Vế giải tích của công thức vết trên SL (2, R)

  • Số trang: 41 |
  • Loại file: PDF |
  • Lượt xem: 70 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ TRANG VẾ GIẢI TÍCH CỦA CÔNG THỨC VẾT TRÊN SL(2, R) Chuyên nghành: TOÁN GIẢI TÍCH Mã số: 60.46.0102 LUẬN VĂN THẠC SỸ TOÁN HỌC Người hướng dẫn khoa học GS. TSKH. ĐỖ NGỌC DIỆP HÀ NỘI - NĂM 2014 Mục lục Mở đầu 2 1 Kiến thức chuẩn bị 5 1.1 Cấu trúc của SL(2, R) . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Toán tử bất biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Chuỗi Eisenstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Khai triển Fourier của hàm tự đẳng cấu . . . . . . . . . . . . . . . 11 2 Lý thuyết phổ của L2 (Γ \ SL(2, R)) 13 2.1 Chuỗi Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Phổ liên tục và phổ rời rạc. . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Phổ liên tục và chuỗi Eisenstein . . . . . . . . . . . . . . . . . . . 21 2.4 Công thức tổng Poisson: . . . . . . . . . . . . . . . . . . . . . . . 28 3 Công thức tính vết trên SL(2, R) 34 3.1 Phân tích phổ của biểu diễn chính quy . . . . . . . . . . . . . . . . 34 3.2 Công thức tính vết . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Kết luận 39 Tài liệu tham khảo 40 1 Mở đầu Biểu diễn của SL(2, R) mà chúng tôi quan tâm trong luận văn này gồm các chuỗi biểu diễn bất khả quy và biểu diễn trong L2 (Γ \ SL(2, R). Trong đó các chuỗi biểu diễn bất khả quy bao gồm biểu diễn chuỗi chính, biểu diễn chuỗi rời rạc, giới hạn chuỗi rời rạc, biểu diễn hữu hạn chiều và biểu diễn tầm thường. Biểu diễn được xác định duy nhất nhờ vết của biểu diễn. Biểu diễn chính quy được phân tích thành tổng rời rạc và tích phân liên tục các biểu diễn bất khả quy. Phần rời rạc của biểu diễn chính quy của nhóm SL(2, R) được phân tích thành tổng các biểu diễn bất khả quy. Do vậy công thức vết của phần rời rạc của biểu diễn chính quy được viết thành tổng các vết của từng biểu diễn bất khả quy nhọn và biểu diễn hữu hạn chiều. Việc tính vết của biểu diễn trên SL(2, R) quy về việc tính vết của biểu diễn bất khả quy. Trong bài toán tìm vết của biểu diễn trên L2 (Γ \ SL(2, R)) ta quan tâm phân tích thành phần rời rạc của biểu diễn chính quy ra tổng các biểu diễn chuỗi rời rạc, giới hạn chuỗi rời rạc và biểu diễn hữu hạn chiều. Công thức vết tương ứng cho ta vế giải tích của công thức vết theo các công trình nghiên cứu của Arthur – Selberg, Langlands, Shelstad. Các phương pháp nghiên cứu sử dụng trong luận văn là phương pháp giải tích tính vết toán tử tích phân với hạt nhân. Các kết quả chính trình bày trong luận văn là: Đưa ra công thức tính vết trên SL(2, R). Cấu trúc luận văn gồm 3 chương: Chương 1 trình bày tóm tắt một số kiến thức chuẩn bị. Chương 2 trình bày về phổ liên tục và phổ rời rạc của các toán tử tuyến tính và công thức vết của các toán tử tích phân có nhân trên nhóm SL(2, R). Chương 3 trình bày công thức tính vết trên SL(2, R) cho các biểu diễn chính quy như là tổng của các vết của từng biểu diễn bất khả quy nhọn. Do thời gian thực hiện luận văn không nhiều, kiến thức còn hạn chế nên khi 2 làm luận văn không tránh khỏi những hạn chế và sai sót. Tác giả mong nhận được sự góp ý và ý kiến phản biện của quý thầy cô và bạn đọc. Tôi xin chân thành cảm ơn! Hà Nội, tháng 11 năm 2014. Học viên Nguyễn Thị Trang 3 Lời cảm ơn Luận văn này được hoàn thành dưới sự hướng dẫn tận tình của GS. TSKH. Đỗ Ngọc Diệp. Thầy đã dành nhiều thời gian quý báu của mình để kiên trì hướng dẫn cũng như giải đáp các thắc mắc của tôi trong suốt cả quá trình làm luận văn. Tôi muốn bày tỏ lòng biết ơn chân thành và sâu sắc nhất tới người thầy của mình. Tôi cũng muốn gửi tới toàn thể các thầy cô Khoa Toán - Cơ - Tin học trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, các thầy cô đã đảm nhận giảng dạy hai khóa Cao học 2011 - 2013 và 2012 - 2014, đặc biệt là các thầy cô tham gia tham gia giảng dạy nhóm giải tích 2011 - 2013 lời cảm ơn chân thành đối với công lao dạy dỗ trong suốt thời gian của khóa học. Tôi xin cám ơn gia đình, bạn bè, đồng nghiệp, các anh chị em trong nhóm Cao học Toán 2011-2013, đặc biệt là các anh chị em nhóm Giải tích đã quan tâm, giúp đỡ, tạo điều kiện cũng như động viên tinh thần để tôi có thể hoàn thành khóa học này. 4 Chương 1 Kiến thức chuẩn bị 1.1 Cấu trúc của SL(2, R) Kí hiệu G = SL(2, R) là nhóm trên trường số thực R.  a G = SL(2, R) = c các ma trận vuông cấp 2 có định thức bằng 1   b d | a, b, c, d ∈ R, ad − bc = 1 . Kí hiệu H là nửa trên của mặt phẳng phức (còn được gọi là nửa mặt phẳng Poincaré): H = {x + iy, x, y ∈ R, y > 0} . Kí hiệu  g ∈ SL(2, R) : g t g = 1    cos θ − sin θ = sin θ cos θ | θ ∈ R . K = SO(2) = là nhóm con đóng lớn nhất của SL(2, R). Nhóm G tác động lên H bởi phép biến đổi phân tuyến tính:   az + b a b z → gz = , với g = c d ∈ G, z ∈ H. cz + d Ánh xạ G → H đồng nhất G/K với H g → gi 5 Trên nửa mặt phẳng H, ta có một cấu trúc Riemannian được xác định bởi ds2 = 1 (dx2 + dy 2 ), 2 y đây là tích vô hướng duy nhất G-bất biến trên H. Metric cho ta độ đo G-bất biến trên H được hiểu là 1 dz = 2 dxdy. y Các phần tử của G: Xét |g − λI| = 0, với g ∈ G, I là ma trận đơn vị cấp 2, λ là giá trị riêng nếu có của g . Ta có: a − λ b c d − λ = 0 ⇔ λ2 − (a + d)λ + ad − bc = 0 ⇔ λ2 − tr(g)λ + 1 = 0, với tr(g) = a + d. • Nếu |tr(g)| < 2 thì g được gọi là elliptic và g có dạng chuẩn Jordan là   ε 0 0 ε , ε ∈ C, |ε| = 1. • Nếu |tr(g)| = 2 thì g được gọi là parabolic và g có dạng chuẩn Jordan là   1 x 0 1 , x ∈ R. • Nếu |tr(g)| > 2 thì g được gọi là hyperbolic và g có dạng chuẩn Jordan là   t 0 0 t−1 , t ∈ R. Phân tích Iwasawa: Với mỗi phần tử g ∈ G, ta có thể phân tích g duy nhất thành dạng g = n(x)a(y)k(θ), với n(x) ∈ N, a(y) ∈ A, k(θ) ∈ K, 6 trong đó    1 x N= 0 1 , x∈R ,   √ y 0 √ −1 , y ∈ R, y > 0 , A= y 0    cos θ − sin θ K= sin θ cos θ , θ ∈ [0, 2π] . Ta có G = N AK. Phân tích Cartan: Với mỗi phần tử g ∈ G, tồn tại k(θ), k(θ0 ) ∈ K và a(y) ∈ A, sao cho g = k(θ)a(y)k(θ0 ). Ta có G = KAK. Nhóm rời rạc: Một nhóm rời rạc là nhóm con, rời rạc của nhóm P SL(2, R) = G/ {±I} , với I là ma trận đơn vị cấp 2 của SL(2, R). ±I là các phần tử duy nhất trong SL(2, R) cảm sinh ra ánh xạ đồng nhất trên H, G/ {±I} là nhóm các phép biến đổi phân tuyến tính. Γ được gọi là nhóm rời rạc có diện tích hữu hạn nếu độ đo của Γ \ H là hữu hạn. Điểm nhọn: Kí hiệu Γ là một nhóm con rời rạc của nhóm P SL(2, R). Cho κ là số thực hoặc ∞ và Γκ là nhóm con dừng của κ trong Γ: Γκ = {σ ∈ Γ|σκ = κ} . Khi đó ta gọi κ là một điểm nhọn của R nếu Γκ được sinh bởi một phần tử parabolic. Các điểm nhọn tương đương là các tương ứng một - một của các lớp liên hợp của nhóm con cực đại của Γ có một phần tử parabolic là phần tử sinh. 7 Nếu Γ là có diện tích hữu hạn thì số các điểm nhọn tương đương là hữu hạn. Độ đo trên G: Cho γ ∈ G, nhóm tâm hóa của phần tử γ trong G, kí hiệu là Gγ ,  Gγ = g ∈ G|g −1 γg = γ . Một độ đo µ trên Gγ \ G được gọi là G- bất biến phải nếu µ(Ax) = µ(A) với mọi tập Borel A trong Gγ \ G và mọi x ∈ G. Độ đo G- bất biến trái được định nghĩa tương tự. Một độ đo µ trên G gọi là độ đo Haar nếu nó bất biến dưới tác động của G. Biểu diễn của SL(2, R): Định nghĩa 1.1. Cho G là một nhóm (GL(2, R) hoặc SL(2, R), E là không gian Hilbert. Một biểu diễn của G trong E là một đồng cấu nhóm từ G vào nhóm GL(E) các tự đẳng cấu tuyến tính liên tục của E . π : G → GL(E), sao cho với mỗi véc tơ v ∈ E thì ánh xạ π xác định bởi x 7→ π(x)v là ánh xạ liên tục. Biểu diễn π được gọi là unita nếu π(x) là unita với mọi x thuộc G. Định nghĩa 1.2. Cho π là biểu diễn của nhóm G trong không gian Hilbert E , W là một không gian con của E . Ta nói W là G- bất biến nếu π(x)W ⊂ W với mọi x ∈ G. Định nghĩa 1.3. Một biểu diễn π : G → GL(E) được gọi là bất khả quy nếu E không có không gian con bất biến nào khác ngoài {0} và E . Cho π là biểu diễn của G trong không gian Hilbert E, giả sử rẳng M d En , E=    cos θ − sin θ trong đó En là không gian riêng thứ n của K = sin θ cos θ , θ ∈ [0, 2π] . Phần tử v ∈ E là K - hữu hạn nếu π(K)v sinh ra một không gian hữu hạn chiều. 8 1.2 Toán tử bất biến Tiếp theo chúng ta sẽ nghiên cứu không gian Hilbert các hàm bình phương khả tích trên D = Γ \ H. Nếu độ đo của D hữu hạn thì các hằng số là các phần tử của L2 (Γ \ H). Định nghĩa 1.4. Toán tử tích phân được định nghĩa bởi Z (Lf )(z) = k(z, z 0 )f (z 0 )dz 0 , H được gọi là toán tử tích phân có nhân với hàm hạt nhân k(z, z 0 ). Với σ ∈ G, ánh xạ f (z) → f (σz) xác định một toán tử tuyến tính và được kí hiệu là Tσ . Một toán tử L được gọi là xác định toán tử hạt nhân bất biến nếu nó giao hoán với tất cả Tσ . Để một hàm hạt nhân k(z, z 0 ) là toán tử bất biến thì điều kiện cần và đủ là k(σz, σz 0 ) = k(z, z 0 ), ∀σ ∈ G.  2  ∂ ∂2 2 Ta có 4 = y + là toán tử vi phân G - bất biến trên H có bậc ∂x2 ∂y 2 thấp nhất và mọi toán tử vi phân G - bất biến trên H là một đa thức của 4 với các hệ số hằng. • Ta có một phép chiếu chính tắc: G → H = G/K , khi đó một hàm xác định trên H luôn có thể xem như một hàm trên G. Nói riêng, cặp điểm bất biến xác định hàm k(g, g 0 ) trên G × G. Tồn tại một hàm F trên G sao cho F (g 0−1 g) = k(g, g 0 ), và hàm F có tính chất đặc biệt F (kgk 0 ) = F (g) với mọi k, k 0 ∈ K. Nói cách khác, F là hàm không đổi trên tất cả các lớp kép KgK . Ngược lại, bất kì hàm F nào trên G không đổi trên mọi lớp kép KgK đều thu được bằng cách này. Ta sẽ định nghĩa hàm trên các cặp điểm bất biến trên H bởi k(g, g 0 ) = F (g 0−1 g). 9 Nếu f là một hàm trên H được xem như một hàm trên G. Khi đó Z Z Z 0 0 0 0 0−1 0 k(z, z )f (z )dz = f (g )F (g g)dg = f (gg 0 )F (g 0−1 )dg 0 , G H G trong đó dg 0 là độ đo Haar trên G sao cho độ đo của K được chuẩn hóa là 1. Điều này có nghĩa là toán tử tích phân được xác định bởi k là ánh xạ f → f ∗ F , trong đó ∗ là kí hiệu tích chập trên G.     a b d −b Ta có σ = c d ∈ G, nghịch đảo của σ là σ −1 = −c a , ta thấy rằng KgK = Kg −1 K , với ∀g ∈ G. Do mỗi hàm F trên G là hàm không đổi trên mọi lớp kép KgK nên ta có F (g) = F (g −1 ). Bây giờ chúng ta đưa ra hai định lý quan trọng là hàm riêng của toán tử Laplace là hàm riêng của toán tử tích phân bất biến. Định lí 1.1. Cho f (z) là hàm trên H thỏa mãn 4f = λf , trong đó 4 là toán tử Laplace, λ là số phức và cho L là toán tử tích phân bất biến. Khi đó, tồn tại hằng số ΛL (λ) chỉ phụ thuộc vào L và λ và không phụ thuộc vào hàm riêng lẻ f nào sao cho Lf = ΛL (λ)f . Định lí 1.2. Cho f (z) là hàm trên H với hàm riêng của toán tử tích phân bất biến được xác định bởi cặp điểm bất biến k(z, z 0 ) có tính chất tương tự hàm F (g) thuộc C∞ và có giá compact. Khi đó f (z) là hàm riêng của toán tử Laplace trên H. Xem [3]. 1.3 Chuỗi Eisenstein Định nghĩa 1.5. (Chuỗi Eisenstein) Cho Γ là nhóm con rời rạc có diện tích hữu hạn tác động lên nửa trên của mặt phẳng phức và cho {κ1 , κ2 , ..., κh } là tập tất cả các điểm nhọn của Γ đôi một không tương đương. Tập hợp này được gọi là tập các điểm nhọn không tương đương. Cho Γi là nhóm con dừng của κi trong Γ, khi đó: Γi = {σ ∈ Γ|σκi = κi } . 10 Cố định tử σi ∈ G = SL(2, R) sao cho σi ∞ = κi và σi−1 Γi σi = Γ0 với  phần 1 b Γ0 = 0 1 , kí hiệu y(z) là phần ảo của z ∈ H. Chuỗi Eisenstein Ei (z, s) của điểm nhọn κi được định nghĩa bởi : X Ei (z, s) = y(σi−1 σz)s , với σ ∈ Γi \ Γ trong đó s là biến phức. Chuỗi Eisenstein Ei (z, s) là các hàm hai biến z và s, trong đó z là một điểm trên nửa mặt phẳng phức H, s là biến phức. Ei (z, s) là hàm tự đẳng cấu với biến z vì vậy Ei (z, s) là bất biến đối với nhóm Γ nào đó của phép biến đổi phân tuyến tính. Nói cách khác Ei (σz, s) = Ei (z, s), với σ ∈ Γ. 1.4 Khai triển Fourier của hàm tự đẳng cấu Định nghĩa 1.6. Cho Γ là nhóm rời rạc, hàm f (z) được gọi là hàm tự đẳng cấu trên Γ nếu f (σz) = f (z) với ∀σ ∈ Γ. Định nghĩa 1.7. (Khai triển Fourier của hàm tự đẳng cấu tại một điểm nhọn). Nếu κ là điểm nhọn của Γ thì tồn tại σ 0 ∈ G sao cho σ 0 ∞ = κ sao cho σ 0−1 Γκ σ 0 = Γ0 , trong đó Γκ = {σ ∈ Γ| σκ = κ} là nhóm con dừng của κ trong Γ. Nếu f (z) là hàm tự đẳng cấu thì khi đó f (σ 0 z) là hàm tuần hoàn với chu kì 1, tức là f (σ 0 (z + 1)) = f (σ 0 z), ∀z ∈ C. Ta đặt e(x) = e √ 2π −1x và am (y) = R1 f (σ 0 z)e−2π √ −1mx dx, với z = x+iy , x, y ∈ R, 0 thì ta có một khai triển chuỗi Fourier: X 0 f (σ z) = am (y)e2πimx , m ∈ Z, m với f thỏa mãn điều kiện khả tích. Biểu thức trên được gọi là khai triển Fourier của f tại điểm nhọn κ. Các số am (y) là các hệ số Fourier. 11 Định nghĩa 1.8. (Khai triển Fourier của chuỗi Eisenstein tại một điểm nhọn). Kí hiệu Γ là nhóm rời rạc có diện tích hữu hạn và {κ1 , κ2 , ..., κh } là tập đầy đủ các điểm nhọn không tương đương thuộc Γ. Khai triển Fourier của Ei (z, s) tại κj , (j = 1, 2, ..., h) được cho bởi dạng √ X 2π −1mx aij,m (y, s)e Ei (σj z, s) = , m ∈ Z, m với aij,m = R1 Ei (σj z, s)e−2πmx dx. 0 Kết quả tính toán trong trường hợp chung cho ta công thức: 1 1 aij,m (y, s) = 2π s |m|s− 2 Γ(s)−1 y 2 Ks− 21 (2π|m|y)ϕij,m (s), (m 6= 0) aij,0 (y, s) = δij y s + ϕij (s)y 1−s ,     P 1 P md ∗ ∗ với ϕij,m (s) = e( c ) , c > 0, d mod c, c d ∈ σi−1 Γσj . 2s c |c| d Và 1 1 Γ(s − 2) ϕij,0 (s). ϕij (s) = π 2 Γ(s) Ở đây Ks là hàm Bessel định nghĩa bởi: Ks (z) = π I−s (z) − Is (z) , 2 sinsπ ( 12 z)s+2m Với Is (z) = . m=0 m!Γ(s + m + 1) ∞ P Ma trận Φ(s) = (ϕij (s)) của các hàm xuất hiện trong các hệ số của khai triển Fourier của chuỗi Eisenstein được gọi là ma trận số hạng hằng hệ số tự do. Ma trận số hạng hằng là một ma trận đối xứng. 12 Chương 2 Lý thuyết phổ của L2(Γ \ SL(2, R)) 2.1 Chuỗi Theta Kí hiệu Γ là nhóm rời rạc có diện tích hữu hạn và {κ1 , κ2 , ..., κh } là tập đầy đủ các điểm nhọn không tương đương thuộc Γ.   1 x Cho n(x) = 0 1 , x ∈ R và ψ(x) là hàm liên tục trên nửa mặt phẳng H sao cho ψ(n(x)z) = ψ(z), ∀x ∈ R. Khi đó, ta định nghĩa phép biến đổi Mellin Lψ (z, s) của ψ bởi Z∞ Lψ (z, s) = ψ(a(y)z)y −s dy , y 0 √ trong đó a(y) =  y 0 √ , y ∈ R, y > 0. 0 ( y)−1 Ta kí hiệu ψ(a(y)i) bởi ψ(y), vì vậy ψ(z) = ψ(y(z)), ∀y(z) = Im z. Giá trị Lψ (i, s) sẽ được kí hiệu đơn giản là Lψ (s), khi đó ta có Lψ (z, s) = Lψ (s)y(z)s , và Z∞ Lψ (s) = ψ(y)y −s 0 13 dy . y Với mỗi hàm ψ(z) ở trên, ta đặt θi,ψ (z) = X ψ(σi−1 σz). σ∈Γi \Γ Nếu Γ được rút gọn tại ∞ và nếu κ1 = ∞, ta có X ψ(σz), θψ (z) = σ∈Γ0 \Γ  với Γ0 =    1 b n(b) = 0 1 , b ∈ Z . Nhận xét 2.1. • Hàm ψ trên N \ H xác định một tự đẳng cấu θi,ψ (z). • Ta gọi hàm θi,ψ là chuỗi theta không đầy đủ. • ψ được xem như một hàm của y > 0. • ψ trong chuỗi theta không đầy đủ luôn được giả thiết là giảm nhanh cả khi y → 0 và y → ∞. Trong trường hợp đó θi,ψ thuộc D = L2 (Γ \ H). • Không gian con đóng nhỏ nhất của D chứa tất cả các θi,ψ được kí hiệu là Θ. • Không gian con đóng nhỏ nhất của D chứa các điểm nhọn với tác động Γ được kí hiệu là D0 . • Không gian các hàm tự đẳng cấu f ∈ D chứa các số hạng hằng trong khai triển Fourier của f tại κi bằng 0 với mọi i = 1, 2, ... được kí hiệu là D00 . Ta có D00 ⊃ D0 , ta sẽ chỉ ra ở phần tiếp theo rằng D00 = D0 . Định lí 2.1. Cho Γ là một nhóm rời rạc có diện tích hữu hạn, khi đó phần bù trực giao trong D = L2 (Γ \ H) của không gian Θ của các chuỗi theta không đầy đủ là không gian D00 . Chứng minh. 14 Ta có: Z θi,ψ (z)f (z)dz (θi,ψ , f ) = Γ\H Z ψ(σi−1 z)f (z)dz = Γi \H Z = ψ(z)f (σi z)dz Γ0 \H Z∞ = Z1 ψ(y). 0 f (σi z)dx dy . y2 0 Vì vậy, để (θi,ψ , f ) = 0, ∀θi,ψ ∈ Θ, điều kiện cần và đủ là Z1 f (σi z)dx = 0, ∀i. 0 Dễ thấy  và D là vô hạn chiều. Ta sẽ chỉ ra rằng toán tử Laplace  2rằng cả2 Θ ∂ ∂ + có một phổ rời rạc trong D00 . 4 = y2 2 2 ∂x ∂y Kí hiệu F (z) là một hàm trên H, F có thể được xem như một hàm trên K \ G/K . F (z) là một hàm bất biến với phép biến đổi z → σz, σ ∈ K = SO(2). k(z, z 0 ) là cặp điểm được xác định bởi F . Nếu z = gi, z 0 = g 0 i (g, g 0 ∈ G) đặt k(z, z 0 ) = F (g 0−1 g). Với toán tử tích phân bất biến xác định bởi k(z, z 0 ), ta có Z Z X 0 0 0 K(z, z )f (z )dz = k(z, σz 0 )f (z 0 )dz 0 , Γ\H H σ∈Γ với f là hàm tự đẳng cấu trên nhóm rời rạc Γ. Nói cách khác, nếu f là tự đẳng cấu, tích phân xác định bởi k(z, z 0 ) có cùng kết quả với toán tử tích phân Z f → K(z, z 0 )f (z 0 )dz 0 D 15 trên miền cơ bản, trong đó K(z, z 0 ) = P κ(z, σz 0 ). σ∈Γ Từ các Định lý 1.1 và Định lý 1.2, phổ rời rạc của toán tử Laplace được xác định R đầy đủ nếu chúng ta biết phổ của mỗi toán tử tích phân f → K(z, z 0 )f (z 0 )dz 0 , D hàm hạt nhân K được định nghĩa trên K \ G/K thuộc C ∞ và có giá compact. Phương pháp cơ bản để nghiên cứu phổ của toán tử tích phân được đưa ra bởi định lý sau, định lý chỉ ra cách tìm dạng của điểm nhọn của các hàm tự đẳng cấu. Định lí 2.2. Cho Γ là một nhóm rời rạc có diện tích hữu hạn; {κ1 , κ1 , ..., κh } là tập hợp đầy đủ các điểm nhọn của Γ. Γi là nhóm con dừng trong Γ của κi . Kí hiệu Θ là không gian đầy đủ của chuỗi theta, D = Θ ⊕ D00 là phân tích trực giao D = L2 (Γ \ H). Với mỗi cặp điểm bất biến k(z, z 0 ), đặt 0 H(z, z ) = h X Hi (z, z 0 ), i=1 Hi (z, z 0 ) = ∞ X Z k(z, σi n(x)σi−1 .σz 0 )dx, σ∈Γi \Γ−∞ với σi là một phép biến đổi tuyến tính trong G sao cho   1 x σi−1 Γi σi = Γ0 = {n(b)| b ∈ Z} , n(x) = 0 1 , x ∈ R. Khi đó, ta có: Z H(z, z 0 )f (z 0 )dz 0 = 0, D = Γ \ H, f ∈ D00 . D Chứng minh. 16 Xét N = {n(x), x ∈ R}. Khi đó Z Hi (z, z 0 )f (z 0 )dz 0 D Z∞  Z = X  D  κ(z, σi n(x)σi−1 .σz 0 )dx f (z 0 )dz 0 σ∈Γi \Γ −∞ Z∞  Z = κ(z, σi n(x)σi−1 z 0 )dx f (z 0 )dz 0  −∞ Γi \H  Z =  Z∞  Γ0 \H  κ(z, σi n(x)z 0 )dx f (σi z 0 )dz 0 −∞  Z∞  0 dy = κ(z, σi n(x)n(x )a(y )i)dx f (σi n(x0 )a(y 0 )i)dx0 2 y N \H Γ0 \N −∞   ∞   Z Z Z 0   dy 0  κ(z, σi n(x)a(y )i) dx  = f (σi n(x0 )a(y 0 )i)dx0  2 y Z Z 0 0  N \H −∞ Γ0 \N = 0, 0 0 0 0 √  y0 √ 0 . 0 ( y 0 )−1 với z = x + iy , a(y ) = Định lý chỉ ra rằng phổ của toán tử tích phân f → R K(z, z 0 )f (z 0 )dz 0 trong D D00 chính là phổ của K(z, z 0 ) → H(z, z 0 ). Định lí 2.3. Xét D00 như trong Định lý 2.1. Khi đó toán tử bất biến xác định bởi một cặp điểm bất biến k(z, z 0 ) từ D00 vào chính nó. Chứng minh. Theo Định lý 2.1 ta có Z1 f (σi n(x)z)dx = 0, f ∈ D00 . 0 17 Đặt Z f1 (z) = k(z, z 0 )f (z 0 )dz 0 , H khi đó ta có Z1 f (σi n(x)z)dx 0 Z1 Z = k(σi n(x), z 0 )f (z 0 )dz 0 dx 0 H Z1 Z 0 H Z  1  Z k(z, z 0 )  f (σi n(x)z 0 )dx dz 0 = = H k(z, n(x)−1 σi−1 z 0 )f (z 0 )dz 0 dx 0 = 0. 2.2 Phổ liên tục và phổ rời rạc. Tiếp theo ta chỉ ra D00 = D0 và không gian Θ của các chuỗi theta không đầy đủ chứa một số hữu hạn các tổ hợp tuyến tính chỉ phụ thuộc vào các hàm riêng của 4. Điều này có nghĩa là 4 chỉ có một phổ rời rạc trong D00 = D0 , và tất cả các phổ liên tục trong Θ. Mệnh đề 2.1. Cho K(z, z 0 ) là hạt nhân của hàm xác định bởi K(z, z 0 ) = P k(z, σz 0 ), hàm F được định nghĩa bởi cặp điểm bất biến k(z, z 0 ) thuộc C∞ σ∈Γ và có giá compact, Γ là nhóm rời rạc có diện tích hữu hạn, {κ1 , κ2 , ..., κh } là họ đầy đủ các điểm nhọn trên biên của miền cơ bản D của Γ, H(z, z 0 ) xác định như Định lý 2.2. Khi đó K ∗ (z, z 0 ) = K(z, z 0 ) − H(z, z 0 ) bị chặn trên D × D. Định lí 2.4. Cho Γ là nhóm rời rạc có diện tích hữu hạn D00 là không gian gồm các hàm tự đẳng cấu trên Γ với mỗi số hạng hằng của khai triển Fourier bằng 0 tại 18 các điểm nhọn. Khi đó D00 trùng với không gian con đóng D0 của D = L2 (Γ \ H) xác định bởi các điểm nhọn. Chứng minh. Kí hiệu L là toán tử tích phân bất biến được định nghĩa bởi các cặp điểm bất biến k(z, z 0 ) thuộc C∞ , có giá compact theo biến z khi cố định biến z’. Khi đó, theo Định lý 2.3 ta có LD00 ⊂ D00 . Theo mệnh đề 2.1, hàm hạt nhân K ∗ được định nghĩa là toán tử compact ta có Z Z |K ∗ (z, z 0 )|2 dzdz 0 < ∞, H H và theo Định lý 2.2 không gian LD00 bằng ảnh của D00 qua toán tử tích phân trên Γ \ H định nghĩa bởi K ∗ . Toán tử L chuẩn tắc vì liên hợp của nó được định nghĩa bởi k(z, z 0 ). Do đó D00 được xác định bởi hàm riêng của L. Xét với tất cả các k có thể, ta có một họ các toán tử chuẩn tắc giao hoán với nhau và D00 xác định bởi các hàm riêng tương ứng của chúng. Theo Định lý 1.2 ta có D00 ≡ D0 . Phổ của 4 trong Θ là liên tục trừ trường hợp Θ có thể chứa một số hữu hạn các hàm riêng không phụ thuộc tuyến tính, các hàm riêng này không phải dạng nhọn. Trường hợp này được trình bày trong định lý sau: Định lí 2.5. Cho Γ là nhóm con rời rạc có diện tích hữu hạn và {κ1 , κ2 , ..., κh } b là không gian con của là tập đầy đủ các điểm nhọn không tương đương của Γ. Θ không gian Θ của các chuỗi theta không đầy đủ xác định bởi hàm riêng của 4 trong Θ. Khi đó, Θ được xác định bởi thặng dư của chuỗi Eisenstein Ei (z, s) tại 1 các điểm nhọn κi và tại các cực của φ( s) trên khoảng < s ≤ 1, trong đó ϕii (s) 2 là i − th các phần tử trên đường chéo của ma trận số hạng hằng φ(s) của các chuỗi Eisenstein. Chứng minh. Phần thặng dư θi (z) của Ei (z, s) tại cực điểm S0 của ϕii (s) là b . Ta có θi (z) là một hàm riêng của 4 nó thuộc vào L2 (ΓH) một phần tử của Θ vì nó là giới hạn của ϕ(s)Ei (z, s)khi s → S0 và θi là trực giao với tất cả các dạng nhọn. 19
- Xem thêm -