Đăng ký Đăng nhập
Trang chủ Xây dựng phương pháp xác định hằng số cân bằng của axit ba chức bằng phương pháp...

Tài liệu Xây dựng phương pháp xác định hằng số cân bằng của axit ba chức bằng phương pháp chuẩn độ hỗn hợp

.PDF
103
292
99

Mô tả:

LỜI CẢM ƠN Luận văn được hoàn thành tại Bộ môn Hóa Phân tích - Khoa Hóa học Trường Đại học Sư phạm Hà Nội. Bằng tấm lòng trân trọng, em xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Đào Thị Phương Diệp và NCS Trần Thế Ngà đã tận tình hướng dẫn em trong suốt quá trình thực hiện và hoàn thành luận văn. Em xin trân trọng cảm ơn Ban chủ nhiệm khoa Hoá học và các thầy cô trong tổ bộ môn Hoá học phân tích – Trường Đại học Sư phạm Hà Nội đã giúp đỡ và tạo mọi điều kiện thuận lợi cho em trong suốt quá trình làm thực hiện và hoàn thành khóa luận. Em xin trân trọng cảm ơn! Hà Nội, ngày tháng năm 2017 Học viên Nguyễn Thị Trang LỜI CAM ĐOAN Tôi xin cam đoan bản luận văn này là kết quả nghiên cứu của cá nhân tôi. Các số liệu và tài liệu được trích dẫn trong luận án là trung thực. Kết quả nghiên cứu này không trùng với bất cứ công trình nào đã được công bố trước đó. Tôi xin chịu trách nhiệm với lời cam đoan của mình. Hà Nội, tháng 6 năm 2017 Tác giả luận văn Nguyễn Thị Trang DANH MỤC CÁC TỪ VIẾT TẮT BPTT : Bình phương tối thiểu. CE : Điện di mao quản. ĐKP : Điều kiện proton. ĐTĐ : Điểm tương đương. HSCB : Hằng số cân bằng. HSPL : Hằng số phân li. LC : Sắc ký lỏng. I : Lực ion. h : Hoạt độ của ion H+. pH : Giá trị pH của dung dịch. UV-Vis : Tử ngoại khả kiến. DD : Dung dịch. [i] : Nồng độ cân bằng của cấu tử i. ĐH : Phương pháp đơn hình. DANH MỤC BẢNG BIỂU, SƠ ĐỒ, BIỂU ĐỒ Trang Bảng 1.1: Giá trị Q α,n ứng với độ tin cậy α  0,95 .............................................. 61 Bảng 1.2: Sai số trong các phép đo gián tiếp ...................................................... 62 Bảng 3.1: Kết quả xác định thể tích dung dịch NaOH (I) ................................... 62 Bảng 3.2: Kết quả chuẩn hóa dung dịch NaOH (II) ............................................ 62 Bảng 3.3: Kết quả chuẩn hóa dung dịch HCl (I) ................................................. 63 Bảng 3.4: Kết quả chuẩn độ điện thế đo pH của 10 dung dịch H3A bằng dung dịch NaOH ................................................................................................................... 64 Bảng 3.5: Kết quả chuẩn độ dung dịch HCl và hỗn hợp HCl và H3A trong phép chuẩn độ hỗn hợp với I ~ 1,0 ............................................................................... 64 Bảng 3.6: Kết quả chuẩn độ dung dịch HCl và hỗn hợp HCl và H3A trong phép chuẩn độ hỗn hợp với I ~ 0,5 ............................................................................... 64 Bảng 3.7: Kết quả tính nồng độ của các dung dịch axit citric nghiên cứu .......... 65 Bảng 3.8: Kết quả tính toán các đại lượng Q, Y, X1, X2, X3 trong phép chuẩn độ dung dịch 1 với Q = 0,2 – 0,8 .............................................................................. 66 Bảng 3.9: Kết quả tính toán các đại lượng Q, Y, X1, X2, X3 trong phép chuẩn độ dung dịch 1 với Q = 1,2 – 1,8 .............................................................................. 66 Bảng 3.10: Kết quả tính toán các đại lượng Q, Y, X1, X2, X3 trong phép chuẩn độ dung dịch 1 với Q = 2,2 – 2,8 .............................................................................. 66 Bảng 3.11: Bảng tổng hợp kết quả tính toán phép chuẩn độ 10 dung dịch ........ 67 Bảng 3.12: Kết quả xác định các giá trị pKa1, pKa2, pKa3 của axit citric theo phương pháp chuẩn độ riêng rẽ ........................................................................... 61 Bảng 3.13: Kết quả tính toán phép chuẩn độ hỗn hợp với I ~ 1,0 khi Q = 0,2 – 0,8 .............................................................................................................................. 62 Bảng 3.14: Kết quả tính toán phép chuẩn độ hỗn hợp với I ~ 1,0 khi Q = 1,2 – 1,8 .............................................................................................................................. 62 Bảng 3.15: Kết quả tính toán phép chuẩn độ hỗn hợp với I ~ 1,0 khi Q = 2,2 – 2,8 .............................................................................................................................. 62 Bảng 3.16: Kết quả tính toán phép chuẩn độ hỗn hợp với I ~ 0,5 khi Q = 1,2 – 1,8 .............................................................................................................................. 63 Bảng 3.17: Kết quả tính toán phép chuẩn độ hỗn hợp với I ~ 0,5 khi Q = 2,2 – 2,8 .............................................................................................................................. 64 Bảng 3.18: Bảng tổng hợp kết quả tính toán phép chuẩn độ hỗn hợp ................ 64 Hình 3.1: Đường cong chuẩn độ 10 dung dịch axit citric có nồng độ khác nhau 64 MỤC LỤC Trang Mở đầu ....................................................................................................................... 1 I. Đặt vấn đề ............................................................................................................... 1 II. Nhiệm vụ nghiên cứu ............................................................................................. 3 III. Phương pháp nghiên cứu....................................................................................... 4 IV. Những đóng góp mới của đề tài ........................................................................... 4 Chương I: Tổng quan ............................................................................................... 5 I.1. Tình hình nghiên cứu trong và ngoài nước .......................................................... 5 I.1.1. Tình hình nghiên cứu ở Việt Nam .................................................................... 5 I.1.2. Tình hình nghiên cứu trên thế giới .................................................................... 5 I.2. Các phương pháp xác định hằng số phân li axit – bazơ ....................................... 6 I.2.1. Các phương pháp tính toán lý thuyết ................................................................. 7 I.2.1.1. Tính hằng số phân li nồng độ K ca sau đó ngoại suy về lực ion I = 0 để đánh giá hằng số phân nhiệt động Ka ................................................................................... 8 I.2.1.2. Phương pháp Kamar đánh giá hằng số phân li axit ....................................... 8 I.2.2. Các phương pháp thực nghiệm .......................................................................... 9 I.2.2.1. Phương pháp đo quang ................................................................................. 12 I.2.2.2. Phương pháp chuẩn độ NMR ....................................................................... 12 I.2.2.3. Phương pháp sắc kí lỏng hiệu năng cao ....................................................... 12 I.2.2.4. Phương pháp điện di mao quản .................................................................... 14 I.2.2.5. Phương pháp đo độ dẫn điện ........................................................................ 18 I.2.2.6. Phương pháp chuẩn độ điện thế .................................................................... 18 I.3. Cơ sở lý thuyết của phương pháp chuẩn độ điện thế .......................................... 18 I.3.1. Nguyên tắc của chuẩn độ điện thế .................................................................. 19 I.3.2. Các yếu tố ảnh hưởng đến quá trình chuẩn độ điện thế................................... 19 I.3.2.1. Ảnh hưởng của CO2 trong khí quyển .......................................................... 19 I.3.2.2. Ảnh hưởng của lực ion và môi trường ion.................................................... 21 I.3.2.3. Ảnh hưởng của ion M+ đến điện cực thủy tinh ............................................ 21 I.3.2.4. Sai số axit và sai số kiềm .............................................................................. 21 I.4. Hoạt độ và hệ số hoạt độ .................................................................................... 21 I.4.1. Hoạt độ và hệ số hoạt độ ................................................................................. 21 I.4.2. Các phương trình kinh nghiệm đánh giá hệ số hoạt độ của ion ..................... 21 I.5. Xử lý số liệu thực nghiệm .................................................................................. 21 I.5.1. Nguyên lý bình phương tối thiểu ..................................................................... 21 I.5.2. Ứng dụng hàm Linest ...................................................................................... 21 I.5.3. Đánh gá sai số thực nghiệm ............................................................................. 21 Chương II: Thực nghiệm ....................................................................................... 23 II.1. Dụng cụ và hóa chất ........................................................................................... 23 II.1.1. Dụng cụ .......................................................................................................... 23 II.1.2. Hóa chất ......................................................................................................... 23 II.2. Pha chế các dung dịch ...................................................................................... 25 II.3. Chuẩn độ . .......................................................................................................... 26 II.3.1. Chuẩn độ thể tích và chuản độ điện thế xác định nồng độ NaOH ................. 30 II.3.2. Chuẩn hóa dung dịch HCl gốc ....................................................................... 36 II.3.3. Chuẩn độ dung dịch axit citric ...................................................................... 36 Chương III: Kết quả và thảo luận ......................................................................... 57 III.1. Kết quả chuẩn hóa và chuẩn độ điện thế các dung dịch ................................. 57 III.1.1. Kết quả chuẩn hóa các dung dịch.................................................................. 57 III.1.2. Kết quả chuẩn độ điện thế 10 dung dịch axit citric riêng rẽ ........................ 57 III.1. 3. Kết quả chuẩn độ điện thế dung dịch HCl và hỗn hợp HCl và H3A............ 57 III.2. Xây dựng phương trình tính và thuật toán tính HSPL axit của axit ba chức H3A ............................................................................................................................ 58 III.2.1. Chuẩn độ điện thế từng dung dịch riêng rẽ ................................................... 58 III.2.2. Chuẩn độ điện thế dung dịch axit mạnh và hỗn hợp axit mạnh và axit ba chức ........................................................................................................................... 58 III.3. Xác định hằng số phân li của axit citric ........................................................... 58 III.3.1. Xác định hằng số phân li của axit citric theo phương pháp chuẩn độ riêng rẽ ................................................................................................................................... 58 III.3.2. Xác định hằng số phân li của axit citric từ kết quả chuẩn độ dung dịch HCl Kết luận ................................................................................................................... 69 Tài liệu tham khảo .................................................................................................. 70 Phụ lục: Kết quả tính các giá trị Q, Y, X1, X2, X3 của các dung dịch 2 – 10 trong phép chuẩn độ riêng rẽ Luận văn Thạc sĩ MỞ ĐẦU I. ĐẶT VẤN ĐỀ Trong lĩnh vực nghiên cứu cân bằng ion, cân bằng axít – bazơ chiếm vị trí quan trọng vì hầu hết các quá trình xảy ra trong dung dịch đều liên quan đến đặc tính axít – bazơ của các chất. Để đánh giá chính xác thành phần cân bằng của các hệ axít – bazơ thì cần phải biết chính xác hằng số cân bằng (HSPL) axit – bazơ. Chính vì vậy cần thiết phải xây dựng và lựa chọn được phương pháp hợp lý, hiệu quả, không tốn nhiều công sức và thời gian mà vẫn có thể xác định được chính xác các giá trị HSPL của các axit, bazơ khác nhau. Để đạt được mục đích này, trong nhiều năm gần đây nhóm nghiên cứu cân bằng ion trong dung dịch của bộ môn Hóa Phân tích, khoa Hóa học trường ĐHSP HN đã tập trung nghiên cứu các phương pháp lí thuyết kết hợp với thực nghiệm để xây dựng phương pháp xác định HSPL của các axit, bằng cách tiến hành chuẩn độ điện thế đo pH của một số dung dịch đơn, đa axit quen thuộc, đã biết HSPL. Từ giá trị pH thực nghiệm đo được, sử dụng các thuật toán tính lặp, được lập thành chương trình tính theo các ngôn ngữ lập trình khác nhau để tính ngược lại các giá trị HSPL. Sự phù hợp giữa kết quả tính toán từ thực nghiệm đo pH với các số liệu đã công bố trong các tài liệu tin cậy sẽ khẳng định sự đúng đắn của phương pháp nghiên cứu. Theo hướng nghiên cứu này, trong những năm gần đây, tác giả Đào Thị Phương Diệp và các cộng sự đã tiến hành chuẩn độ điện thế đo pH của một số dung dịch đơn (hoặc hỗn hợp các đơn) axit [2, 4, 7] và đa axit [1, 3, 5, 10, 12, 15]. Từ thuật toán tính lặp được thiết lập theo phương pháp bình phương tối thiểu (BPTT) hoặc theo phương pháp đơn hình (ĐH), các tác giả đã tính được các giá trị HSPL của các axit. Kết quả thu được hoàn toàn hợp lý! Cũng từ kết quả thu được cho thấy: - Trong đa số các trường hợp, cân bằng nào quyết định pH của hệ thì phương pháp nghiên cứu sẽ cho phép xác định được chính xác HSPL axit tương ứng với cân bằng đó. Nguyễn Thị Trang – K25 Hóa phân tích 1 Luận văn Thạc sĩ - Đối với những đơn axit (trong hỗn hợp các đơn axit) [5], đa axit [3] có các HSCB xấp xỉ nhau thì kết quả xác định pKa từ giá trị thực nghiệm đo pH của dung dịch đệm thường cho kết quả tốt nhất. Đáng lưu ý là, trong các nghiên cứu trên, nhóm tác giả đã phải tiến hành chuẩn độ điện thế đo pH của nhiều (thường chọn 10) dung dịch axit (hoặc hỗn hợp các đơn axit) riêng rẽ có nồng độ khác nhau (gọi tắt là phương pháp chuẩn độ riêng rẽ) để xử lý thống kê, và việc tính lặp phải dựa vào việc lập chương trình tính khá phức tạp. Để giảm thiểu được số phép đo thực nghiệm, mà vẫn đảm bảo được tính thống kê, đồng thời có thể thiết lập được thuật toán tính trực tiếp mà không cần phải tính lặp, trong [13] các tác giả đã nghiên cứu phương pháp xác định HSCB của axit axetic từ việc tổ hợp kết quả chuẩn độ điện thế đo pH chỉ với 2 dung dịch: một dung dịch axit mạnh và một dung dịch hỗn hợp gồm axit mạnh và axit axetic (gọi tắt là phương pháp chuẩn độ hỗn hợp). Kết quả thu được là phù hợp so với [6, 21]. Vấn đề đặt ra ở đây là phương pháp chuẩn độ hỗn hợp có thể áp dụng để xác định HSPL axit của các axit đa chức hay không? Và có thể tính trực tiếp giá trị HSPL axit này từ kết quả chuẩn độ riêng rẽ từng dung dịch axit được không? Mặt khác trong trường hợp cần xác định HSCB của những axit, bazơ mới tổng hợp được thì rất cần thiết phải được đối chứng kết quả theo nhiều phương pháp khác nhau: ví dụ phương pháp chuẩn độ riêng rẽ từng dung dịch nghiên cứu và phương pháp chuẩn độ hỗn hợp [10]. Chính vì vậy với mục đích vừa để xây dựng phương pháp, vừa để lựa chọn phương pháp thích hợp, chúng tôi chọn đề tài: :“ Xây dựng phương pháp xác định hằng số cân bằng của axit ba chức bằng phương pháp chuẩn độ hỗn hợp”. Trong luận văn này chúng tôi chọn axit citric là đối tượng nghiên cứu. II. NHIỆM VỤ NGHIÊN CỨU Vì axit citric có HSPL axit từng nấc không chênh lệch nhau nhiều, do đó theo nhận xét ở trên thì kết quả xác định pKa từ giá trị thực nghiệm đo pH của dung Nguyễn Thị Trang – K25 Hóa phân tích 2 Luận văn Thạc sĩ dịch đệm thường cho kết quả tốt nhất. Chính vì vậy trong khuôn khổ của một luận văn tốt nghiệp, chúng tôi đặt ra các nhiệm vụ sau: - Tổng quan các phương pháp xác định hằng số phân li của các axit, bazơ. - Thiết lập phương trình tính, thuật toán tính theo các hệ đệm và áp dụng chung cho cả 2 phương pháp, trong đó hệ số hoạt độ của các ion được tính theo phương trình Davies, còn hệ số hoạt độ của các phân tử trung hòa được chấp nhận bằng 1. - Chuẩn độ điện thế theo 2 phương pháp: + Phương pháp chuẩn độ riêng rẽ: chuẩn độ lần lượt 10 dung dịch nghiên cứu (10 dung dịch axit citric). + Phương pháp chuẩn độ hỗn hợp: chuẩn độ 1 dung dịch axit clohiđric và 1 dung dịch hỗn hợp gồm axit clohiđric và axit citric. - Từ các giá trị pH đo được của các hệ đệm khác nhau, sử dụng phương pháp nghiên cứu để xác định HSPL từng nấc của axit citric. - Đánh giá độ chính xác của các giá trị HSPL đã tính được. - Khảo sát ảnh hưởng của lực ion đến kết quả xác định HSPL của axit citric. - Kết luận về khả năng ứng dụng của phương pháp nghiên cứu trong việc khai thác dữ liệu đo pH. III. PHƯƠNG PHÁP NGHIÊN CỨU Để đánh giá kết quả nghiên cứu, chúng tôi sử dụng phương pháp đối chứng: so sánh giá trị HSPL của đa axit xác định được từ giá trị thực nghiệm đo pH với các giá trị HSPL tra trong tài liệu tham khảo [6, 21]. Sự phù hợp giữa giá trị HSPL tính được từ dữ liệu thực nghiệm đo pH với giá trị HSPL tra trong tài liệu [6, 21] được coi là tiêu chuẩn đánh giá tính đúng đắn của phương pháp nghiên cứu và độ tin cậy của chương trình tính. IV. NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN VĂN Nguyễn Thị Trang – K25 Hóa phân tích 3 Luận văn Thạc sĩ - Bước đầu xây dựng phương pháp xác định hằng số phân li axit – bazơ trong dung dịch từ dữ liệu đo pH từ thực nghiệm, mà không cần tính lặp, do đó cũng không cần lập chương trình tính phức tạp. - Kiểm chứng phương pháp đã xây dựng thông qua việc xác định hằng số phân li của axit citric (H3A). Đánh giá độ tin cậy của phương pháp tính toán. - Cung cấp các giá trị hằng số phân li của axit citric có độ tin cậy. Nguyễn Thị Trang – K25 Hóa phân tích 4 Luận văn Thạc sĩ CHƯƠNG I: TỔNG QUAN I.1. TÌNH HÌNH NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC Trong đề tài này chúng tôi sử dụng kỹ thuật chuẩn độ điện thế để xác định HSCB axit, bazơ nên ở đây chúng tôi chỉ sơ lược tình hình nghiên cứu các phương pháp xác định HSCB và sử dụng phương pháp chuẩn độ điện thế. I.1.1. Tình hình nghiên cứu ở Việt Nam Trong những năm gần đây, nhóm nghiên cứu cân bằng ion của bộ môn Hóa Phân tích, khoa Hóa học, trường Đại học Sư phạm Hà Nội đã tập trung nghiên cứu phương pháp tính lặp theo thuật toán bình phương tối thiểu (BPTT) và thuật toán đơn hình kết hợp với việc ứng dụng công nghệ thông tin để lập chương trình tính theo các ngôn ngữ lập trình khác nhau như Pascal, Matlab để đánh giá hằng số phân li axit của một số các đơn, đa axit khác nhau. Mở đầu cho hướng nghiên cứu này là việc sử dụng các thuật toán BPTT hay đơn hình để xây dựng phương pháp xác định hằng số phân li axit – bazơ từ giá trị pH đã biết (tính toán theo lý thuyết), bằng cách tính lặp khi có kể đến ảnh hưởng của lực ion. Để khẳng định tính đúng đắn của phương pháp nghiên cứu, đồng thời để kiểm tra sự phù hợp giữa giá trị lý thuyết và thực nghiệm, lần đầu tiên tác giả trong [1] đã tiến hành thực nghiệm đo pH và chuẩn độ điện thế đo pH các dung dịch axit oxalic có nồng độ khác nhau bằng dung dịch NaOH. Từ các giá trị pH thực nghiệm thu được, tác giả đã sử dụng phương pháp BPTT với việc tính lặp lực ion để xác định các hằng số phân li axit từng nấc của axit oxalic. Kết quả thu được từ thực nghiệm khá phù hợp với các số liệu đã được công bố trong tài liệu tham khảo tin cậy [6, 21]. Để khai thác khả năng ứng dụng thuật toán tính lặp theo phương pháp BPTT, tác giả Nguyễn Tinh Dung và các cộng sự [7] cũng tiến hành thực nghiệm đo pH và chuẩn độ điện thế đo pH của dung dịch hỗn hợp gồm hai đơn axit có hằng số phân li tương đương nhau: axit axetic và axit benzoic. Khác với hướng nghiên cứu trong tài Nguyễn Thị Trang – K25 Hóa phân tích 5 Luận văn Thạc sĩ liệu [1], ở đây các tác giả đã sử dụng muối trơ KCl để khống chế lực ion mà không phải tính lặp lực ion. Kết quả nghiên cứu cho thấy: Từ giá trị pH thực nghiệm đo được của dung dịch hỗn hợp 2 đơn axit có hằng số phân li tương đương nhau, cho phép xác định đồng thời hằng số phân li của cả 2 axit. Kết quả thu được từ thực nghiệm khá phù hợp với kết quả đã được công bố trong tài liệu [6, 21]. Kết luận này cũng được khẳng định một lần nữa trong tài liệu [11] khi tác giả tiến hành xác định đồng thời hằng số phân li của 2 axit có lực axit tương đương nhau: axit axetic và axit fomic từ giá trị thực nghiệm đo pH của dung dịch gồm hỗn hợp 2 đơn axit này. Để tiếp tục mở rộng khả năng ứng dụng của phương pháp BPTT trong việc xác định hằng số phân li axit – bazơ, đồng thời để đối chiếu kết quả nghiên cứu, các tác giả trong tài liệu [2] và [4] đã sử dụng song song 2 thuật toán: BPTT và đơn hình để đánh giá hằng số phân li của 2 axit có hằng số phân li axit chênh lệch nhau nhiều: axit axetic và amoni từ giá trị pH đo được bằng thực nghiệm chuẩn độ điện thế trong các trường hợp khác nhau: pH của dung dịch hỗn hợp hai đơn axit [4], pH của dung dịch từng đơn axit riêng rẽ (dung dịch axit axetic, dung dịch amoni), hoặc pH của dung dịch đơn bazơ liên hợp (NH3), trong đó các tác giả đều khống chế lực ion bằng dung dịch muối trơ KCl. Kết quả thu được theo 2 phương pháp khác nhau khá phù hợp với nhau. Tuy nhiên, từ giá trị thực nghiệm đo pH của hỗn hợp 2 đơn axit có hằng số phân li axit chênh lệch nhau nhiều, chỉ cho phép xác định được hằng số phân li của axit mạnh hơn. Để mở rộng khả năng ứng dụng phương pháp BPTT trong việc đánh giá hằng số phân li axit từng nấc của đa axit, các tác giả trong tài liệu [3] đã tiến hành đo pH và chuẩn độ điện thế đo pH của dung dịch axit tactric. Từ pH của các hệ khác nhau thu được trong quá trình chuẩn độ, các tác giả đã xác định khá chính xác giá trị hằng số phân li axit từng nấc của axit này. Để kiểm tra kết quả tính toán theo BPTT, tác giả trong tài liệu [8] đã sử dụng bộ số liệu thực nghiệm đo pH của dung dịch axit tactric để đánh giá hằng số phân li của axit này, nhưng theo phương pháp đơn hình. Kết quả thu được theo 2 phương pháp khác nhau khá phù hợp với nhau. Nguyễn Thị Trang – K25 Hóa phân tích 6 Luận văn Thạc sĩ Để tiếp tục đánh giá khả năng ứng dụng của phương pháp nghiên cứu trong việc xác định HSPL axit của các axit 3 chức, trong [5, 12, 15], các tác giả đã sử dụng thuật toán BPTT để đánh giá HSCB của axit photphoric – là axit có các HSPL từng nấc chênh lệch nhau rất nhiều. Từ kết quả nghiên cứu, các tác giả đã rút ra nhận xét: “thường chỉ xác định được giá trị hằng số cân bằng của quá trình nào ảnh hưởng trực tiếp đến pH của hệ”. Điều này cũng phù hợp với tài liệu [1]. Trong [10], tác giả cũng sử dụng phương pháp tính lặp theo thuật toán BPTT để tiến hành xác định HSCB của axit citric, cũng là axit 3 chức, song các HSPL từng nấc của axit này lại rất gần nhau. Kết quả thu được là hoàn toàn hợp lý và phù hợp với các nhận xét rút ra từ [3], [7]. Một điều đáng lưu ý là: tất cả các công trình nghiên cứu trên đều được tiến hành theo phương pháp chuẩn độ riêng rẽ, nghĩa là các tác giả đều tiến hành song song chuẩn độ điện thế đo pH của nhiều dung dịch axit, sau đó sử dụng thuật toán tính lặp, được lập thành chương trình tính theo các ngôn ngữ lập trình khác nhau để đánh giá các giá trị HSCB của các axit khác nhau. Các kết quả thu được đều hợp lý. Tuy nhiên hạn chế của phương pháp chuẩn độ riêng rẽ là số phép đo thực nghiệm nhiều, do đó mất khá nhiều thời gian cho việc: i) chuẩn bị các dung dịch ; ii) xác định nồng độ của các dung dịch phân tích và dung dịch chuẩn; iii) chuẩn độ đo pH…Ngoài ra chưa kể đến việc phải lập chương trình tính theo thuật toán tính lặp rất phức tạp. Để khắc phục những nhược điểm trên, gần đây trong [13], các tác giả đã thử nghiệm tiến hành xác định HSCB của axit axetic theo phương pháp chuẩn độ hỗn hợp, bằng cách chuẩn độ điện thế đo pH chỉ với 2 dung dịch: một dung dịch axit mạnh và một dung dịch hỗn hợp gồm axit mạnh và axit axetic. Và từ việc tổ hợp điều kiện proton (ĐKP) tương ứng với 2 phép chuẩn độ trên, các tác giả đã rút ra được phương trình tính trực tiếp HSPL axit của axit axetic. Kết quả thu được là phù hợp so với [6, 21]. I.1.2. Tình hình nghiên cứu trên thế giới Nguyễn Thị Trang – K25 Hóa phân tích 7 Luận văn Thạc sĩ Trên thế giới, nhiều tác giả đã nghiên cứu các phương pháp khác nhau để xác định HSCB axit – bazơ [25, 26, 27] cũng như các yếu tố dẫn đến sự sai lệch trong phép đo với mỗi phương pháp; nhiều công trình [11, 12, 14, 15, 23, 24] đã sử dụng phương pháp chuẩn độ điện thế để xác định HSCB các phức chất khác nhau. Trong các tác giả trong tài liệu [27] đã xác định hằng số phân li axit của 26 kháng sinh trong cơ thể người và động vật bằng phương pháp chuẩn độ điện thế. Thuốc kháng sinh được lựa chọn bao gồm: sulfonamides, macrolides, tetracyclines, fluoroquinolones. Sau khi xác nhận phương pháp phân tích sử dụng axit photphoric như một chất mẫu, phương pháp đạo hàm bậc 2 (Δ2pH/ΔV2) được áp dụng chủ yếu để xác định pKa từ đương cong chuẩn độ cho hầu hết các kháng sinh vì sự tiện lợi và độ chính xác. Tuy nhiên với tetracyclines phương pháp hồi quy BPTT được khai thác để xác định pKa bởi vì phương pháp đạo hàm bậc 2 không thể phân biệt tốt giá trị pKa2 và pKa3 của tetracyclines. Kết quả chỉ ra rằng giá tri pKa xấp xỉ 2 và 5 - 7,5 với sulfonamides; 7,5 - 9 với macrolides; 3 - 4, 7 - 8 và 9 - 10 với tetracyclines; 3 – 4; 7,5 – 9 và 10 – 11 với fluoroquinolones. Những kết quả này có vai trò quan trọng trong việc nghiên cứu, phát triển phương pháp phân tích và kiểm soát kháng sinh trong các hoạt động điều trị sau này. Trong tài liệu [12] các tác giả cũng sử dụng phương pháp chuẩn độ điện thế để xác định hằng số bền của phức cacboxilat của titan, trong đó, các phối tử được chọn là các axit axetic, axit oxalic và axit oxalaxetic. Ở đây, để tính được các giá trị hằng số bền của các phức, trước tiên các tác giả cần xác định lại các hằng số phân li axit của 3 axit trên từ kết quả thực nghiệm thông qua việc tiến hành chuẩn độ điện thế 1 dung dịch axit mạnh và 1 dung dịch hỗn hợp gồm axit mạnh với từng axit trong số 3 axit trên. Tại khu vực pH mà lượng axit yếu bị trung hòa từ khoảng 20% đến 80%, các tác giả sẽ tính ra giá trị hằng số phân li của từng phối tử, từ đó sẽ tính tiếp các giá trị hằng số bền của các phức tương ứng. Phương pháp này cũng đã được áp dụng tương tự trong tài liệu [17]. I.2. CÁC PHƯƠNG PHÁP XÁC ĐỊNH HẰNG SỐ PHÂN LI AXIT – BAZƠ Nguyễn Thị Trang – K25 Hóa phân tích 8 Luận văn Thạc sĩ Đã có nhiều công trình nghiên cứu phương pháp xác định HSCB của các phức chất, axit, bazơ riêng lẻ như phương pháp đo pH, phương pháp đo trắc quang. Các phương pháp đều xuất phát từ việc đánh giá HSCB nồng độ KC, sau đó ngoại suy về lực ion tương ứng để đánh giá HSCB nhiệt động. Những phương pháp thực nghiệm như: phương pháp đo độ dẫn điện, phương pháp đo điện thế, phương pháp quang học… kết hợp với những phương pháp tính toán như: phương pháp BPTT, phương pháp hồi qui phi tuyến, phương pháp đơn hình được sử dụng phổ biến. I.2.1. Các phương pháp tính toán lý thuyết I.2.1.1. Tính hằng số phân li nồng độ K ac sau đó ngoại suy về lực ion I = 0 để đánh giá hằng số phân li nhiệt động Ka Đối với axit HnA ta có : (1) HnA  H+ + Hn-1A Ka1 (2) Hn-1A  H+ + Hn-2A Ka2 ……………………………………. (i) Hn-iA  H+ + Hn-i-1A Kai …………………………………… (n) HA  H+ + A Kan Theo định luật tác dụng khối lượng : K ai  (H  ).(H n i 1A) [H  ].[H n i 1A] f H .f H  . (H n i A) [H n i A] fH A  n i 1A  K aic .K f (I.1) n i Trong đó: fi là hệ số hoạt độ của ion i Kf là tham số bất định gây ra cho Kai Vậy muốn tính được hằng số phân li nhiệt động Ka ta phải tính hằng số cân bằng nồng độ K ca , sau đó ngoại suy về lực ion I = 0. Đại lượng Kf được tính theo một trong các phương trình kinh nghiệm đã trình bày ở trên. I.2.1.2. Phương pháp Kamar đánh giá hằng số phân li axit Xét axit HA: HA  H+ + A- Ka Nguyễn Thị Trang – K25 Hóa phân tích 9 Luận văn Thạc sĩ Theo định luật tác dụng khối lượng:  H  . A  = K = + a -  HA   H +  .  A -  f H .f A . f HA  HA + - (I.2)  H +  .  A -   K a  K c .f A .f H .HA  K c .f 2 Vì K c =  HA - (I.3) + Vậy nếu xác định được hằng số cân bằng nồng độ Kc và hoạt độ của các cấu tử A - , H + là f A , f H và giá trị HA thì ta sẽ xác định được hằng số cân bằng nhiệt độ - + Ka. Việc đo pH của dung dịch chỉ cho ta hoạt độ của ion H+ do: pH = - lg(H+) Ta có:  H +  = H H  + +  .f H +  fH = +  H +  Nếu thiết lập được một nồng độ chính xác của ion H+ và đo được pH của dung dịch thì có thể đánh giá được hệ số hoạt độ f H . Các phương pháp đo f H được thực + + hiện riêng trước khi xác định hằng số phân li của HA. Về mặt thực nghiệm để đánh giá hằng số cân bằng Ka người ta chuẩn độ WmL dung dịch HA nồng độ C0 mol/l khi có mặt chất điện li trơ XY (ví dụ NaCl) có nồng độ bằng lực ion cần thiết lập I, bằng V mL dung dịch kiềm mạnh XOH nồng độ x mol/l và muối trơ XY nồng độ (I – x) mol/l. Vì vậy: I.W +  x + I - x  .V =I W+V I.W +  I - x  .V x.V  Y -  = =IW+V W+V  X +  = (I.4) Theo định luật trung hòa điện:  H +  -  OH -  +  X +  -  Y -  -  A -  = 0 K x.V    hH  OH . w + I -  I  -  A  = 0 h  W+V K x.V  hH  OH . w + -  A -  =0 h W+V + - + - Nguyễn Thị Trang – K25 Hóa phân tích 10 (I.5) Luận văn Thạc sĩ Mặt khác: A0 .W  A-  +  HA = = Ai W+V (I.6) Gọi a = ( A - ) ta có: A- .a + HA .h.a.K -1 a = Ai (I.7) a= Ai A + HA .h.K a-1 - Và  A-  = A .a = Ai .  A - A1  Ai . -1 + HA .h.K a 1   HA .f A- .K -1a  .h (I.8) Vì vậy:  h.H+ - OH- . Kw x.V 1 + - Ai .  0 k W+V 1   HA .f A- .K -1a .h (I.9) Đặt: n h .  H  OH .   K x.V  k WV  Ai (I.10)  σ I  ( HA . f A . K a1 ) I   1 1  ( HA . f A . K a1 ) . h 1 n n .h Ở lực ion xác định, bằng cách đo pH của hỗn hợp chuẩn độ ở các thời điểm khác nhau ta sẽ được một dãy các giá trị trung bình  I  (HA . f A . K a1 ) . Bằng cách  xác định σ I ở các lực ion I khác nhau sau đó ngoại suy về lực ion I = 0 ta được K -1 a (vì ở lực ion I = 0 thì f A- = 1, HA = 1) và sau đó đánh giá ( HA . f A- )I = σI . K a1 Bằng cách đo trực tiếp HA của các chất điện li (bằng các phương pháp đo độ tan, áp suất hơi, đo hệ số phân bố …) ta sẽ đánh giá được: f A-   HA .f A-  HA Như vậy, phương pháp Kamar có ưu thế đặc biệt vì cho phép đánh giá đồng Nguyễn Thị Trang – K25 Hóa phân tích 11 Luận văn Thạc sĩ thời tất cả các tham số cân bằng trong dung dịch Ka, HA , f A- , nhưng mặt thực nghiệm khá công phu. I.2.2. Các phương pháp thực nghiệm I.2.2.1. Phương pháp đo quang Phương pháp đo quang vùng UV-Vis [22, 23] dựa trên sự thay đổi màu sắc của các chất khi thay đổi độ axit từ đó đo được các giá trị pKa của các chất phân tích; phương pháp này được mở rộng bằng cách sử dụng tia cực tím để đo pKa của các thành phần khác trong dung dịch. Về nguyên tắc, bất kì bước sóng nào cũng có thể sử dụng để xác định pKa, ngoại trừ điểm mà ở đó bước sóng của cả hai dạng có cùng độ hấp thụ mol. Tuy nhiên, lựa chọn tốt nhất là bước sóng mà ở đó độ hấp thụ mol của hai dạng là khác biệt nhiều nhất. Phương pháp này có thể áp dụng cho những chất có độ tan thấp và những mẫu có nồng độ thấp hơn so với phương pháp chuẩn độ điện thế. Ưu điểm chính của phương pháp này là độ nhạy cao (10-6 M) đối với những hợp chất có hệ số hấp thụ mol phân tử (ε) phù hợp. Xác định pKa bằng phương pháp phổ hấp thụ có độ tin cậy cao, phép đo thực hiện nhanh, tuy nhiên, phương pháp này đòi hỏi hóa chất phải tinh khiết và các chất khác nhau phải có phổ khác nhau. Để sử dụng phương pháp này, trước hết các chất riêng rẽ phải có phổ hấp thụ đặc trưng và các chất khi proton hóa hay đề proton cũng phải có khả năng hấp thụ khác nhau. Việc ghi phổ sẽ trở nên phức tạp nếu cân bằng axit-bazơ có từ 2 mức ion hóa hoặc các hợp phần không bền trong khoảng 2 đơn vị pH quanh giá trị pKa. Vì vậy mà phương pháp ghi phổ tại nhiều bước sóng khác nhau của mẫu tại các pH khác nhau đang được phát triển. I.2.2.2. Phương pháp chuẩn độ NMR Phương pháp chuẩn độ pH-NMR là một công cụ rất hữu ích trong việc xác định pKa với độ chính xác có thể đạt đến  0,05 đơn vị pKa. Sự proton hóa nhóm bazơ sẽ gây ra các hiệu ứng trên lớp vỏ electron lân cận với hạt nhân mang phổ NMR, dẫn đến sự dịch chuyển trung bình của các tín hiệu phổ NMR – như một hàm của pH sẽ phản ánh sự proton hóa từng nấc của mỗi nhóm bazơ trong phân tử. Sự Nguyễn Thị Trang – K25 Hóa phân tích 12
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng