Tài liệu 182 câu trắc nghiêm giới hạn toán lớp 11

  • Số trang: 32 |
  • Loại file: PDF |
  • Lượt xem: 14090 |
  • Lượt tải: 3
namdoan194617

Tham gia: 07/10/2016

Mô tả:

Chương IV: Giới hạn Câu 1: TĐ1115NCB: Với k là số nguyên dương. Kết quả của giới hạn lim x k là: x →+∞ A. B. C. 0 D. x PA: A 1 (với k nguyên dương) là: x →−∞ x k Câu 2: TĐ1115NCB: Kết quả của giới hạn lim A. B. C. 0 D. x PA: C Câu 3: TĐ1115NCB: Khẳng định nào sau đây là đúng? A. lim f ( x) + g (= x) lim f ( x) + lim g ( x) x → xo x → xo x → xo B. lim f ( x) + g ( x= ) lim f ( x) + lim g ( x) x → xo x → xo x → xo C. lim f ( x) + g ( x= ) lim [f ( x) + g ( x)] x → xo x → xo D. lim f ( x) + g ( = x) x → xo lim [f ( x) + g ( x)] x → xo PA: D Câu 4: TĐ1115NCB: Khẳng định nào sau đây là đúng? A. lim 3 f ( x) + g= ( x) lim [ 3 f ( x) + 3 f ( x)] x → xo x → xo B. lim 3 C. lim 3 D. lim 3 x → xo x → xo x → xo f ( x) + g= ( x) 3 f ( x) + g= ( x) 3 lim f ( x) + 3 lim g ( x) x → xo x → xo lim [f ( x) + g ( x)] x → xo ( x) lim f ( x) + g= x → xo 3 f ( x) + lim 3 g ( x) x → xo PA: C Câu 5: TĐ1115NCB: Trong các giới hạn sau, giới hạn nào không tồn tại: x +1 A. lim x →1 x−2 x +1 B. lim x →1 2− x x +1 C. lim x →−1 − x + 2 x +1 D. lim x →−1 2 + x PA: A x +1 Câu 6: TĐ1115NCH: Tính lim : x →1 x − 2 1 A. 1 B. -2 −1 C. 2 3 D. 2 PA: B Câu 7: TĐ1115NCH: Tính lim x →1 2x +1 : x2 − 2 A. -2 B. 2 C. -3 D. -1 PA: C Câu 8: TĐ1115NCH: Tính lim x →− 2 x+ 2 : x2 − 2 A. 1 −1 2 2 C. 2 D. PA: B B. Câu 9: TĐ1115NCH: Tính lim x →1 x −1 : x2 −1 A. 2 B. 1 −1 C. 2 1 D. 2 PA: D Câu 10: TĐ1115NCH: Giới hạn nào dưới đây có kết quả bằng 3? 3x A. lim x →1 x − 2 −3 x B. lim x →1 2 − x −3 x C. lim x →1 x − 2 D. Cả ba hàm số trên PA: C Câu 11: TĐ1115NCH: Giới hạn của hàm số nào dưới đây có kết quả bằng 1? x 2 + 3x + 2 A. lim x →−1 x +1 2 x 2 + 3x + 2 x →−1 x −1 2 x + 3x + 2 C. lim x →−1 1− x 2 x + 4x + 3 D. lim x →−1 x +1 PA: A Câu 12: TĐ1115NCH: Giới hạn nào sau đây tồn tại? A. lim sin 2 x B. lim x →+∞ B. lim cos 3 x x →+∞ 1 x →0 2x 1 D. lim sin x →1 2x PA: D Câu 13: TĐ1115NCH: Cho đó ta có: A. lim f ( x) = 0 C. lim sin xác định trên khoảng nào đó chứa điểm 0 và . Khi x →0 B. lim f ( x) = 1 x →0 C. lim f ( x) = −1 x →0 D. Hàm số không có giới hạn tại 0 PA: A 1 Câu 14: TĐ1115NCV: Tính lim x cos : x →0 x A. 1 B. 2 C. 0 D. -1 PA: C Câu 15: TĐ1115NCV: Tính lim x3 + 7 x : x →−1 A. -8 B. 8 C. 6 D. -6 PA: B Câu 16: TĐ1115NCV: Tính lim x→2 x 4 + 3x − 1 2x2 −1 A. B. C. 1 3 3 −1 3 PA: A D. Câu 17: TĐ1115NCV: Tính lim 3 x 3 + 7 x x →−1 A. 2 B. -2 C. 1 D. -1 PA: B x − x3 : x →1 (2 x − 1)( x 4 − 3) Câu 18: TĐ1115NCV: Tính lim A. 0 B. 1 C. 2 D. 3 PA: A  1 Câu 19: TĐ1115NCV: Tính lim x 1 −  : x →0  x A. 2 B. 1 C. -1 D. -2 PA: C 3x 2 − x + 7 Câu 20: TĐ1115NCV: Tính lim : x →−∞ 2 x3 − 1 A. 3 B. 2 C. 1 D. 0 PA: D 2x +1 : Câu 21:TĐ1115NCV: Tính lim x 3 x →+∞ 3x + x 2 + 2 6 A. 3 − 6 B. 3 C. 3 D. 2 PA: A Câu 22: TĐ1115NCV: Tính lim x →−∞ A. 2x + 3 2x2 − 3 : 1 2 4 B. −1 2 C. D. PA: D Câu 23: TĐ1115NCV: Tính lim x →+∞ x x : x −x+2 2 A. 0 B. 1 C. 2 D. 3 PA: A Câu 24: TĐ1116NCB: Hàm nào trong các hàm sau không có giới hạn tại điểm A. 1 B. f ( x) = x 1 C. f ( x) = x D. f ( x) = : 1 x −1 PA: B Câu 25: TĐ1116NCB: Hàm nào trong các hàm sau có giới hạn tại điểm 1 A. f ( x) = x−2 : 1 x−2 1 C. f ( x) = 2− x 1 D. f ( x) = x−2 PA: A Câu 26: TĐ1116NCB: Cho hàm số . Khẳng định nào sau đây là sai: A. Hàm số có giới hạn trái và phải tại điểm bằng nhau B. Hàm số có giới hạn trái và phải tại mọi điểm bằng nhau C. Hàm số có giới hạn tại mọi điểm D. Cả ba khẳng định trên là sai PA: D 1 Câu 27: TĐ1116NCB: Cho hàm số f ( x) = . Khẳng định nào sau đây là đúng: 2− x A. Hàm số chỉ có giới hạn phải tại điểm B. Hàm số có giới hạn trái và giới hạn phải bằng nhau C. Hàm số có giới hạn tại điểm D. Hàm số chỉ có giới hạn trái tại điểm PA: D B. f ( x) = 5 Câu 28: TĐ1116NCB: Cho hàm số f ( x) = 1 . Khẳng định nào sau đây là sai: x −1 A. Hàm số có giới hạn trái tại điểm B. Hàm số có giới hạn phải tại điểm C. Hàm số có giới hạn tại điểm D. Hàm số không có giới hạn tại điểm PA: D 3x + 1 Câu 29: TĐ1116NCH: Tính lim+ : x →1 x − 1 A. B. C. 0 D. 2 PA: A 3x + 1 Câu 30: TĐ1116NCH: Tính lim− : x →1 x − 1 A. B. C. 0 D. 2 PA: B x−2 Câu 31: TĐ1116NCH: Tính lim− : x→2 x − 2 A. -2 B. 2 C. -1 D. 1 PA: C 4 − x2 : Câu 32: TĐ1116NCH: Tính lim− x→2 2− x A. 3 B. 2 C. 1 D. 0 PA: D 1− x + x −1 Câu 33: TĐ1116NCH: Tính lim− : x →1 x 2 − x3 A. -1 B. 1 C. 2 D. -2 PA: B Câu 34: TĐ1116NCH: Tính lim x →+∞ 3 2 x5 + x3 − 1 : (2 x 2 − 1)( x 3 + x) A. 1 6 B. 2 C. 3 D. 4 PA: A Câu 35: TĐ1116NCH: Tính lim x →−∞ 2 x +3 x2 + x + 5 : A. 1 B. -1 C. 2 D. -2 PA: C Câu 36: TĐ1116NCH: Tính lim x →−∞ x2 − x + 2 x : 2x + 3 1 2 3 B. 2 −1 C. 2 −3 D. 2 PA: A A. (2 x − 1) x 2 − 3 x →−∞ x − 5x2 Câu 37: TĐ1116NCV: Tìm giới hạn lim −2 5 1 B. 5 2 C. 5 −1 D. 5 PA: C A. Câu 38: TĐ1116NCV: Tìm giới hạn lim x →+∞ x4 + x2 + 2 ( x 3 + 1)(3 x − 1) A. − 3 B. 3 − 3 3 3 D. 3 PA: D C. 7 2x − 3 Câu 39: TĐ1116NCV: Tìm lim x2 −1 − x x →−∞ A. -1 B. 1 C. D. PA: A x2 − 4 Câu 40: TĐ1116NCV: Tìm lim− ( x 2 + 1)(2 − x) x→2 A. -1 B. 0 C. D. PA: B Câu 41: TĐ1116NCV: Xác định lim − x →( −1) x 2 + 3x + 2 x +1 A. -1 B. C. 1 D. PA: A Câu 42: TĐ1116NCV: Xác định lim+ x →1 x3 − 1 x2 −1 A. 0 B. 3 C. 1 D. PA: A x2 − 5x + 2 x →−∞ 2 x +1 Câu 43: TĐ1116NCV: Tính lim A. 0 B. 3 C. D. PA: C Câu 44: TĐ1116NCV: Tính lim + x →( −2) 8 + 2x − 2 x+2 A. 3 B. 2 C. 1 D. 0 PA: D Câu 45: TĐ1116NCV: Tính lim ( x 2 + x − 4 + x 2 ) x →−∞ 8 1 2 −1 B. 2 C. 2 D. −2 PA: B A. Câu 46: TĐ1116NCV: Tính lim+ x→2 3 x+4 x−2 4− x A. B. C. D. PA: B Câu 47: TĐ1117NCB: Giới hạn lim+ = ( x − 3) x →3 x +1 thuộc dạng nào? x2 − 9 A. Dạng 0.∞ B. Dạng ∞ - ∞ 0 C. Dạng 0 D. Không phải dạng vô định. PA: A Câu 48: TĐ1117NCB: Trong các giới hạn sau, giới hạn nào là giới hạn dạng vô định: 1 A. lim x → +∞ 2 x x − 2x − 1 B. lim 2 x →1 x − 12 x + 11 x2 − x − 2 C. lim 3 x → −1 x + x 2 D. lim ( x 3 + 4 x − 7) x → −1 PA: B Câu 49: TĐ1116NCB: Trong các giới hạn sau, giới hạn nào không phải là giới hạn vô định: x3 + 1 −1 x →0 x2 + x x3 − 8 B. lim 2 x→2 x − 4 x 6 − 3x C. lim x → +∞ 2 x 2 + 1 x −2 D. lim 2 x→4 x − 4 x PA: B A. lim 9 x 2 − 3x − 4 thuộc dạng nào ? x → −1 x +1 Câu 50: TĐ1117NCB: Trong các giới hạn sau, giới hạn lim A. Dạng 0.∞ B. Dạng ∞ - ∞ 0 C. Dạng 0 D. Không phải dạng vô định. PA: D Câu 51: TĐ1117NCB: Trong các giới hạn sau, giới hạn nào là giới hạn dạng vô định: x2 + x − x A. lim+ x →0 x2 x2 + x − 2 B. lim− x→2 x−2 2 x 3 − 5x + 2 C. lim x → −∞ x 2 − x + 1 2x − 2 D. lim x → −1 x + 1 PA: A Câu 52: TĐ1117NCH: Trong các mệnh đề sau, mệnh đề nào đúng : x4 − x =1 A. lim x → −∞ 1 − 2 x B. lim x4 − x = −∞ 1 − 2x C. lim x4 − x =0 1 − 2x D. lim x4 − x = +∞ 1 − 2x x → −∞ x → −∞ x → −∞ PA: D Câu 53: TĐ1117NCH: Trong các phương pháp tìm giới hạn lim x →1 x − 2x − 1 dưới đây, phương x 2 − 12 x + 11 pháp nào là phương pháp thích hợp? A. Nhân phân thức với biểu thức liên hợp của tử là x + 2 x − 1 . B. Chia tử và mẫu cho x 2 C. Áp dụng định nghĩa với x → 1 D. Chia tử và mẫu cho x PA: A Câu 54: TĐ1117NCH: Trong những dạng giới hạn dưới đây dạng nào không phải là dạng vô định: 0 A. 0 f ( x) B. với g(x) ≠ 0 g ( x) 10 ∞ ∞ D. ∞ − ∞ PA: B Câu 55: TĐ1117NCH: Phương pháp nào sau đây thường được sử dụng để khử dạng giới hạn vô định của phân thức: A. Phân tích tử và mẫu thành nhân tử rồi rút gọn. B. Nhân biểu thức liên hợp. C. Chia cả tử và mẫu cho biến số có bậc thấp nhất. D. Sử dụng định nghĩa. PA: B. x 2 − 3x − 4 Câu 56: TĐ1117NCH: Trong các phương pháp tìm giới hạn lim dưới đây, phương x → −1 2x + 2 pháp nào là phương pháp thích hợp? A. Nhân phân thức với biểu thức liên hợp của mẫu là (2x -2 ) . B. Chia tử và mẫu cho x 2 C. Phân tích nhân tử ở tử số rồi rút gọn D. Chia tử và mẫu cho x PA: C. Câu 57: TĐ1117NCH: Trong các phương pháp tìm giới hạn lim ( 1 + x − x ) dưới đây, C. x → +∞ phương pháp nào là phương pháp thích hợp? A. Nhân với biểu thức liên hợp ( 1 + x − x ) . B. Chia cho x 2 C. Phân tích nhân tử rồi rút gọn D. Sử dụng định nghĩa với x → +∞ PA: A 2x + 3 dưới đây, phương pháp x → +∞ 5 − x Câu 58: TĐ1117NCH: Trong các phương pháp tìm giới hạn lim nào là phương pháp thích hợp? A. Chia tử và mẫu cho x . B. Chia tử và mẫu cho x 2 C. Phân tích nhân tử rồi rút gọn D. Sử dụng định nghĩa với x → +∞ PA: A Câu 59: TĐ1117NCH: Giới hạn lim+ x →0 A. Dạng 0.∞ B. Dạng ∞ - ∞ 0 C. Dạng 0 D. Không phải dạng vô định. PA: C. x2 + x − x thuộc dạng nào? x2 1 1  Câu 60: TĐ1117NCV: Tính giới hạn lim − 2  x →0 x x   11 A. 4 B. + ∞ C. 6 D. -∞ PA: D Câu 61: TĐ1117NCV: Trong các giới hạn sau, giới hạn nào là 0? x −1 A. lim 3 x →1 x − 1 2x + 5 B. lim x → −2 x + 10 x2 −1 C. lim 2 x →1 x − 3 x + 2 D. lim ( x 2 + 1 − x) x → +∞ PA: D Câu 62: TĐ1117NCV: Giới hạn lim x →1 1− x + x −1 x2 − x3 bằng bao nhiêu? 3 4 1 B. 4 1 C. 2 D. 1 PA: D A. Câu 63: TĐ1117NCV: Giới hạn lim x → +∞ x 2 − x − x bằng bao nhiêu? A. 0 1 B. 2 C. 1 2 D. 3 PA: B x2 + x bằng bao nhiêu? x → −1 x 2 + 3 x + 2 Câu 64: TĐ1117NCV: Giới hạn lim A. 0 B.-1 C. 2 2 D. 3 PA: B. x 2 + 3x − 4 bằng bao nhiêu? x → −4 x 2 + 4x Câu 65: TĐ1117NCV: Giới hạn lim A. 0 12 B.-1 C. 1 5 D. 4 PA: D Câu 66: TĐ1117NCV: Giới hạn lim x →1 x 2 − 3x + 2 bằng bao nhiêu? x3 − x2 + x −1 A. -2 B.-1 1 C. 2 1 D. 2 PA: C Câu 67: TĐ1117NCV: Giới hạn lim x → +∞ x −1 x2 −1 bằng bao nhiêu? A. 1 B.-1 C. 0 D. + ∞ PA: A Câu 68: TĐ1117NCV: Giới hạn lim x → −∞ x + x2 + x x + 10 bằng bao nhiêu? A. 2 B.-2 C. - ∞ D. + ∞ PA: B Câu 69: TĐ1117NCV: Giới hạn lim− x →1 1− x 2 1− x +1− x bằng bao nhiêu? A. 1 B. -1 1 C. 2 1 D. 2 PA: D. Câu 70: TĐ1118NCB: Khẳng định nào sau đây là đúng: A. Hàm số có giới hạn tại điểm thì liên tục tại . B. Hàm số có giới hạn trái tại điểm thì liên tục tại . C. Hàm số có giới hạn phải tại điểm thì liên tục tại . D. Hàm số có giới hạn trái và phải tại điểm thì liên tục tại . PA: A Câu 71: TĐ1118NCB: Cho một hàm số . Khẳng định nào sau đây là đúng: 13 A. Nếu thì hàm số liên tục trên . B. Nếu hàm số liên tục trên thì . C. Nếu hàm số liên tục trên và thì phương trình có nghiệm. D. Cả ba khẳng định trên đều sai. PA: C Câu 72: TĐ1118NCB: Cho một hàm số . Khẳng định nào sau đây là đúng: A. Nếu liên tục trên đoạn thì phương trình không có nghiệm trên khoảng . B. Nếu thì phương trình có ít nhất một nghiệm trong khoảng . C. Nếu phương trình có nghiệm trong khoảng thì hàm số phải liên tục trên khoảng D. Nếu hàm số liên tục, tăng trên đoạn và thì phương trình không có ngiệm trong khoảng . PA: D Câu 73: TĐ1118NCB: Cho phương trình . Khẳng định nào đúng: . A. Phương trình không có nghiệm trong khoảng B. Phương trình không có nghiệm trong khoảng . C. Phương trình chỉ có một nghiệm trong khoảng . . D. Phương trình có ít nhất nghiệm trong khoảng PA: D Câu 74: TĐ1118NCB: Khẳng định nào đúng: x +1 A. Hàm số f ( x) = liên tục trên . x2 + 1 x +1 B. Hàm số f ( x) = liên tục trên . x −1 x +1 liên tục trên . C. Hàm số f ( x) = x −1 x +1 D. Hàm số f ( x) = liên tục trên . x −1 PA: A Câu 75: TĐ1118NCH: Cho hàm số . Khẳng định nào đúng: A. Hàm số liên tục tại mọi điểm trừ các điểm thuộc đoạn B. Hàm số liên tục tại mọi điểm thuộc . C. Hàm số liên tục tại mọi điểm trừ điểm . D. Hàm số liên tục tại mọi điểm trừ điểm . PA: B Câu 76: TĐ1118NCH: Cho hàm số A. Hàm số không liên tục trên . B. Hàm số liên tục tại mọi điểm thuộc . C. Hàm số liên tục tại mọi điểm trừ điểm D. Hàm số chỉ liên tục tại điểm . PA: B . . Khẳng định nào đúng: . 14 Câu 77: TĐ1118NCH: Cho hàm số A. Hàm số chỉ liên tục tại điểm B. Hàm số chỉ liên tục trái tại C. Hàm số chỉ liên tục phải tại D. Hàm số liên tục tại điểm PA: D . Khẳng định nào đúng: . . . . Câu 78: TĐ1118NCH: Cho hàm số . Khẳng định nào sai: . A. Hàm số liên tục phải tại điểm B. Hàm số liên tục trái tại điểm . C. Hàm số liên tục tại mọi điểm thuộc . D. Hàm số gián đoạn tại điểm . PA: C Câu 79: TĐ1118NCH: Trong các hàm sau, hàm nào không liên tục trên khoảng A. 1 B. f ( x) = 1 − x2 C. D. PA: D : Câu 80: TĐ1118NCH: Hàm số nào sau đây không liên tục tại 2 x + x +1 A. f ( x) = x −1 2 x + x +1 B. f ( x) = x 2 x +x C. f ( x) = x 2 x +x D. f ( x) = x −1 PA: B Câu 81: TĐ1118NCH: Hàm số nào sau đây liên tục tại : 2 x + x +1 A. f ( x) = x −1 2 x + x +1 B. f ( x) = x 2 x −x−2 C. f ( x) = x2 −1 x +1 D. f ( x) = x −1 PA: B Câu 82: TĐ1118NCH: Cho hàm số : . Khẳng định nào sai: 15 A. Hàm số liên tục phải tại điểm . B. Hàm số liên tục trái tại điểm . C. Hàm số liên tục tại mọi điểm thuộc . D. Hàm số gián đoạn tại điểm . PA: C Câu 83: TĐ1118NCV: Hàm số liên tục trên nếu bằng: A. 1 B. -1 C. -2 D. 2 PA: B Câu 84: TĐ1118NCV: Cho hàm số . Khẳng định nào sai: A. Hàm số gián đoạn tại điểm B. Hàm số liên tục trên khoảng C. Hàm số liên tục trên khoảng D. Hàm số liên tục trên . PA: A . . . Câu 85: TĐ1118NCV: Cho hàm số A. Hàm số gián đoạn tại điểm B. Hàm số liên tục trên khoảng C. Hàm số liên tục trên khoảng D. Hàm số liên tục trên . PA: D Câu 86: TĐ1118NCV: Hàm số . Khẳng định nào sai: . . . liên tục trên nếu bằng: ±1 2 1 B. 2 −1 C. 2 D. Đáp án khác PA: A A. Câu 87: TĐ1118NCV: Hàm số liên tục trên nếu bằng: A. 1 B. 2 C. 3 D. 4 PA: C 16 Câu 88: TĐ1118NCV: Cho hàm số A. Hàm số liên tục trên B. Hàm số liên tục trên C. Hàm số liên tục trên D. Hàm số liên tục trên PA: C . Khẳng định nào đúng: . . . . Câu 89: TĐ1118NCV: Cho hàm số A. Hàm số liên tục trên B. Hàm số liên tục trên . C. Hàm số liên tục trên D. Hàm số liên tục trên PA: B . Khẳng định nào đúng: . . . Câu 90: TĐ1118NCV: Hàm số liên tục trên nếu: A. B. C. D. PA: A Câu 91: TĐ1118NCV: Hàm số liên tục trên nếu bằng: A. 6 B. -6 −1 C. 6 1 D. 6 PA: C Câu 92: TĐ1118NCV: Hàm số liên tục trên nếu bằng: A. 0 B. 3 C. -1 D. 7 PA: A 17 Chương V: Đạo hàm Câu 93: TĐ1119NCB: Số gia của hàm số A. 19 B. -7 C. 7 D. 0 PA: A Câu 94: TĐ1119NCB: Số gia của hàm số A. B. C. D. PA: C , ứng với: Câu 95: TĐ1119NCB: Số gia của hàm số ứng với số gia theo và và là: là: của đối số tại là: A. B. C. D. PA: B Câu 96: TĐ1119NCH: Tỉ số của hàm số theo x và là: A. 2 B. 2 C. D. − PA: A tại là: Câu 97: TĐ1119NCH: Đạo hàm của hàm số A. 0 B. 2 C. 1 D. 3 PA: D Câu 98: TĐ1119NCH: Hệ số góc của tiếp tuyến với đồ thị hàm số là: A. 12 B. -12 C. 192 D. -192 PA: B Câu 99: TĐ1119NCH: Một chất điểm chuyển động có phương trình tính bằng mét). Vận tốc của chất điểm tại thời điểm (giây) bằng: A. B. C. D. tại điểm M(-2; 8) (t tính bằng giây, s 18 PA: C trên khoảng là: Câu 100: TĐ1119NCH: Đạo hàm của hàm số A. B. C. D. PA: A Câu 101: TĐ1119NCH: Phương trình tiếp tuyến của Parabol tại điểm M(1; 1) là: A. B. C. D. PA: B Câu 102: TĐ1119NCH: Điện lượng truyền trong dây dẫn có phương trình thì cường độ dòng điện tức thời tại điểm bằng: A. 15(A) B. 8(A) C. 3(A) D. 5(A) PA: D Câu 103: TĐ1119NCH: Chọn mệnh đề đúng trong các mệnh đề sau: có đạo hàm tại mọi điểm mà nó xác định A. Hàm số có đạo hàm tại mọi điểm mà nó xác định B. Hàm số C. Hàm số có đạo hàm tại mọi điểm mà nó xác định có đạo hàm tại mọi điểm mà nó xác định D. Hàm số PA: A Câu 104: TĐ1119NCH: Đạo hàm của hàm số bằng: A. 5 B. -5 C. 0 D. Không có đạo hàm PA: C , Câu 105: TĐ1119NCV: Một vật rơi tự do có phương trình chuyển động và t tính bằng s. Vận tốc tại thời điểm bằng: A. B. C. D. PA: A Câu 106: TĐ1119NCV: Tiếp tuyến của đồ thị hàm số phương trình là: A. B. C. D. tại điểm có hoành độ có 19 PA: B Câu 107: TĐ1119NCV: Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung là: A. B. C. D. PA: D Câu 108: TĐ1119NCV: Phương trình tiếp tuyến của đồ thị hàm số có hệ số góc của tiếp tuyến bằng 3 là: A. và B. và C. và D. và PA: D có tung độ Câu 109: TĐ1119NCV: Phương trình tiếp tuyến của đồ thị hàm số của tiếp điểm bằng 2 là: A. và B. và C. và D. và PA: A Câu 110: TĐ1119NCV: Cho hàm số có tiếp tuyến song song với trục hoành. Phương trình tiếp tuyến đó là: A. B. C. D. PA: A Câu 111: TĐ1119NCV: Biết tiếp tuyến của Parabol vuông góc với đường thẳng . Phương trình tiếp tuyến đó là: A. B. C. D. PA: A Câu 112: TĐ1119NCV: Giải phương trình biết . A. B. C. D. PA: C Câu 113: TĐ1119NCV: Vi phân của hàm số là: A. B. C. D. 20
- Xem thêm -