R2 | y = sin x} is semi-analytic but not semi-algebraic in R2 . (iv) The set 1 {(x, e− x ) | x ∈ R, x > 0} is semi-analytic in R2 \ {(0, 0)} but not semi-analytic in R2 . Proposition 1.22. ([2, Corollary 2.7]) Let X be a semi-analytic subset of M . Then (i) The closure, the interior and the boundary of X are semi-analytic. (ii) Every connected component of X is semi-analytic. (iii) The family of connected components of X is locally finite (in particular, finite if X is relatively compact). 7 (iv) X is locally connected. Remark 1.23. It was shown by the example of Osgood ([2, Example 2.14]) that there exists a semi-analytic subset of R5 whose image by the projection map is not semianalytic. Thus, the Tarski–Seidenberg theorem is false in genaral for semi-analytic sets. 1.2.2 Sub-analytic sets and maps Let M be a real analytic manifold, Hausdorff with a countable basis. Definition 1.24. (See [2, Definition 3.1]) A subset X of M is called sub-analytic if each a ∈ M has a neighborhood U such that X ∩ U is a projection of a relatively compact semi-analytic set in M × Rk (with k depend on a). Proposition 1.25. The following statements hold. (i) Let X and Y be sub-analytic subsets of M . Then the sets X ∪ Y, X ∩ Y are also sub-analytic. (ii) Let X be a sub-analytic subset of M and let N be a real analytic manifold. If Z is a sub-analytic subset of N , then X × Z is sub-analytic in M × N . Proposition 1.26. Let X be a sub-analytic subset of M . Then (i) The closure of X is sub-analytic. (ii) Every connected component of X is sub-analytic. (iii) The family of connected components of X is locally finite. (iv) X is locally connected. Definition 1.27. ([2, Definition 3.2]) Let X be a sub-analytic subset of M and N be a real analytic manifold. A map f : X → N is called sub-analytic if its graph Graph(f ) = {(x, y) ∈ X × N | y = f (x)} is sub-analytic in M × N . Proposition 1.28. Let f : X → N be a sub-analytic map. Then: 8 (i) If A be a relatively compact sub-analytic subset of M , then f (A) is sub-analytic. (ii) If B be a relatively compact sub-analytic subset of N , f −1 (B) is sub-analytic. Theorem 1.29. (Theorem of the complement, [2, Theorem 3.10]) Let X be a subanalytic subset of M . Then M \ X is sub-analytic. Remark 1.30. The versions of the Cell decomposition, Cure selection Lemma and Lojasiewicz inequalities still hold in the sub-analytic context which can be found in [2]. 1.2.3 Triangulation We first recall some definitions concerning simplicial complexes. Let a0 , . . . , ak be k + 1 points of Rn which are affine independent (i.e. the affine span of a0 , . . . , ak has dimension k). The k−simplex with vertices a0 , . . . , ak is k k n (a0 , . . . , ak ) := {x ∈ R | x = t i ai , t0 , . . . , tk > 0, i=0 ti = 1}. i=0 The closure of (a0 , . . . , ak ) in Rn is denoted by [a0 , . . . , ak ], so that k n [a0 , . . . , ak ] := {x ∈ R | x = k ti ai , i=0 t0 , . . . , tk ≥ 0, ti = 1}. i=0 We call a0 , . . . , ak the vertices of (a0 , . . . , ak ) and also of [a0 , . . . , ak ]. A face of the simplex σ = (a0 , . . . , ak ) is a simplex spanned by a non-empty subset of {a0 , . . . , ak }. A finite simplicial complex in Rn is a finite K = {σ1 , . . . , σp } of simplices σi ⊂ Rn such that, for every σi , σj ∈ K, either the intersection σi ∩ σj is a common face of σi and σj , ¯ ¯ ¯ ¯ or σi ∩ σj = ∅. ¯ ¯ We set |K| := ∪σi ∈K σi ; which is a semi-algebraic subset of Rn . A polyhedron in Rn is a subset P of Rn , such that there exists a finite simplicial complex K in Rn with P = |K|. For a sub-analytic set X ⊂ Rm , a sub-analytic triangulation of X is a pair (K, h), where K is a simplicial complex with |K| closed in Rn , and h : |K| → X is a sub-analytic homeomorphism such that for each simplex σ in K, h|σ is a C r -diffeomorphism onto the image. A sub-analytic triangulation of a a sub-analytic function on X is a sub-analytic triangulation (K, h) of X such that for each simplex σ in K, f ◦ h|σ is linear. 9
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất