Tương quan từ - cấu trúc trong hệ phân tử Mn4

  • Số trang: 58 |
  • Loại file: PDF |
  • Lượt xem: 75 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Ngô Thanh Tâm TƢƠNG QUAN TỪ - CẤU TRÚC TRONG HỆ PHÂN TỬ Mn4 LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2011 1 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Ngô Thanh Tâm TƢƠNG QUAN TỪ - CẤU TRÚC TRONG HỆ PHÂN TỬ Mn4 Chuyên ngành: Vật lý nhiệt Mã số: 60.44.09 LUẬN VĂN THẠC SĨ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC TS. NGUYỄN ANH TUẤN Hà Nội – 2011 2 LỜI CẢM ƠN Lời đầu tiên tôi xin bày tỏ lòng biết ơn sâu sắc nhất đến thầy giáo TS. Nguyễn Anh Tuấn, cảm ơn thầy đã tận tình hƣớng dẫn, bảo ban tôi trong suốt quá trình tôi làm luận văn. Sau đấy tôi xin gửi lời cảm ơn chân thành nhất đến các thầy cô giáo trong bộ môn Vật lý Nhiệt Độ Thấp, Khoa Vật lý và các thầy cô giáo trƣờng Đại học Khoa học Tự nhiên đã cung cấp cho tôi thật nhiều kiến thức để làm hành trang trong cuộc sống. Cuối cùng tôi gửi lời cảm ơn thân thƣơng nhất đến ba mẹ, anh em và các bạn đã luôn động viên giúp đỡ tôi trong suốt thời gian qua. Hà nội, ngày 09 tháng 12 năm 2011 Học viên Ngô Thanh Tâm MỤC LỤC MỞ ĐẦU ................................................................................................................ 1 CHƢƠNG 1. GIỚI THIỆU VỀ HỆ NAM CHÂM ĐƠN PHÂN TỬ Mn4 ............ 7 1.1. Nghiên cứu thực nghiệm trƣớc đây về hệ nam châm đơn phân tử Mn4 ..... 8 1. 2. Nghiên cứu lý thuyết trƣớc đây về hệ nam châm đơn phân tử Mn4 ........ 11 CHƢƠNG 2. PHƢƠNG PHÁP NGHIÊN CỨU ................................................. 12 2.1. Giới thiệu về lý thuyết phiếm hàm mật độ (DFT) .................................... 12 2.1.1. Bài toán của hệ nhiều hạt ................................................................... 13 2.1.2 Ý tƣởng ban đầu về DFT: Thomas-Fermi và các mô hình liên quan . 14 2.1.3. Đinh ̣ lý Hohenberg-Kohn thứ nhất .................................................... 20 2.2. Phƣơng pháp tính toán .............................................................................. 25 CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ....................................................... 26 3.1. Các đại lƣợng đặc trƣng của hệ phân tử Mn4 ........................................... 26 3.1.1. Tham số tƣơng tác trao đổi Mn3+-Mn4+: JAB ..................................... 26 3.1.2. Góc tƣơng tác trao đổi:  .................................................................. 27 3.1.3. Khoảng cách Mn3+-Mn4+: dAB ........................................................... 28 3.1.4. Độ bất định xứ của điện tử dz2: mA................................................. 28 3.1.5. Thừa số méo mạng Jahn-Teller: fJT ................................................... 29 3.2. Mô hình phân tử Mn4 ................................................................................ 30 3.2.1. Đơn giản hóa nhóm dbm ................................................................... 30 3.2.2. Thay thế các phối tử 3-O, 3-Cl và CH3COO.................................. 32 3.3. Tƣơng quan JAB –  .................................................................................. 34 3.4. Tƣơng quan JAB – dAB ............................................................................... 37 3.5. Tƣơng quan JAB – m ............................................................................... 39 3.6. Không gian tƣơng tác trao đổi mạnh và tƣơng quan dAB –  ................... 41 3.7. Tƣơng quan JAB – fJT ................................................................................. 43 KẾT LUẬN .......................................................................................................... 49 TÀI LIỆU THAM KHẢO .................................................................................... 50 DANH MỤC BẢNG BIỂU THEO CHƢƠNG  Mở đầu Hình 1: Bức tranh về gia đình nam châm. Hình 2: Hàng rào năng lượng đối với sự đảo mômen từ của SMMs. Hình 3: Cấu trúc hình học của phân tử Mn84. Phần trong hình chữ nhật mô tả đơn vị cấu trúc của phân tử Mn84, mỗi đơn vị cấu trúc gồm 14 nguyên tử Mn. Các nguyên tử H được lược bỏ đi cho dễ nhìn. Nguyên tử Mn màu xanh, nguyên tử O màu đỏ, nguyên tử C màu trắng xám.  Chƣơng 1 Hình 1.1: Cấu trúc hình học minh họa của hệ phân tử [Mn4L3X(RCOO)3Z3]. Các nguyên tử trong phần nhân [Mn4L3X] của phân tử được biểu thị bằng hình cầu để phân biệt với các phối tử bên ngoài. Hình 1.2: Minh họa sự thay thế phối tử X. Các nguyên tử H của phối tử X được lược đi cho dễ nhìn. Hình 1.3: Minh họa sự thay thế phối tử R. Hình 1.4: Minh họa sự thay thế phối tử Z. Hình 1.5: Sơ lược cấu trúc hình học của các phân tử TM2+Mn3+3 với TM = Ni hoặc Zn. Các nguyên tử trong phần nhân TMMn3O4 được biểu diễn dưới dạng hình cầu. Hình 1.6: Cấu trúc hình học của cặp phân tử [Mn4O3Cl(O2CEt)3(py,Cl)3]2.  Chƣơng 3 Hình 3.1: Phân bố spin trong các phân tử Mn4. Spin-down: màu vàng, spin-up: màu xanh. Hình 3.2: (A) Cấu hình phối tử của các ion Mn3+ và Mn4+. (B) Bức tranh quỹ đạo phân tử cao nhất được lấp đầy (Highest Occupied Molecular Orbital, HOMO) điển hình của các phân tử Mn4+Mn3+3. Bức tranh chỉ ra một sự lai hóa kiểu 𝜋 giữa các quỹ đạo dz2 của ion Mn3+ và các quỹ đạo t2g của ion Mn4+ thông qua quỹ đạo p của các phối tử L. Hình 3.3: Cấu hình phối tử của ion Mn3+. Mỗi ion Mn3+ được bao quanh bởi sáu nguyên tử, trong đó có 3 nguyên tử oxy, ba nguyên tử còn lại thay đổi tùy theo phân tử. Hình 3.4: Sơ đồ trình bày sự thay thế nhóm dbm của phân tử Mn4(3-O)3(3Cl)(CH3COO)3(dbm)3 bởi nhóm CH(CHO)2. Bảng 3.1: Bảng này chỉ ra sự ổn định của độ dài liên kết và góc liên kết trong phần nhân [Mn4+Mn3+3(3-O2)3(3-Cl)] của phân tử Mn4 bởi việc thay thế dbm bằng CH(CHO)2. Sự thay đổi tương đối (%) của độ dài liên kết và góc liên kết là rất nhỏ. Bảng 3.2: Bảng chỉ ra độ ổn định của moment từ (trong đơn vị B) tại Mn4+ (mA), Mn3+ (mB) và JAB bởi sự thay thế dbm bằng CH(CHO)2. Sự thay đổi tương đối (%) của moment từ và JAB là nhỏ Hình 3.5: Cấu hình các phối tử ở vị trí Mn3+ và Mn4+ của phân tử Mn4+Mn3+3(3-O2)3(3-Cl)(O2CMe)3(CH(CHO)2)3 (những nguyên tử trong nhân [Mn4+Mn3+3(3-O2)3(3-Cl)] được biểu diễn bởi các hình cầu để phân biệt). Bảng 3.3. Các phối tử được sử dụng để thiết kế các phân tử Mn4L3XZ. Bảng 3.4: Một vài thông số từ tính và hình học đặc trưng của các phân tử Mn4-L: tham số tương tác trao đổi hiệu dụng Mn3+-Mn4+ (JAB/kB [K]), mômen từ của các ion Mn4+ và Mn3+ (mA và mB [B]), góc liên kết Mn3+LMn4+ ( [o]), và khoảng cách Mn4+-Mn3+ (dAB [Å]). Bảng 3.5: Một số thông số từ tính và hình học của các phân tử Mn4-L: tham số tương tác trao đổi hiệu dụng Mn3+-Mn4+ (JAB/kB [K]), mômen từ của các ion Mn4+ và Mn3+ (mA và mB [B]), góc liên kết Mn3+LMn4+ ( [o]), và khoảng cách Mn4+-Mn3+ (dAB [Å]). Hình 3.6: Sự phụ thuộc của JAB theo  của các phân tử Mn4-L. Hình 3.7: Sự phụ thuộc của JAB theo dAB của các phân tử Mn4-L. Hình 3.8: Sự phụ thuộc của JAB theo  và dAB của 90 phân tử Mn4-LXZ. Hình 3.9: Sự phụ thuộc của JAB theo mA của 90 phân tử Mn4-LXZ. Hình 3.10: Sự phụ thuộc của  theo dAB của 90 phân tử Mn4-LXZ. Bảng 3.6: Hằng số đặc trưng của một số phối tử L. Bảng 3.7: Một vài thông số từ tính và hình học của một số cặp phân tử Mn4LXZ (với X = F): mômen từ của các ion Mn 4+ và Mn3+ (mA và mB), hằng số tương tác trao đổi Mn4+–Mn3+ (JAB/kB), độ dài liên kết Mn3+-OZ và Mn3+-OXY (dZ và dXY), và hệ số méo mạng Jahn-Teller tại các ion Mn3+ (fJT). Hình 3.11(1): Cấu trúc hình học của các phân tử (1) và (1*) Hình 3.11(2): Cấu trúc hình học của các phân tử (2) và (2*) Hình 3.11(3): Cấu trúc hình học của các phân tử (3) và (3*) Hình 3.11(4): Cấu trúc hình học của các phân tử (4) và (4*) Hình 3.11(5): Cấu trúc hình học của các phân tử (5) và (5*) Hình 3.12: Mômen từ của ion Mn4+ của các phân tử (n) và (n*). Hình 3.13: Hằng số tương tác trao đổi J AB của các phân tử (n) và (n*). Hình 3.14: Hệ số méo mạng fJT của các phân tử (n) và (n*). MỞ ĐẦU Cùng với sự phát triển của khoa học công nghệ và nền văn minh loài ngƣời, chúng ta ngày càng nhận thức rõ và phải đối mặt với vấn đề tiết kiệm năng lƣợng, nhiên liệu, nguyên liệu, tài nguyên thiên nhiên cũng nhƣ các vấn đề về an toàn môi trƣờng… để chúng ta có thể phát triển bền vững. Trong đó sự phát triển của các ngành công nghệ điện tử gắn liền với thách thức “Làm sao để có thể thu gọn kích thƣớc của các linh kiện và thiết bị điện tử và đẩy nhanh tốc độ xử lý của chúng hơn nữa”? Thách thức hiện nay là “Làm sao để có thể chế tạo đƣợc các linh kiện điện tử có kích thƣớc dƣới 100 nanô-mét và tốc độ hƣởng ứng << 10 -9 s”. Thách thức này đòi hỏi cả sự đột phá về mặt công nghệ cũng nhƣ tìm ra các vật liệu mới. Việc tìm ra các phân tử có tính chất nhƣ nam châm (Single-Molecule Magnets, SMMs) đã mở ra một cánh cửa để đi đến thế giới của các linh kiện và thiết bị điện tử siêu nhỏ, bởi vì kích thƣớc của chúng chỉ cỡ 1 vài nanô-mét (nhƣ đƣợc minh họa trên Hình 1). Với kích thƣớc nhỏ bé và các tính chất vật lý đặc biệt của mình [12], SMMs đã mở ra một lĩnh vực nghiên cứu mới đƣợc gọi là điện tử học spin phân tử (Molecular Spintronics). SMMs Hình 1: Bức tranh về gia đình nam châm. 1 U 2 U = |D|S đối với S nguyên 2 = |D|(S – ¼) đối với S bán nguyên Hình 2: Hàng rào năng lượng đối với sự đảo mômen từ của SMMs. Nguồn gốc tính chất từ trễ của SMMs là do chúng có tổng spin lớn (S) kết hợp với dị hƣớng từ đơn trục (D). Sự kết hợp này tạo ra hàng rào năng lƣợng (U) đối với sự đảo của mômen từ của SMMs, trong đó U = –DS2 với S nguyên và U = –D(S2 – ¼) với S bán nguyên [12]. Dị hƣớng từ D của phân tử đƣợc đóng góp bởi các dị hƣớng từ địa phƣơng gây ra bởi các ion kim loại, ví dụ nhƣ ion Mn3+ ở trạng thái spin cao. Tổng spin S đƣợc quyết định bởi mômen spin địa phƣơng của những ion kim loại từ tính (Si) và tƣơng tác trao đổi giữa chúng (Jij). Hơn nữa, Jij phải có giá trị đủ lớn để đảm bảo sự tách mức năng lƣợng giữa trạng thái spin cơ bản với các trạng thái kích thích. Bởi vậy, việc tìm kiếm khả năng để có thể làm tăng S, D và Jij là vấn đề cốt yếu để phát triển SMMs mới. Hiện tại có 3 cách tiếp cận để phát triển SMMs: (i) Phƣơng pháp tìm kiếm, (ii) Phƣơng pháp thay thế và (iii) Phƣơng pháp tạo chuỗi. Trong phƣơng pháp tìm kiếm, mọi nỗ lực cố gắng nhằm tìm ra các phƣơng pháp tổng hợp mới để tạo ra các cấu trúc phân tử mới với S và D lớn. Việc tăng S đƣợc dựa trên việc tăng số nguyên tử kim loại từ tính và tƣơng tác sắt từ giữa chúng. Ví dụ nhƣ các phân tử [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl212MeCN (gọi tắt là Mn25, với pdmH2 = pyridine-2,6-dimethanol) với S = 51/2 [20], phân tử [Mn19(4-O)8(3,1N3)8(HL)12(MeCN)6]Cl210MeOHMeCN (gọi tắt là Mn19, với H3L = 2,6- 2 bis(hydroxymethyl)-4-methylphenol) với ST = 83/2 [1]. Tuy nhiên, nhiệt độ TB của các phân tử Mn25 và Mn19 vẫn còn rất thấp, tƣơng ứng khoảng 0.6 and 0.5 K, do dị hƣớng D nhỏ bởi việc bù trừ dị hƣớng giữa các ion Mn 3+ [1,20]. Việc tăng cƣờng D chủ yếu dựa trên việc giảm bù trừ dị hƣớng giữa các ion Mn 3+. Nam châm đơn phân tử Mn5 là một ví dụ điển hình với S = 11, D/kB = 0.32 K và TB > 3 K [5]. Trong phƣơng pháp thay thế, các nỗ lực cố gắng nhằm làm tăng S, D và Jij của các SMMs đã đƣợc tổng hợp bằng việc thay thế hợp lý các phối tử hoặc nguyên tử kim loại từ tính. Một ví dụ điển hình của việc thay thế các phối tử làm tăng S và TB là sự phát triển của các phân tử hệ Mn3+6 [6-8]. Phân tử [Mn3+6O2(sao)6(O2CPh)2(EtOH)4] [16] (gọi tắt là Mn3+6-(a)) bao gồm hai nửa giống hệt nhau [Mn3+3O(sao)3(O2CPh)(EtOH)2] tƣơng tác sắt từ với nhau. Tuy nhiên, một trong ba ion Mn3+ trong mỗi nửa của phân tử này lại tƣơng tác phản sắt từ với hai ion Mn3+ còn lại vì vậy mỗi nửa phân tử có spin bằng 2 và spin tổng cộng của phân tử S = 4. Để tạo ra đƣợc phân tử Mn3+6 có tƣơng tác giữa các ion Mn3+ đều là sắt từ, Milios và các đồng nghiệp đã thay thế phối tử sao của phân tử Mn3+6-(a) bằng một hydroxyphenylpropanone phối tử oxime) hơn lớn để thu Et-sao2- đƣợc phân (Et-saoH2 tử = 2- [MnIII6O2(Et- sao)6(O2CPh)2(EtOH)6] [7] (gọi tắt là Mn3+6-(b)). Trong phân tử Mn3+6-(b), tƣơng tác giữa các ion Mn3+ đều là tƣơng tác sắt từ, mỗi ion Mn3+ đều ở trạng thái spin cao với spin bằng 2 và do vậy tổng spin của phân tử là S = 12. Tuy nhiên, tƣơng tác từ giữa các ion Mn3+ trong phân tử Mn3+6-(b) là sắt từ yếu, JMn-Mn/kB = +1,29 K, khiến cho hàng rào năng lƣợng hiệu dụng cho việc đảo mômen từ của phân tử Ueff = 53 K nhỏ hơn đáng kể so với giá trị lý thuyết U = |D|S2 = 89 K. Để làm tăng cƣờng độ tƣơng tác trao đổi giữa các ion Mn3+ trong phân tử Mn3+6-(b), các phối tử Ph trong phân tử Mn3+6-(b) đã đƣợc thay thế bởi Ph(Me)2 = 3,5dimethylbenzoate để tạo ra phân tử [MnIII6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6] (gọi tắt là Mn3+6-(c)) [8]. Cấu trúc phần nhân của phân tử Mn3+6-(c) là tƣơng tự nhƣ phân tử Mn3+6-(b), ngoại trừ góc nhị diện Mn-N-O-Mn tăng từ giá trị 36.5o đối với Mn3+6-(b) đến giá trị 39.1o đối với Mn3+6-(c). Hằng số tƣơng tác trao đổi hiệu dụng giữa các ion Mn3+ trong phân tử Mn3+6-(c) là JMn-Mn/kB = +2,30 K, mạnh 3 gấp gần hai lần so với phân tử Mn3+6-(b). Kết quả là hàng rào năng lƣợng hiệu dụng của phân tử Mn3+6-(c) tăng đến giá trị 86.4 K, rất gần so với giá trị lý thuyết là 89 K. Hình 3: Cấu trúc hình học của phân tử Mn84. Phần trong hình chữ nhật mô tả đơn vị cấu trúc của phân tử Mn84, mỗi đơn vị cấu trúc gồm 14 nguyên tử Mn. Các nguyên tử H được lược bỏ đi cho dễ nhìn. Nguyên tử Mn màu xanh, nguyên tử O màu đỏ, nguyên tử C màu trắng xám. Trong phƣơng pháp tạo chuỗi, các nỗ lực cố gắng nhằm kết hợp các SMMs có S và D lớn để tạo ra các SMMs mới với TB cao hơn. Việc kết hợp các phân tử có thể tạo ra các phân tử dạng vòng nhƣ Mn84 [2,9] và Mn6Fe6, mà gần đây đƣợc xem nhƣ là một dạng SMMs mới. Chúng không những chỉ có tính năng nhƣ nam châm mà còn biểu hiện nhiều tính chất vật lý đặc biệt khác liên quan đến đặc điểm cấu trúc của chúng. Việc kết hợp các phân tử cũng có thể tạo thành các chuỗi phân tử có tính năng nhƣ nam châm (Single-Chain Magnets (SCMs)). Khả năng tạo thành các nam châm đơn phân tử dạng vòng cũng nhƣ dạng chuỗi cấu trúc hình học của các phân tử ban đầu và phối tử đƣợc sử dụng để liên kết chúng. Trong phƣơng pháp tạo chuỗi, một đặc điểm cần hết sức lƣu ý đó là S và D của các phân tử ban đầu sau khi liên kết không những không đƣợc triệt tiêu mà còn phải tăng cƣờng lẫn nhau. Một ƣu điểm lớn của phƣơng pháp tạo chuỗi là có thể tạo ra đƣợc các phân tử với tổng spin lớn hơn nhiều so với các phân tử ban đầu. Ví dụ nhƣ 4 việc kết hợp các phân tử K[FeIII(L)(CN)2] (với S = 1/2) và phân tử [MnIII(Shiff base)]ClO4 (với S =2) tạo thành phân tử dạng vòng Mn6Fe6 với S = 15. Hiện nay, với sự phát triển của công nghệ máy tính, đặc biệt là các siêu máy tính, đã cho phép chúng ta giải quyết nhiều bài toán trong khoa học vật liệu với khối lƣợng tính toán vô cùng lớn và dẫn đến sự ra đời của một ngành khoa học mới gọi là Khoa học Vật liệu Tính toán (Computational Materials Science, CMS). CMS cho phép chúng ta dự đoán đƣợc nhiều tính chất của vật liệu, dự đoán đƣợc cả những đại lƣợng vật lý mà thực nghiệm chƣa xác định đƣợc, cũng nhƣ góp phần định hƣớng cho thực nghiệm trong việc tìm ra các vật liệu mới ƣu việt hơn. Một trong những phƣơng pháp tính toán chính xác nhất hiện nay cho các hệ vật liệu nanô là phƣơng pháp tính toán dựa trên lý thuyết phiếm hàm mật độ (DensityFunctional Theory, DFT). Trong khoa học vật liệu, việc xác định đƣợc các mối tƣơng quan giữa cấu trúc hình học và tính chất của vật liệu sẽ góp phần đắc lực định hƣớng cho việc tìm ra các loại vật liệu mới với tính chất ƣu việt hơn. Trong khuôn khổ của luận văn này, chúng tôi tập trung vào nghiên cứu tƣơng quan từ-cấu trúc của hệ nam châm đơn phân tử Mn4. Về mặt cấu trúc hình học cũng nhƣ dạng tƣơng tác từ, các phân tử Mn4 có nhiều đặc điểm tƣơng tự với các hệ nam châm đơn phân tử phức tạp hơn nhƣ Mn12. Vì vậy, việc nghiên cứu tƣơng quan từ- cấu trúc của hệ phân tử Mn4 sẽ góp phần định hƣớng cho việc tổng hợp nhiều hệ nam châm phân tử mới ƣu việt hơn dựa trên dựa trên Mn. Trong nghiên cứu của chúng tôi, phƣơng pháp thay thế phối tử đã đƣợc vận dụng thành công để khám phá ra các tƣơng quan từ-cấu trúc của hệ phân tử Mn4. 5 Luận văn đƣợc bố cục nhƣ sau: Phần mở đầu Xác định mục đích nghiên cứu của luận văn là nghiên cứu về tương quan từ-cấu trúc của hệ nam châm đơn phân tử Mn4. Chƣơng 1: Giới thiệu Nội dung chính của chương này là giới thiệu về hệ nam châm đơn phân tử Mn4. Chƣơng 2: Phƣơng pháp nghiên cứu Trong chương này, lý thuyết phiếm hàm mật độ sẽ được trình bày một cách khái quát. Các kỹ thuật tính toán được sử dụng trong luận văn cũng sẽ được giới thiệu trong chương này. Chƣơng 3: Kết quả và thảo luận Dành để trình bày về các tương quan từ-cấu trúc của hệ nam châm đơn phân tử Mn4 đã được khám phá từ những nghiên cứu của chúng tôi. Phần kết luận Tổng kết lại các kết quả thu được về các tương quan từ-cấu trúc của hệ nam châm đơn phân tử Mn4 đã được khám phá từ những nghiên cứu của chúng tôi. 6 CHƢƠNG 1. GIỚI THIỆU VỀ HỆ NAM CHÂM ĐƠN PHÂN TỬ Mn4 Hệ nam châm đơn phân tử Mn4 đƣợc đề cập đến trong bản luận văn này là các phân tử có công thức hóa học tổng quát [Mn4+Mn3+L3X(RCOO)3Z3] với L là gốc hóa trị II, X, R và Z là các gốc hóa trị I [16]. Mỗi phân tử Mn4 gồm có bốn nguyên tử Mn liên kết với nhau thông qua các phối tử, nhƣ đƣợc minh họa trên Hình 1.1. Phân tử có trục đối xứng bậc 3 với trục đối xứng đi qua vị trí Mn4+ và nguyên tử X. Trong đó có một nguyên tử Mn ở trạng thái Mn4+ tƣơng tác phản sắt từ với ba nguyên tử Mn ở trạng thái Mn3+. Ion Mn4+ có spin bằng 3/2, còn ba ion Mn3+ tồn tại ở trạng thái spin cao với spin bằng 2. Vì vậy, tổng spin của phân tử là S = 2×3 – 3/2 = 9/2. Cƣờng độ tƣơng tác trao đổi Mn4+-Mn3+, JAB/kB, cỡ khoảng vài chục K. Dị hƣớng từ của phân tử là do các méo mạng Jahn-Teller dọc tại ba vị trí Mn3+ với độ lớn D  0,5 K. R Mn 4+ L Mn 3+ X Z Phân tử được nhìn theo phương Phân tử được nhìn dọc theo ngang đối xứng Hình 1.1: Cấu trúc hình học minh họa của hệ phân trục tử [Mn 4L3X(RCOO)3Z3]. Các nguyên tử trong phần nhân [Mn4L3X] của phân tử được biểu thị bằng hình cầu để phân biệt với các phối tử bên ngoài. Phần nhân [Mn4L3X] của phân tử có dạng hình lập phƣơng bị bóp méo. Mỗi ion Mn4+ liên kết với một ion Mn3+ thông qua 2 phối tử L, còn các ion Mn3+ liên kết với nhau thông qua một phối tử L và một phối tử X. Mỗi phối tử RCOO tạo cầu liên kết giữa ion Mn4+ và một ion Mn3+ có tác dụng làm tăng cƣờng sự bền vững của phần nhân [Mn4L3X]. Mỗi phối tử Z tạo hai liên kết với một ion Mn3+ 7 thông qua hai nguyên tử oxy. Nhƣ vậy, mỗi ion mangan đều đƣợc bao quanh bởi sáu nguyên tử phi kim tạo thành trƣờng bát diện, nhƣ chỉ ra trên Hình 1.1. Các ion Mn3+ đều tồn tại ở trạng thái spin cao với méo mạng Jahn-Teller dọc theo trục Mn3+X. 1.1. Nghiên cứu thực nghiệm trƣớc đây về hệ nam châm đơn phân tử Mn4 F N3 Br NCO CH3CO2 Cl RC6 NO3 H4 O2 CH3O Hình 1.2: Minh họa sự thay thế phối tử X. Các nguyên tử H của phối tử X được lược đi cho dễ nhìn. Nhiều nỗ lực cố gắng đã đƣợc hiện để tổng hợp các nam châm đơn phân tử Mn4 mới bằng việc thay thế các phối tử X, R và Z [16], nhƣ đƣợc minh họa trên các Hình 1.2–4. Tuy nhiên, bởi những sự thay thế này tổng spin của phân tử vẫn 8 luôn bằng 9/2, còn cƣờng độ của tƣơng tác trao đổi Mn4+-Mn3+ và dị hƣớng từ của phân tử thay đổi không đáng kể. R = CH3 R = C2H5 Hình 1.3: Minh họa sự thay thế phối tử R. Z = (C5H5N,Cl) Z = dbm = CH(C6H5CO)2 Hình 1.4: Minh họa sự thay thế phối tử Z. 9 2+ TM 3+ Mn O Ni Hình 1.5: Sơ lược cấu trúc hình học của các phân tử TM2+Mn3+3 với TM = Ni hoặc Zn. Các nguyên tử trong phần nhân TMMn3O4 được biểu diễn dưới dạng hình cầu. Chú ý rằng spin của ion Mn4+ là 3/2, bởi vậy việc thay thế một ion kim loại chuyển tiếp có spin nhỏ hơn 3/2 sẽ luôn làm tăng tổng spin của phân tử cho dù tƣơng tác giữa ion thay thế với các ion Mn3+ là sắt từ hay phản sắt từ. Dựa trên ý tƣởng này, các phân tử dạng TM2+Mn3+3 (với TM = Ni hoặc Zn) đã đƣợc tổng hợp [17]. Cấu trúc hình học sơ lƣợc của các phân tử này đƣợc biểu diễn trên Hình 1.5. Spin của các ion Zn2+ và Ni2+ tƣơng ứng là 0 và 1/2. Tƣơng tác TM2+-Mn3+ là phản sắt từ. Do đó tổng spin của các phân tử Ni2+Mn3+3 và Zn2+Mn3+3 tƣơng ứng là 5 và 6. Cho đến nay chƣa có phân tử dạng TMMn3+3 với tƣơng tác TM-Mn3+ là sắt từ đƣợc tổng hợp. Một số phân tử Mn4 cũng có thể ghép cặp với nhau, ví dụ nhƣ trƣờng hợp của phân tử [Mn4O3Cl(O2CEt)3(py,Cl)3] [28]. Hai phân tử này có thế ghép cặp với nhau thông qua các liên kết hydro, nhƣ đƣợc minh họa trên Hình 1. 6. Cặp phân tử này có một số tính chất vật lý thú vị, nhƣng tổng spin của cặp phân tử này bằng 0 do tƣơng tác giữa các phân tử thành phần là phản sắt từ. Cho đến nay chƣa có cặp phân tử Mn4 nào với tƣơng tác sắt từ đƣợc tổng hợp. 10 Hình 1.6: Cấu trúc hình học của cặp phân tử [Mn4O3Cl(O2CEt)3(py,Cl)3] 2. 1. 2. Nghiên cứu lý thuyết trƣớc đây về hệ nam châm đơn phân tử Mn4 Trong hệ nam châm đơn phân tử Mn4, các nguyên cứu lý thuyết trƣớc đây chủ yếu tập trung vào các phân tử Mn4O3Cl(O2CMe)3(dbm)3 , Mn4O3Cl(O2CEt)3(py,Cl)3, và dạng ghép cặp [Mn4O3Cl(O2CEt)3(py,Cl)3]2 [28]. Trong các nghiên cứu này [25], cấu trúc điện tử cũng nhƣ các đại lƣợng vật lý quan trọng của hệ nam châm đơn phân tử Mn4 đã đƣợc xác định. Về cơ bản các kết quả tính toán là phù hợp tốt với thực nghiệm. Tuy nhiên, những nghiên cứu này chƣa chỉ ra đƣợc cơ chế của tƣơng tác Mn4+-Mn3+ cũng nhƣ các mối tƣơng quan giữa các tham số từ tính và các tham số hình học của hệ phân tử này và do vậy không đƣa ra đƣợc định hƣớng cho việc phát triển các nam châm đơn phân tử Mn4 mới ƣu việt hơn. Trong nghiên cứu trƣớc đây của chúng tôi, chúng tôi đã thành công trong việc khám phá ra cơ chế của tƣơng tác Mn4+-Mn3+ [24]. Trong khuôn khổ của bản luận văn này, chúng tôi tập trung vào nghiên cứu các tƣơng quan từ-cấu trúc của hệ phân tử Mn4 nhằm góp phần định hƣớng cho việc tìm ra các nam châm đơn phân tử mới ƣu việt hơn. 11 CHƢƠNG 2. PHƢƠNG PHÁP NGHIÊN CỨU 2.1. Giới thiệu về lý thuyết phiếm hàm mật độ (DFT) Trong cơ học lƣợng tử, để nghiên cứu hệ có N điện tử chúng ta phải đi giải phƣơng trình Schrödinger để tìm ra hàm sóng  của hệ là hàm của 3N biến số. Cho đến hiện nay chúng ta chỉ có lời giải chính xác đối với trƣờng hợp nguyên tử hyđro (bài toán 1 điện tử, N = 1). Đối với phân tử hyđro chúng ta chỉ có thể giải gần đúng phƣơng trình Schrödinger. Về mặt giải tích, hiện tại chƣa có phƣơng pháp nào giải đƣợc chính xác phƣơng trình Schrödinger của hệ nhiều điện tử. Lý thuyết phiếm hàm mật độ (Density-functional Theory, DFT) là một cách tiếp cận khác mà có thể hiện thực hóa việc nghiên cứu các hệ nhiều hạt. DFT là một lý thuyết hiện đại dựa trên nền tảng của cơ học lƣợng tử. DFT có thể đƣợc dùng để mô tả các tính chất của hệ điện tử trong nguyên tử, phân tử, vật rắn… Điểm cốt yếu trong lý thuyết này là các tính chất của hệ N điện tử đƣợc biểu diễn thông qua hàm mật độ điện tử của hệ (là hàm của 3 biến tọa độ không gian) thay vì hàm sóng của 3N biến tọa độ không gian trong cơ học lƣợng tử. Vì vậy, DFT có ƣu điểm lớn (và hiện nay đang đƣợc sử dụng nhiều nhất) trong việc nghiên cứu các tính chất của các hệ vật liệu từ nguyên tử, phân tử cho tới chất rắn… Ý tƣởng dùng hàm mật độ điện tử để mô tả các tính chất của hệ điện tử đƣợc nêu trong các công trình của Llewellyn Hilleth Thomas và Enrico Fermi ngay từ khi cơ học lƣợng tử mới ra đời. Đến năm 1964, Pierre Hohenberg và Walter Kohn đã chứng minh chặt chẽ hai định lý cơ bản là nền tảng của lý thuyết phiếm hàm mật độ. Hai định lý khẳng định năng lƣợng ở trạng thái cơ bản là một phiếm hàm của mật độ điện tử, do đó về nguyên tắc có thể mô tả hầu hết các tính chất vật lý của hệ điện tử qua hàm mật độ điện tử. Một năm sau, Walter Kohn và Lu Jeu Sham nêu ra qui trình tính toán để thu đƣợc gần đúng mật độ điện tử ở trạng thái cơ bản trong khuôn khổ lý thuyết DFT. Từ những năm 1980 đến nay, cùng với sự phát triển tốc độ tính toán của máy tính điện tử, lý thuyết DFT đƣợc sử dụng rộng rãi và hiệu quả trong các ngành khoa học nhƣ: vật lý chất rắn, hóa học lƣợng tử, vật lý sinh học, khoa học vật liệu… Walter Kohn đã đƣợc ghi nhận những đóng góp của ông cho việc phát triển lý thuyết phiếm hàm mật độ bằng giải thƣởng 12 Nobel Hóa học năm 1998. Tiếp theo đây chúng tôi sẽ trình bày cụ thể hơn về lý thuyết phiếm hàm mật độ. 2.1.1. Bài toán của hệ nhiều hạt Nghiên cƣ́u lý thuy ết về các tin ́ h chấ t của vâ ̣t liê ̣u thƣờng yêu cầ u nh ững thông tin mà có thể đƣơ ̣c cung cấ p bởi mô ̣t mô tả chi tiế t về cấ u trúc điê ̣n tƣ̉ của chúng. Thông qua hiể u biế t về cấ u trúc điê ̣n tƣ̉ có thể thu đƣơ ̣c nhi ều thông tin về các tính chất cấ u trúc, điê ̣n, tƣ̀, cơ học, dao đô ̣ng, nhiê ̣t và quang ho ̣c. Mô ̣t sƣ̣ mô tả lý thuyế t về tra ̣ng thái cấ u trúc điê ̣n tƣ̉ đô ̣c lâ ̣p theo thời g ian của những hệ riêng biệt bao gồm N điện tử và M hạt nhân về nguyên lý có thể t hu đƣơ ̣c tƣ̀ phƣơng trình Schro dinger cho hê ̣ nhiề u ha ̣t không phu ̣ thuô ̣c vào thời gian.  N   2   1 N e2 2    V ( r     i ext i )   i 1  2m  2 i  j 1 ri  r j       (r1 ,..., rN )  E   (r1 ,..., rN )  (2.1.1) trong đó áp du ̣ng giả thiế t gầ n đúng Borh -Openheimer [1]. 𝑟𝑖 là vị trí của điện tử thƣ́ i, Vext là trƣờng ngoài nơi mà các điện tử dịch chuyển , và E là năng lƣợng điện tƣ̉ tổ ng cô ̣ng . Thông thƣờng, Vext là thế tĩnh điện đƣợc tạ o ra bởi các ha ̣t nhân , vị trí của chúng đƣợc cho là cố định và không gian mở rộng của chúng đƣợc coi là không đáng kể , nhƣng Vext cũng có thể đƣợc tạo thành từ những sự đóng góp của môi trƣờng xung quanh hoă ̣c nhƣ̃ng nhiễ u loa ̣n khác trong hê ̣ . Trong các nghiên cƣ́u về cấ u trúc điê ̣n tƣ̉ có hàm nhƣ là cấ u trúc của mô ̣t vâ ̣t sẽ phải đi giải phƣơng trình (2.1.1) cho mỗi mô ̣t b ộ tập hợp các to ̣a đô ̣ ha ̣t nhân khác nhau , tƣ̀ đó thu đƣơ ̣c năng lƣơ ̣ng điê ̣n tƣ̉ tổ ng cô ̣ng nhƣ là mô ̣t hàm của cấ u trúc.   E  E( R1 ,..., RM ) (2.1.2) và bằng cách thêm năng lƣợng do sự tƣơng tác hạt nhân-hạt nhân, Enn, chúng ta có đƣợc tổng năng lƣợng: Etot = E + Enn (2.1.3) Mặc dù trong phƣơng trình (2.1.1), chúng tôi đã bỏ qua tọa độ spin để đơn giản hóa vấn đề, nó vẫn không thể giải phƣơng trình (2.1.1) cho trƣờng hợp chung 13
- Xem thêm -