Đăng ký Đăng nhập
Trang chủ Xây dựng mô hình chống sét van trung thế ...

Tài liệu Xây dựng mô hình chống sét van trung thế

.PDF
117
189
110

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM NGUYỄN THỊ KIM OANH XÂY DỰNG MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ LUẬN VĂN THẠC SĨ Chuyên ngành: KỸ THUẬT ĐIỆN Mã ngành: 60520202 TP. HCM, tháng 02 năm 2016 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM NGUYỄN THỊ KIM OANH XÂY DỰNG MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ LUẬN VĂN THẠC SĨ Chuyên ngành: KỸ THUẬT ĐIỆN Mã ngành: 60520202 CÁN BỘ HƯỚNG DẪN KHOA HỌC: PGS.TS. QUYỀN HUY ÁNH TP. HCM, tháng 02 năm 2016 CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP HCM Cán bộ hướng dẫn khoa học: PGS.TS QUYỀN HUY ÁNH. Luận văn thạc sĩ được bảo vệ tại trường Đại học Công nghệ TP HCM, ngày 12 tháng 02 năm 2016 Thành phần Hội đồng đánh giá Luận văn Thạc sĩ gồm: TT Họ và tên Chức danh hội đồng 1 PGS.TS. Phan Thị Thanh Bình Chủ tịch 2 TS. Nguyễn Xuân Hoàng Việt Phản biện 1 3 TS. Huỳnh Quang Minh Phản biện 2 4 TS. Võ Viết Cường 5 PGS.TS. Võ Ngọc Điều Ủy viên Ủy viên, thư ký. Xác nhận của Chủ tịch hội đồng đánh giá Luận văn sau khi Luận văn đã được sửa chữa nếu có. Chủ tịch hội đồng đánh giá LV PGS.TS. Phan Thị Thanh Bình TRƯỜNG ĐH CÔNG NGHỆ TP. HCM CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM PHÒNG QLKH – ĐTSĐH Độc lập – Tự do – Hạnh phúc TP. HCM, ngày 20 tháng 8 năm 2015 NHIỆM VỤ LUẬN VĂN THẠC SĨ Họ tên học viên: NGUYỄN THỊ KIM OANH Giới tính : Nữ Ngày, tháng, năm sinh: 24/7/1983 Nơi sinh : TP HCM Chuyên ngành: Kỹ thuật điện MSHV : 1441830018 I- Tên đề tài: XÂY DỰNG MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ. II- Nhiệm vụ và nội dung: Chương : Mở Đầu. Chương 1: Tổng quan về chống sét van trung thế. Chương 2: Các mô hình chống sét van trung thế. Chương 3: Xây dựng các mô hình chống sét van trung thế trong môi trường Matlab. Chương 4: Mô phỏng, đánh giá độ chính xác của các mô hình chống sét van trung thế. Chương 5: Kết luận và hướng nghiên cứu phát triển. III- Ngày giao nhiệm vụ : 8/2015 IV- Ngày hoàn thành nhiệm vụ : 02/2016 V- Cán bộ hướng dẫn : PGS.TS. QUYỀN HUY ÁNH CÁN BỘ HƯỚNG DẪN PGS.TS. QUYỀN HUY ÁNH KHOA QUẢN LÝ CHUYÊN NGÀNH PGS.TS. NGUYỄN THANH PHƯƠNG i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai công bố trong bất kì công trình nào khác. Tôi xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện Luận văn này đã được cảm ơn và các thông tin trích dẫn trong Luận văn đã được ghi rõ nguồn gốc. Học viên thực hiện Luận văn. NGUYỄN THỊ KIM OANH ii LỜI CÁM ƠN Qua thời gian học tập và nghiên cứu tại Trường Đại học Công nghệ TP.HCM, cùng với sự nhiệt tình hướng dẫn, giúp đỡ của quý thầy cô, tôi đã hoàn thành được luận văn tốt nghiệp này. Trước hết, tôi xin chân thành cám ơn gia đình đã luôn động viên, giúp đỡ tôi trong suốt thời gian học tập. Tôi chân thành cảm ơn Ban Giám Hiệu nhà trường, quý thầy cô Khoa Điện – Điện tử và Phòng quản lý sau đại học Trường Đại học Công nghệ TP.HCM đã tạo điều kiện thuận lợi cho tôi học tập, nghiên cứu, nâng cao trình độ và thực hiện tốt luận văn tốt nghiệp trong thời gian qua. Tôi xin bày tỏ lòng biết ơn sâu sắc tới Thầy PGS. TS Quyền Huy Ánh đã nhiệt tình hướng dẫn, giúp đỡ tôi trong suốt thời gian học tập cũng như trong quá trình thực hiện luận văn tốt nghiệp. Ngoài ra, tôi cũng xin được nói lời cảm ơn đến các anh, chị học viên trong lớp cao học 14SMD11 đã đóng góp ý kiến và giúp đỡ tôi hoàn thành tốt luận văn. Việc thực hiện đề tài luận văn này chắc chắn không tránh khỏi những thiếu sót về kiến thức chuyên môn, kính mong nhận được sự quan tâm, xem xét và đóng góp ý kiến quý báu của quý thầy, cô và các bạn để đề tài luận văn này hoàn thiện hơn. Tôi xin chân thành cảm ơn! Tp. Hồ Chí Minh, ngày 15 tháng 01 năm 2016 Học viên thực hiện Nguyễn Thị Kim Oanh iii TÓM TẮT Luận văn “XÂY DỰNG MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ” đi sâu vào nghiên cứu và xây dựng mô hình chống sét van trung thế dạng MOV trong môi trường Matlab. Cấu tạo, nguyên lý làm việc và đặc tính của chống sét van trung thế và hộp công cụ Simulink của phần mềm Matlab đã được nghiên cứu. Các mô hình chống sét van được xem xét và đánh giá bao gồm: mô hình Matlab, mô hình IEEE, mô hình Picenti, và mô hình PK. Các thông số của mô hình chống sét van được cung cấp trong catalogue của nhà sản xuất. Phân tích kết quả mô phỏng điện áp dư của các loại chống sét van trung thế của các hãng sản xuất khác nhau ứng với dạng xung tiêu chuẩn 8/20µs, biên độ 3kA, 5kA, 10kA, 20kA và so sánh giá trị điện áp dư cung cấp bởi nhà sản xuất để đánh giá độ chính xác của các mô hình chống sét van được xây dựng. Sai số điện áp dư đối với mô hình PK là thấp nhất. Cụ thể, đối với mô hình của thiết bị chống sét van trung áp của Hãng Ohio Brass, sai số điện áp dư trong khoảng từ 2.6% đến 10.2% và đối với mô hình thiết bị chống sét van trung áp của Hãng Copper sai số điện áp dư trong khoảng từ 0,04% đến 7.99% . Nhận thấy, các sai số này đều nhỏ hơn giá trị sai số cho phép (10%). Luận văn cung cấp công cụ mô phỏng hữu ích với phần mềm thông dụng Matlab cho các nhà nghiên cứu, các kỹ sư, sinh viên…trong việc nghiên cứu các hành vi và đáp ứng của thiết bị chống sét van dưới tác động của xung sét lan truyền trong điều kiện không thể đo thử trong thực tế. iv ABSTRACT Thesis "BUILDING MEDIUM VOLTAGE SURGE ARRESTER MODELS" going into the study and modeling of medium voltage surge arresters in Matlab environment. Composition, working principle and characteristic of the mediumvoltage surge arresters and Simulink toolbox of Matlab software was studied. The surge arrester models are reviewed and evaluated include: Matlab model, IEEE model, model Picenti, and PK model. The model parameters of surge arrester models are provided in the manufacturer's catalogue. Analysis of residual voltage simulation results of medium voltage surge arresters of various manufacturers with standard wave form 8/20μs, amplitude 3kA, 5kA, 10kA, 20kA and compare with residual voltages, provided by the manufacturers to assess the accuracy of the surge arrester models. The residual voltage error of PK model is the lowest. Specifically, for the medium voltage surge arrester model of Ohio Brass Company, the residual voltage errors are in the range from 2.6% đến 10.2% and for the medium voltage surge arrester model of Copper Company the residual voltage errors are in the range from 0,04% đến 7.99%. Recognizing that, these errors are less than the enable error (10%). Thesis provides useful simulation tools with universal Matlab software for researchers, engineers, students ... in the study of the behavior and response of lightning protection equipment under the influence of lightning surges when the test conditions can not in reality. v MỤC LỤC LỜI CAM ĐOAN ....................................................................................................... i LỜI CÁM ƠN ............................................................................................................ ii TÓM TẮT ................................................................................................................. iii ABSTRACT .............................................................................................................. iv DANH MỤC CÁC TỪ VIẾT TẮT .......................................................................... ix DANH MỤC CÁC BẢNG..........................................................................................x DANH SÁCH CÁC HÌNH ....................................................................................... xi CHƯƠNG MỞ ĐẦU ..................................................................................................1 I. GIỚI THIỆU ........................................................................................................1 1. Đặt vấn đề ...........................................................................................................1 2. Tính cấp thiết của đề tài ......................................................................................2 II. MỤC TIÊU, NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU .....................3 1. Mục tiêu của đề tài: .........................................................................................3 2. Nội dung nghiên cứu .......................................................................................4 3. Phương pháp nghiên cứu.................................................................................4 III. TỔNG QUAN VỀ LĨNH VỰC NGHIÊN CỨU ..............................................4 1. Giới thiệu tổng quan:.......................................................................................4 2. Tổng quan nghiên cứu:....................................................................................5 IV. NỘI DUNG LUẬN VĂN .................................................................................5 CHƯƠNG 1 TỔNG QUAN VỀ CHỐNG SÉT VAN TRUNG THẾ .........................6 1.1. ĐẶT VẤN ĐỀ ...............................................................................................6 1.2. CÁC LOẠI CÁCH ĐIỆN ..............................................................................8 1.3. KHÁI NIỆM VỀ SÉT....................................................................................9 1.4. THIẾT BỊ CHỐNG SÉT VAN ....................................................................10 1.5 CẤU TẠO VÀ NGUYÊN LÝ LÀM VIỆC CỦA CHỐNG SÉT VAN MOV ...............................................................................................................................12 1.4.1. CẤU TẠO CƠ BẢN MOV ...............................................................12 1.4.2. TÍNH NĂNG HOẠT ĐỘNG CỦA BIẾN TRỞ ZNO ......................14 vi 1.4.3. ĐẶC TÍNH V-I .................................................................................18 1.4.4. THỜI GIAN ĐÁP ỨNG....................................................................19 CHƯƠNG 2 CÁC MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ ..........................21 2.1. ĐẶT VẤN ĐỀ .............................................................................................21 2.2. CÁC MÔ HÌNH ĐƯỢC ĐỀ NGHỊ.............................................................22 2.2.1. Mô hình truyền thống ATP ...............................................................22 2.2.2. Mô hình được đề nghị bởi IEEE .......................................................22 2.2.2.1. Mô hình đề nghị.....................................................................................23 2.2.2.2. Xác định các thông số............................................................................23 2.2.3. Mô hình được đề nghị bởi Pinceti .....................................................26 2.2.3.1. Mô hình được đề nghị ...........................................................................26 2.2.3.2. Xác định thông số ..................................................................................26 2.2.4. Mô hình P-K ......................................................................................27 2.2.4.1. Mô hình được đề nghị ...........................................................................27 2.2.4.2. Xác định thông số ..................................................................................28 CHƯƠNG 3 XÂY DỰNG CÁC MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ TRONG MÔI TRƯỜNG MATLAB ........................................................................29 3.1. MỤC ĐÍCH MÔ PHỎNG ...........................................................................29 3.2. GIỚI THIỆU PHẦN MỀM MATLAB .......................................................30 3.2.1. Phần mềm MATLAB ........................................................................30 3.2.2. Cơ sở về SIMULINK ........................................................................30 3.2.3. Đánh giá mô hình MATLAB ............................................................31 3.2.3.1. Giới thiệu mô hình .................................................................................31 3.2.3.2. Nguyên lý làm việc của mô hình ...........................................................33 3.2.3.3. Đánh giá mô hình ..................................................................................33 3.2.3.4. Mạch mô phỏng Matlab.........................................................................34 3.3. MÔ HÌNH NGUỒN PHÁT XUNG SÉT ....................................................34 3.3.1. Dạng xung sét ....................................................................................34 3.3.1.1. Dạng sóng 10/350µs ..............................................................................34 3.3.1.2. Dạng sóng 8/20µs ..................................................................................35 3.3.2. Xây dựng mô hình nguồn phát xung .................................................37 vii 3.3.3. Thực hiện mô phỏng ..........................................................................39 3.3.4. Kết luận .............................................................................................42 3.4. XÂY DỰNG MÔ HÌNH CHỐNG SÉT VAN DẠNG MOV PHỤ THUỘC TẦN SỐ TRONG MATLAB ................................................................................42 3.4.1. Xây dựng mô hình MOV theo IEEE: ....................................................42 3.4.1.1. Xây dựng mô hình phần tử điện trở phi tuyến A0, A1 ...........................43 3.4.1.2. Xây dựng mô hình MOV hoàn chỉnh ....................................................46 3.4.1.3. Tạo hộp thoại và các thông số cần khai báo .........................................47 3.4.1.4. Tạo biểu tượng cho mô hình ..................................................................50 3.4.1.5. Kiểm tra đáp ứng mô hình MOV với xung dòng chuẩn........................52 3.4.2. Xây dựng mô hình MOV theo Pinceti: .................................................53 3.4.2.1. Xây dựng mô hình phần tử điện trở phi tuyến A0, A1: ..........................53 3.4.2.2. Xây dựng mô hình MOV hoàn chỉnh ....................................................55 3.4.2.3. Tạo hộp thoại và các thông số cần khai báo .........................................56 3.4.2.4. Tạo biểu tượng cho mô hình ..................................................................58 3.4.2.5. Kiểm tra đáp ứng mô hình MOV với xung dòng chuẩn........................60 3.4.3. Xây dựng mô hình MOV theo P-K ...................................................61 3.4.3.1. Xây dựng mô hình phần tử điện trở phi tuyến A0, A1 (Điện trở phi tuyến xây dựng giống như mô hình Pinceti). ................................................61 3.4.3.2. Xây dựng mô hình MOV hoàn chỉnh ....................................................61 3.4.3.3. Tạo hộp thoại và các thông số cần khai báo ..........................................63 3.4.3.4. Tạo biểu tượng cho mô hình ..................................................................65 3.4.3.5. Kiểm tra đáp ứng mô hình MOV với xung dòng chuẩn................ Error! Bookmark not defined. CHƯƠNG 4 MÔ PHỎNG - ĐÁNH GIÁ ĐỘ CHÍNH XÁC CÁC MÔ HÌNH CHỐNG SÉT VAN TRUNG THẾ ...........................................................................68 4.1. ĐẶT VẤN ĐỀ .............................................................................................68 4.2. MÔ PHỎNG ĐÁP ỨNG CỦA CÁC CHỐNG SÉT VAN TRUNG ÁP EVP VÀ AZG2 ..............................................................................................................69 4.2.1. Chống sét van trung áp EVP .............................................................69 4.2.1.1. Thông số kỹ thuật ..................................................................................69 viii 4.2.1.2. Thông số mô hình ..................................................................................69 4.2.1.3. Kết quả mô phỏng .................................................................................70 4.2.1.4. Nhận xét .................................................................................................80 4.2.2. Chống sét van loại AZG2 .................................................................80 4.2.2.1. Thông số kỹ thuật: .................................................................................80 4.2.2.2. Thông sô mô hình ..................................................................................81 4.2.2.3. Kết quả mô phỏng .................................................................................81 4.2.2.4. Dạng sóng của mô hình .........................................................................82 4.2.2.5. Biểu đồ đánh giá sai số ..........................................................................90 4.2.2.6. Nhận xét .................................................................................................91 4.2.3. NHẬN XÉT CHUNG .......................................................................91 CHƯƠNG KẾT LUẬN.............................................................................................94 I. KẾT LUẬN ...................................................................................................94 II. HƯỚNG PHÁT TRIỂN TƯƠNG LAI .........................................................94 TÀI LIỆU THAM KHẢO .........................................................................................95 ix DANH MỤC CÁC TỪ VIẾT TẮT Ký hiệu Đơn vị MOV kA Chống sét van (Metal Oxide Varistor) R  Điện trở L H Độ tự cảm C F Điện dung D nm Bề dày của biến trở Vb V Điện thế rào  Mô tả Hằng số điện môi của chất bán dẫn N Hạt/cm3 P W Công suất tiêu tán trung bình 0 Nhiệt độ gia tăng trung bình T C  Mật độ hạt dẫn Hệ số tiêu tán công suất TOL % Độ sai số chuẩn Vr kV Điện áp định mức của chống sét van Điện áp dư cho dòng sét 10 kA với bước sóng Vr8/20 kV 8/20 µs L, R kV Độ lớn điện thế rào o kV Điện thế phân cực tại gốc  VN Hệ số phi tuyến. kV Điện áp biến trở q Điện tích điện tử K Hệ số phụ thuộc biến trở Vref kV Điện áp tham chiếu d m Chiều cao của chống sét van n Số cột MOV song song trong chống sét van. x DANH MỤC CÁC BẢNG Bảng 3.1:Quan hệ i=f(u) đặc tuyến V-I của A0 và A1 ...............................................44 Bảng 3.2. Quan hệ i=f(u) đặc tuyến V-I của A0 và A1 ..............................................54 Bảng 4.1: Thông số kỹ thuật của hãng OHIO BRASS ..............................................69 Bảng 4.2: Kết quả mô phỏng hãng OHIOS BRASS của các mô hình .......................70 Bảng 4.3: Thông số kỹ thuật của hãng COOPER .....................................................81 Bảng 4.4: Kết quả mô phỏng hãng COOPER của các mô hình ...............................82 xi DANH SÁCH CÁC HÌNH Hình 1.1: Chức năng phối hợp cách điện của chống sét van ...................................11 Hình 1.2:Cấu trúc của biến trở và đặc tính V-I. ......................................................12 Hình 1.3: Vi cấu trúc của ceramic ............................................................................13 Hình 1.4: Sơ đồ cấu trúc của lớp biên tiếp giáp biến trở ZnO .................................14 Hình 1.5 :Chống sét van trung thế của Ohio Brass ..................................................15 Hình 1.6:Mặt cắt cấu tạo của chống sét van ............................................................16 Hình 1.7: Sơ đồ năng lượng tiếp giáp ZnO –biên –ZnO. .........................................17 Hình 1.8: Quan hệ điện thế rào với điện áp đặt vào. ...............................................18 Hình 1.10:Đáp ứng của biến trở ZnO xung tốc độ cao. ..........................................20 Hình 1.11: Đáp ứng của biến trở tính đến điện cảm đầu dây nối với xung dòng. ..20 Hình 2.1:Mô hình của IEEE......................................................................................23 Hình 2.2: Đặc tuyến đơn vị của phần tử phi tuyến A0 và A1 .....................................25 Hình 2.3: Mô hình của Pinceti.................................................................................26 Hình 2.4: Mô hình P-K..............................................................................................27 Hình 3.1: Quan hệ dòng điện –điện áp của mô hình chống sét van. ........................32 Hình 3.2:Hộp thoại của mô hình chống sét van. ......................................................32 Hình 3.3: Sơ đồ nguyên lý của mô hình ....................................................................33 Hình 3.4: Mạch mô phỏng phóng điện chống sét van của Matlab, dạng xung dòng 8/20µs –10kA. ............................................................................................................34 Hình 3.5: Sét đánh trực kiếp vào kim thu sét trên đỉnh công trình. ..........................34 Hình 3.6: Sét đánh trực tiếp vào đường dây trên không lân cận công trình. ...........35 Hình 3.7: Dạng sóng 10/350 µs ................................................................................35 Hình 3.8: Sét đánh vào đường dây trên không ở vị trí cách xa công trình...............36 Hình 3.9:Sét đánh gián tiếp cảm ứng vào công trình. ..............................................36 Hình 3.10: Dạng sóng 8/20 µs. .................................................................................37 Hình 3.11: Sơ đồ khối tạo nguồn phát xung. ............................................................38 Hình 3.12: Biểu tượng của mô hình nguồn phát xung. .............................................38 Hình 3.13:Khai báo các thông số yêu cầu ................................................................39 Hình 3.14: Sơ đồ mô phỏng nguồn xung dòng..........................................................39 Hình 3.15:Các thông số nguồn xung dòng ...............................................................40 xii Hình 3.16: Dạng sóng nguồn xung dòng 8/20µs biên độ 3kA ..................................40 Hình 3.17: Dạng sóng nguồn xung dòng 8/20µs biên độ 5kA ..................................41 Hình 3.18: Dạng sóng nguồn xung dòng 8/20µs biên độ 10kA ................................41 Hình 3.19:Dạng sóng nguồn xung dòng 8/20µs biên độ 20kA ................................42 Hình 3.20: Mạch tương đương mô hình IEEE ..........................................................42 Hình 3.21: Đặc tuyến V-I của A0 và A1của mô hình IEEE .......................................44 Hình 3.22: Sơ đồ nguyên lý của phần tử phi tuyến A0 ..............................................45 Hình 3.23: Mô hình điện trở phi tuyếntheo IEEE .....................................................46 Hình 3.24: Mô hình MOV theo IEEE bằng Matlab .................................................47 Hình 3.25: Mô hình MOV theo IEEE ........................................................................47 Hình 3.26: Hộp thoại Mask Editortheo IEEE. ..........................................................48 Hình 3.27: Thông tin cho khối trong thanh Documentationtheo IEEE ....................49 Hình 3.28: Thông tin cho khối trong thanh Prompttheo IEEE .................................49 Hình 3.29: Lệnh tính thông số trong thanh Initializationtheo IEEE. .......................50 Hình 3.30. Tạo biểu tượng cho mô hình trong thanh Icon theo IEEE. .....................51 Hình 3.31: Biểu tượng chống sét van MOVtheo IEEE .............................................51 Hình 3.32:Hộp thoại của Distribution Arrester-MOVtheo IEEE .............................52 Hình 3.33: Sơ đồ mô phỏng đáp ứng của MOV theo mô hình IEEE ........................52 Hình 3.34: Sơ đồ tương đương theo mô hình Pinceti ...............................................53 Hình 3.35: Sơ đồ nguyên lý của phần tử phi tuyến A0 theo Pinceti ..........................54 Hình 3.36: Mô hình điện trở phi tuyến theo Pinceti .................................................55 Hình 3.37 Mô hình MOV theo Pinceti ......................................................................55 Hình 3.38: Mô hình MOV theo Pinceti. ....................................................................56 Hình 3.39: Hộp thoại Mask Editortheo Pinceti ........................................................56 Hình 3.40: Thông tin cho khối trong thanh Documentationtheo Pinceti .................57 Hình 3.41: Thông tin cho khối trong thanh Prompttheo Pinceti ..............................58 Hình 3.42: Lệnh tính thông số trong thanh Initializationtheo Pinceti. .....................58 Hình 3.43: Tạo biểu tượng cho mô hình trong thanh Icontheo Pinceti ....................59 Hình 3.44. Biểu tượng chống sét van MOVtheo Pinceti ..........................................59 Hình 3.45:Hộp thoại của Distribution Arrester-MOVtheo Pinceti ..........................60 Hình 3.46: Sơ đồ mô phỏng đáp ứng của MOV theo mô hình Pinceti .....................60 xiii Hình 3.47: Sơ đồ tương đương theo mô hình P-K. ...................................................61 Hình 3.48: Mô hình MOV theo P-K. .........................................................................62 Hình 3.49: Mô hình MOV theo P-K. .........................................................................62 Hình 3.50: Hộp thoại Mask Editortheo P-K. ............................................................63 Hình 3.51: Thông tin cho khối trong thanh Documentationtheo P-K. .....................63 Hình 3.52: Tạo thông tin cho khối trong thanh Prompttheo P-K .............................64 Hình 3.53: Nhập các lệnh tính thông số trong thanh Initializationtheo P-K ...........65 Hình 3.54:Tạo biểu tượng cho mô hình trong thanh Icontheo P-K. .........................65 Hình 3.55:Biểu tượng chống sét van MOVtheo P-K.................................................66 Hình 3.56:Hộp thoại của Distribution Arrester-MOV theo P-K. .............................66 Hình 3.57: Sơ đồ mô phỏng đáp ứng của MOV theo mô hình P_K..........................67 Hình 4.1: Sơ đồ mô hình mạch thử nghiệm điện áp dư của chống sét van trung áp ...................................................................................................................................68 Hình 4.2: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20 s3kA. ............................................................................................................................71 Hình 4.3: Điện áp dư của chống sét van điện áp 21kV, dòng xung 8/20s-5kA. .....72 Hình 4.4: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20 s10kA. ..........................................................................................................................73 Hình 4.5: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20 s20kA. ..........................................................................................................................74 Hình 4.6: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20 s3kA. ............................................................................................................................75 Hình 4.7: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20 s5kA. ............................................................................................................................76 Hình 4.8: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20 s10kA. ..........................................................................................................................77 Hình 4.9: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20 s20kA. ..........................................................................................................................78 Hình 4.10: Biểu đồ sai số điện áp dư của chống sét van hãng Ohios Brass, điện áp 18kV, ứng với dòng xung 8/20s...............................................................................79 xiv Hình 4.11: Biểu đồ sai số điện áp dư của chống sét van hãng Ohios Brass, điện áp 21kV, ứng với dòng xung 8/20s...............................................................................79 Hình 4.12: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20s3kA. ............................................................................................................................82 Hình 4.13: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20 s5kA. ............................................................................................................................83 Hình 4.14: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20s10kA. ..........................................................................................................................84 Hình 4.15: Điện áp dư của chống sét van điện áp 21kV, ứng với dòng xung 8/20s20kA. ..........................................................................................................................85 Hình 4.16: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20s3kA. ............................................................................................................................86 Hình 4.17: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20s5kA. ............................................................................................................................87 Hình 4.18: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20s10kA. ..........................................................................................................................88 Hình 4.19: Điện áp dư của chống sét van điện áp 18kV, ứng với dòng xung 8/20s20kA. ..........................................................................................................................89 Hình 4.20: Biểu đồ sai số điện áp dư của chống sét van hãng Cooper, điện áp 18kV, ứng với dòng xung 8/20s. ........................................................................................90 Hình 4.21: Biểu đồ sai số điện áp dư của chống sét van hãng Cooper, điện áp 21kV, ứng với dòng xung 8/20s. ........................................................................................90 1 CHƯƠNG MỞ ĐẦU I. GIỚI THIỆU 1. Đặt vấn đề Đã từ lâu, tại các nước phát triển ở châu Âu và châu Mỹ, do nhu cầu bảo vệ thiết bị tránh hư hỏng và ngừng dịch vụ do sét, việc nghiên cứu dông sét và các giải pháp phòng chống sét phát triển rất mạnh mẽ. Người ta đã tiến hành thu thập số liệu về dông sét trong nhiều năm nhằm phân vùng hoạt động dông, nghiên cứu các quy luật phát triển của chúng phục vụ công tác dự báo dông. Hàng loạt các công trình xác định mật độ sét, cũng như các thông số của sét, từ đó đề xuất các biện pháp dự phòng chống sét, cụ thể như cho các đường dây tải điện, các công trình công nghiệp quan trọng, công trình viễn thông, các trung tâm dữ liệu, các sân bay, kho xăng,... Việt Nam là một nước nằm trong khu vực nhiệt đới ẩm, khí hậu Việt Nam rất thuận lợi cho việc phát sinh, phát triển của dông sét. Số ngày dông có ở Việt Nam trên nhiều khu vực thuộc loại khá lớn. Số ngày dông cực đại là 113,7 (tại Đồng Phú), số giờ dông cực đại là 433,18 giờ tại Mộc Hóa. Hàng năm, ngành điện Việt Nam có khoảng vài ngàn sự cố, 50% trong số đó là do sét gây ra. Đặc biệt ngày 4/6/2001, sét đánh nổ một máy cắt 220 KV của Nhà máy Thủy điện Hòa Bình. Sự cố đã khiến lưới điện miền Bắc bị tan rã mạch, nhiều nhà máy điện bị tách ra khỏi hệ thống. Mọi thiết bị điện khi lắp đặt vào lưới điện đều được lựa chọn theo điện áp định mức của lưới điện mà thiết bị được đấu vào. Tuy nhiên, trong thực tế vận hành, đôi lúc xảy ra quá điện áp tạm thời do nhiều nguyên nhân gây ra, có thể do các sự cố chạm đất, do thao tác đóng cắt, hoặc do sét đánh trực tiếp hay lan truyền. Trong đó quá điện áp do sét là nguy hiểm nhất, bởi vì quá điện áp này rất lớn dễ dàng gây ra phóng điện đánh thủng cách điện và phá hủy thiết bị, ảnh hưởng đến toàn hệ thống. Đặc biệt trong những năm gần đây với sự gia tăng sử dụng các trang thiết bị điện tử công suất trên lưới phân phối như thiết bị bù SVC, thiết bị 2 SCADA, bộ UPS, bộ lọc sóng hài .. Các thiết bị này rất nhạy cảm với sự thay đổi của điện áp và có độ dự trữ cách điện rất thấp. 2. Tính cấp thiết của đề tài Hiện nay, chống sét van thường được sử dụng để bảo vệ chống quá áp do sét đánh trực tiếp vào đường dây hay sét cảm ứng trên đường dây. Và để đánh giá hiệu quả bảo vệ của chống sét van cần có các thử nghiệm điện áp dư ứng với các xung sét tiêu chuẩn. Điều này chỉ có thể thực hiện tại các trung tâm thử nghiệm chuyên ngành. Hơn nữa, các bài toán nghiên cứu quá độ trong hệ thống điện với rất nhiều thành phần khác nhau như máy biến áp, máy cắt, đường dây, tải,…và chống sét van cũng đòi hỏi mô hình chống sét van có mức độ tương thích với nguyên mẫu. Nhưng cho đến nay việc mô hình hóa và mô phỏng các chống sét van trong mạng phân phối trung áp ở Việt Nam hầu như còn bỏ ngỏ, ngay cả ở các trường đại học lớn, các phần mềm mô phỏng và tài liệu tham khảo rất ít ỏi và hạn chế. Một trong những khó khăn khi tiến hành mô phỏng các chống sét van trung áp là các mô hình chưa có hay nếu có thì được giữ bản quyền bởi các hãng sản xuất thiết bị chống sét van nước ngoài, cũng như mô hình các máy phát xung sét chuẩn cũng không được xây dựng trong phần mềm Matlab, vốn là phần mềm thông dụng nhất hiện nay. Hiện nay, cũng có nhiều nhà nghiên cứu và một số nhà sản xuất thiết bị chống sét lan truyền trên đường dây trung thế đã đi sâu nghiên cứu và đề ra mô hình thiết bị chống sét lan truyền với mức độ chi tiết và quan điểm xây dựng mô hình khác nhau. Tuy nhiên, tùy thuộc vào phạm vi ứng dụng của mỗi mô hình, và các yêu cầu về mức độ tương đồng giữa mô hình và nguyên mẫu mà các phương pháp xây dựng mô hình và mô phỏng các phần tử chống sét lan truyền vẫn còn tiếp tục nghiên cứu và phát triển. Hơn nữa, vấn đề khó khăn trong xây dựng mô hình là xác định các thông số của mô hình mà các thông số được cho trong catalogue của nhà chế tạo thường không đầy đủ.
- Xem thêm -

Tài liệu liên quan