Tổng hợp và nghiên cứu tính chất của các hạt nanô từ thông minh ứng dụng trong y sinh học

  • Số trang: 78 |
  • Loại file: PDF |
  • Lượt xem: 128 |
  • Lượt tải: 0
sakura

Đã đăng 9667 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ MẪN MINH TÂN TỔNG HỢP VÀ NGHIÊN CỨU TÍNH CHẤT CỦA CÁC HẠT NANÔ TỪ THÔNG MINH ỨNG DỤNG TRONG Y SINH HỌC Chuyên ngành: Vật liệu và linh kiện nanô (Chương trình đào tạo thí điểm) LUẬN VĂN THẠC SĨ Người hướng dẫn khoa học: TS. Trần Mậu Danh HÀ NỘI, NĂM 2007 iv MỤC LỤC Trang phụ bìa i Lời cam đoan ii Lời cảm ơn iii Mục lục iv Danh mục các ký hiệu và các chữ viết tắt vii Danh mục các bảng x Danh mục các hình vẽ xi MỞ ĐẦU 01 CHƯƠNG 1. LIỆU PHÁP VẬN CHUYỂN VÀ PHÂN TÁN THUỐC HƯỚNG ĐÍCH SỬ DỤNG CÁC HẠT NANÔ TỪ TÍNH 04 1.1. Giới thiệu chung 04 1.2. Điều kiện tương thích sinh học và các đặc tính của các hạt nanô từ tính 08 1.2.1. Kích thước của các nanô từ tính 08 1.2.2. Độc lực của các hạt nanô từ tính 09 1.2.3. Điện tích bề mặt hạt 10 1.2.4. Khả năng hấp phụ protein 10 1.3. Các phương pháp tiếp truyền trong phân tán thuốc 11 1.3.1. Phương pháp truyền tĩnh mạch 11 1.3.2. Tiếp truyền dưới da hoặc bên trong khối u 11 1.3.3. Tiếp truyền qua miệng, mắt 12 1.4. Kết luận chương 12 CHƯƠNG 2. VẬT LIỆU NANÔ TỪ TÍNH, CÁC POLIME TỰ NHIÊN VÀ ĐỐI TƯỢNG SINH HỌC THỰC NGHIỆM 13 2.1. Cấu trúc tinh thể và tính chất từ của các hạt nanô từ tính oxit kim loại 13 v 2.1.1. Cấu trúc tinh thể 13 2.1.2. Tính chất từ trong các hạt nanô siêu thuận từ oxit kim loại 16 2.1.3. Hiện tượng hồi phục trong chất lỏng từ 17 2.2. Polime tự nhiên sử dụng trong việc chức năng hóa bề mặt hạt 18 2.2.1. Các đặc điểm của chitin, chitosan và dẫn xuất 19 2.2.2. Khả năng tạo phức với các ion kim loại chuyển tiếp 19 2.2.3. Một số ứng dụng của chitin/chitosan trong y- sinh học 19 2.3. Hợp chất curcumin – thuốc điều trị hướng đích 20 2.3.1. Công dụng của Curcumin 20 2.3.2. Liệu pháp phân tán hướng đích của curcumin 22 2.4. Đối tượng sinh học thực nghiệm - vi rút viêm gan vịt typ 1 23 2.4.1. Truyền nhiễm học 24 2.3.2. Triệu chứng và bệnh tích 25 2.5. Kết luận chương CHƯƠNG 3. CHẾ TẠO MẪU VÀ CÁC PHƯƠNG PHÁP THỰC NGHIỆM 3.1. Chế tạo mẫu 3.1.1. Tổng hợp các hạt nanô từ tính trên nền Fe3O4 tương thích sinh học bằng phương pháp in situ 3.1.2. Tổng hợp các hạt nanô từ tính Ca(CuxMn3-x)Mn4O12 (0,0 ≤ x ≤ 3,0) tương thích sinh học 3.2. Thí nghiệm lâm sàng trên vịt con 2 tuần tuổi 25 26 26 26 27 29 3.2.1. Các nguyên vật liệu cần thiết 29 3.2.2. Chuẩn độ vi rút 29 3.2.2. Gây bệnh thực nghiệm viêm gan vịt bằng vi rút cường độc viêm gan vịt 30 3.3. Các phương pháp thực nghiệm kinh điển 31 vi 3.3.1. Phương pháp nhiễu xạ tia X 31 3.3.2. Phương pháp từ kế mẫu rung (VSM) 32 3.3.3. Phương pháp khác 32 3.4. Kết luận chương CHƯƠNG 4. KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN 4.1. Hệ vật liệu Fe3O4 33 34 34 4.1.1. Vi cấu trúc và tính chất từ của hạt Fe3O4 34 4.1.2. Sự hình thành chất lỏng từ theo phương pháp in - situ 35 4.1.3. Kết luận 38 4.2. Hệ Vật liệu Perovskite Ca(CuxMn3-x)Mn4O12 39 4.2.1. Vi cấu trúc và tính chất từ của các hạt perovskite Ca(CuxMn3-x)Mn4O12 39 4.2.2. Sự hình thành chất lỏng từ. 43 4.3. Thí nghiệm lâm sàng trên gia cầm. 45 KẾT LUẬN CHUNG 51 TÀI LIỆU THAM KHẢO 52 PHỤ LỤC (các công trình đã công bố) 56 Thank you for evaluating AnyBizSoft PDF Splitter. A watermark is added at the end of each output PDF file. To remove the watermark, you need to purchase the software from http://www.anypdftools.com/buy/buy-pdf-splitter.html vii DANH MỤC CÁC KÝ HIỆU VÀ CÁC CHỮ VIẾT TẮT A: AP-1: AR: Arh-R: Bcl-2: cAK: CBP: CDPK: COX-2: cPK: CTGF: DFF40: DHV1: DR-5: EGF: EGF-R: EGFRK: Egr-1: ELAM-1: ELD50: EPC-R: EpRE: ER-α: ERK: FAK: Fas-R: FGF: FPTase: FWHM: Gcl: GST: H: H2-R: HC: hằng số dị hướng hoạt hóa protein 1 thụ thể androgen (hoocmôn nam) thụ thể aryl hydrocarbon protein 2 của tế bào lympho B autophosphorylation-tác động protein kinaza liên kết protein CREB protein kinaza phụ thuộc Ca2+ cyclooxygenase-2 protamine kinaza yếu tố tăng trưởng liên kết biểu mô yếu tố phá vỡ DNA 40-kd subunit. vi rút viêm gan vịt typ 1 (Duck Hepatitis viruos type 1) thụ thể tiêu hủy – 5 yếu tố tăng trưởng biểu mô thụ thể EGF thụ thể - kinaza EGF giải mã tăng trưởng gene-1; phân tử bám dính bạch cầu 1 liều gây bệnh thực nghiệm trên 50 % màng protein C- thụ thể electrophile response element. thụ thể estrogen- α thụ thể kinaza ngoại bào kinaza bám dính thụ thể Fas yếu tố tăng trưởng bào tơ farnesyl protein transferase độ bán rộng phổ của đỉnh nhiễu xạ (rad) glutamatecysteine ligaza gluthathione-S-transferase từ trường ngoài (Oe) thụ thể histamine (2) lực kháng từ viii HGF: HO: HSP-70: IAP: IARK: ICAM-1: IL: IL-8-R: iNOS: InsP3-R: IR: JAK: JNK: K: L: LDL-R: LOX: M: MAPK: MCP: MDR: MIF: MIP: MMP: MRI: Ms: NAT: NF-κB: NGF: Nrf-2: PDGF: PhK: PKA: PKB: PKC: pp60c-src: yếu tố tăng trưởng tế bào gan hemeoxygenase protein nhiệt 70 ức chế apoptosis protein IL-1thụ thể kinaza liên hợp phân tử bám dính nội bào 1 interleukin thụ thể interleukin-8 nitric oxit synthaza hóa thụ thể inositol 1,4,5-triphosphate thụ thể integrin janus kinaza c-jun N-terminal kinase hằng số dị hướng từ (J/m3) độ rộng cực đại nhiễu xạ lipoprotein mật độ thấp – thụ thể. lipoxygenaza mômen từ (emu/g) mitogen- protein kinaza tác động protein bạch cầu đơn nhân hấp phụ hóa học kháng đa thuốc protein ức chế di trú protein kích viêm đại thực bào. metalloproteinase tử cung ảnh cộng hưởng từ hạt nhân mômen từ bão hòa (emu/g) arylamine N-acetyltransferaza bạch đản κB yếu tố tăng trưởng thần kinh bạch đản erythroid 2- yếu tố tương quan yếu tố tăng trưởng tiểu huyết cầu phosphorylase kinaza protein kinaza A protein kinaza B protein kinaza C a nonreceptor protein tyrosine kinase c-Src cellular src kinase ix PPAR-γ: SGH: SHP-2: STAT: T: T B: TC: TEM: TGF-β1: TIMP: TK: TN : TNF-α: uPA: VCAM-1: VEGF: VP0: VP1: VP2: VP3: VP4: VSM: XRD: peroxisome preoliferator-activated receptor-γ Glutathion Src tương đồng 2 tyrosine phosphatase 2 chuyển đổi tín hiệu và hoạt hóa sao chép nhiệt độ (K) nhiệt độ chuyển pha blocking nhiệt độ chuyển pha Curie ảnh hiển vi điện tử truyền qua yếu tố tăng trưởng thay đổi β1 metalloproteinase-3 ức chế biểu mô protein tyrosine kinaza nhiệt độ Néel của vật liệu phản sắt từ yếu tố chiết hoạt interferon biểu mô α urokinase-type plasminogen activator phân tử bám dính tế bào bạch huyết 1 yếu tố tăng trưởng mao mạch virion protein 0 virion protein 1 virion protein 2 virion protein 3 virion protein 4 từ kế mẫu rung nhiễu xạ tia X x DANH MỤC BẢNG Trang Bảng 1.1. Sự tương thích về mặt kích thước của các hạt nanô trong liệu pháp phân tán và vận chuyển thuốc thông qua hệ thống tuần hoàn trong cơ thể người [40] Bảng 4.1. Cấu trúc pha của hệ vật liệu Ca(CuxMn3-x)Mn4O12 với 0,0 ≤ x ≤ 3,0 Bảng 4.2. Giá trị TC [K] và tính chất điện của hệ vật liệu Ca(CuxMn3-x)Mn4O12 Bảng 4.3. Các kết quả thực nghiệm lâm sàng thu được từ các lô thí nghiệm 6 41 42 45 xi DANH MỤC HÌNH VẼ Hình 1.1. Biểu đồ phát triển và ứng dụng của các hạt nanô từ tính trong y sinh học [40] Hình 1.2. Tiềm năng ứng dụng của các hạt nanô từ trong vận chuyển và phân tán thuốc hướng đích [60] Hình 1.3. Đường cong từ hóa của các hạt nanô từ tính Hình 1.4. Mối tương quan giữa kích thước và thời gian lưu trú của các hạt nanô từ [62] Hình 2.1. Cấu trúc spinel đảo (a) và Sự phấn bố mômen từ spin của các ion Fe3+ và Fe2+ tại các vị trí A và B trong cấu trúc spin đảo Fe3O4(b) Hình 2.2. Cấu trúc tinh thể của vật liệu Ca(CuxMn3-x)Mn4O12 [69] a) Khối đa diện AO12 nội tiếp trong ô cơ sở với 12 anion O2- tại vị trí A. b) Khối đa diện với 12 anion O2- xung quanh một cation A’ tại tâm của đa diện Hình 2.3. Mối tương quan giữa hiệu ứng từ trở khổng lồ (CMR) vào thành phần thay thế Cu trong hệ vật liệu gốm Ca(CuxMn3-x)Mn4O12 Trong đó: ở từ trường H= 5 T tại 5 K („); 35K (z); 77 K(d) và 100 K (¡); với H = 1 T, 35 K (c), 77K (V) và 100 K (‘) [16] Hình 2.4. Đường cong từ hoá của vật liệu từ phụ thuộc vào kích thước hạt [15] Hình 2.5. Đồ thị năng lượng dị hướng phụ thuộc vào góc α Hình 2.6. Cấu trúc hóa học của chitosan Hình 2.7. Cơ chế tạo phức với các kim loại chuyển tiếp của glucozamin Hình 2.8. Cấu trúc hóa học của curcumin, demethoxycurcumin và Bis-demethoxycurcumin Hình 2.9. Tiềm năng ứng dụng của curcumin trong bài chế thuốc[25] Hình 2.10. Ảnh hưởng của curcumin lên các yếu tố và các thụ thể trong tế bào [6] Hình 2.11. Ảnh TEM và mô hình cấu trúc phân tử sinh học của DHV1[64] Hình 2.12. Quá trình nhân lên của vi rút viêm gan vịt Ghi chú: (1) vi rút viêm gan vịt trong huyết thanh, (2)vi rút gắn vào các receptor chưa được biết trên bề mặt tế bào và xâm nhập vào tế bào, (3) phá vỡ vỏ bọc giải phóng ARN vào bào tương tế bào, (4) quá trình dịch mã của ribosom, tổng hợp polypeptid từ nguyên liệu của tế bào và các protease của vi rút, (5) sao mã ARN, (6) tập trung và đóng gói, (7) vi rút trưởng thành, (8) giải phóng vi rút khỏi tế bào vật chủ, (9) vi rút viêm gan vịt mới Hình 3.1. Sơ đồ minh họa quá trình tổng hợp các hạt nanô từ tương thích sinh học Hình 3.2. Giản đồ minh họa quá trình tổng hợp các hạt nanô từ tính Ca(CuxMn3-x)Mn4O12 (0,0 ≤ x ≤ 3,0) Trang 5 7 9 12 14 15 16 17 18 19 19 20 21 23 24 24 27 28 xii Hình 3.3. Sơ đồ minh họa quá trình hoạt tính hóa sinh học cho các hạt nanô từ Hình 3.4. Các hình ảnh minh họa quá trình thí nghiệm in vitro Hình bên trái: Vị trí tiếp truyền dưới da đầu Hình bên phải: vịt được nuôi thả tự nhiên sau khi phân lô thí nghiệm Hình 3.5. Sơ đồ khối của một thiết bị nhiễu xạ tia X H×nh 3.6. S¬ ®å hÖ ®o VSM Hình 4.1. Giản đồ nhiễu xạ tia X của các hạt oxit sắt từ sau khi bọc polime tự nhiên Hình 4.2. Đường cong từ hóa của hạt nanô oxit sắt từ sau khi đã được hoạt tính hóa sinh học bằng polime tự nhiên ở nhiệt độ phòng 29 31 32 33 34 35 Hình 4.3. Cơ chế tạo phức của glucozamin và starch với các ion kim loại chuyển tiếp nằm trên bề mặt hạt nanô từ tính Fe3O4 36 Hình 4.4. Cơ chế hoạt tính hóa bề mặt của các hạt nanô từ tính bằng phương pháp in-situ dưới tác dụng của trường ngoài Hình 4.5. Hình ảnh minh họa các chất lỏng từ sau khi được phân tán. a). Fe3O4/glucozamin –curcumin; b) Fe3O4/starch –curcumin Hình 4.6. Ảnh TEM của các hạt nanô từ tính sau khi được chức năng hóa bề mặt bởi các dòng polime tự nhiên Hình 4.7. Giản đồ nhiễu xạ tia X của hệ vật liệu điển hình CaCuMn6O12 Hình 4.8. Giản đồ nhiễu xạ tia X của các mẫu Ca(CuxMn3-x)Mn4O12 với 0,0 ≤ x ≤ 3,0 Hình 4.9. Giản đồ nhiễu xạ tia X của các mẫu Ca(CuxMn3-x)Mn4O12 có sự tồn tại của các pha tạp CuMn2O4 Hình 4.10. Sự phụ thuộc hằng số mạng vào thành phần thay thế cation Cu (x) trong hệ vật liệu Perovskite Ca(CuxMn3-x)Mn4O12 Hình 4.11. Sự biến đổi của thành phần cation Mn4+ trong ô mang như hàm phụ thuộc vào thành phần thay thế cation Cu (x) [16] 37 Hình 4.12. Nhiệt độ chuyển pha như hàm phụ thuộc vào nhiệt độ ủ ở điều kiện thường của mẫu CaCuMn6O12 43 Hình 4.13. Đồ thị biểu diễn đường cong từ trễ của các hạt nanô từ tính perovskite ở nhiệt độ phòng Hình 4.14. Mô hình cơ chế hình thành chất lỏng từ bở sự ổn định hóa tĩnh điện bề mặt của các hạt nanô từ tính Hình 4.15. Cơ chế hình thành chất lỏng từ. Hình 4.16 Ảnh TEM của các hạt nanô từ tình sau khi được hoạt tính hóa sinh học của mẫu CaCuMn6O12 43 Hình 4.17. Hình ảnh gan vịt ở các lô đối chứng âm(Lô 1- bên trái) và lô thử nghiệm độc lực của chất lỏng từ (Lô 2 - hình bên phải) Hình 4.18. Thể trạng của vịt con sau khi phát bệnh ở các lô thực nghiệm và lô đối chứng dương 37 38 39 40 40 41 42 44 44 45 46 46 xiii Hình 4.19. Các hình ảnh bệnh tích trên gan vịt sau khi mổ khám ở lô đối chứng dương Hình 4.20. Hình ảnh bệnh tích trên gan vịt sau khi mổ khám ở lô thử nghiệm (lô 4) Hình 4.21. Hình ảnh minh họa phản ứng đóng vón protein trong ông nghiệm Hình 4.22. Mô hình tương tác giữa curcumin và glutathion Hình 4.23. Mô hình tương tác giữa nhóm diketon của curcumin với các nucleophin 47 47 48 49 49 1 MỞ ĐẦU Khoa học và công nghệ nanô là ngành khoa học nghiên cứu về các vật liệu và linh kiện có kích thước nanô mét và được coi là một trong những ngành trọng tâm của khoa học và cộng nghệ của thế kỷ 21. Mặc dù mới được phát triển trong khoảng 10 năm trở lại đây nhưng khoa học và công nghệ nanô đã thể hiện được tầm ảnh hưởng to lớn của nó tới tất cả các mặt của đời sống xã hội: Công nghiệp điện tử, khoa học kỹ thuật, quân sự, y sinh học... Công nghệ nanô cho chúng ta công cụ duy nhất để có thể tiếp cận và kiểm soát rất nhiều các quá trình y - sinh học xảy ra ở trong cơ thể ở kích thước nanô mét và người ta đang chờ đợi một cuộc cách mạng mạnh mẽ trong lĩnh vực này. Trong các cách tiếp cận đó, các hạt nanô có vai trò đặc biệt quan trọng bởi chúng có thể làm tăng độ nhạy, nâng cao chất lượng hình ảnh trong chẩn đoán và là tác nhân mang thuốc, gen điều trị hướng đích cho kết quả cao [14,31,32]. Từ - sinh học là một ngành khoa học liên ngành với sự tham gia của các nhà khoa học từ nhiều lĩnh vực khác nhau như y học, dược học, hóa học, vật lý, sinh học, công nghệ và khoa học vật liệu. Từ - sinh học nanô tập trung trước hết và chủ yếu vào các hệ sinh học và các quá trình sinh học. Vật liệu từ nanô có một mối liên hệ đặc biệt đối với các ứng dụng trong y - sinh học do sự tương thích về kích thước của chúng so với kích thước của tế bào (10 - 100 µm), vi rút (20 - 500 nm), protein (5 - 50 nm) và gen (rộng 2 nm và dài 10 - 100 nm). Kích thước các hạt nanô đủ nhỏ để di chuyển trong cơ thể mà không phá vỡ các chức năng cơ bản và chúng có thể đến các nơi trong cơ thể mà các cách khác không thể làm được. Các tế bào có thể phản ứng với các vật thể của môi trường xung quanh ở kích thước từ 5 nm đến các kích thước nhỏ hơn 1000 lần so với kích thước của bản thân nó và các thay đổi này có thể dẫn đến sự phát triển hoặc diệt vong của tế bào. Các vật liệu có cấu trúc nanô cho phép nghiên cứu các quá trình tới hạn này ở mức đơn tế bào. Vật liệu từ học dùng trong các ứng dụng y - sinh học cần phải đáp ứng các yêu cầu khắt khe hơn các vật liệu sử dụng cho các mục đích khác. Đối với các ứng dụng trong cơ thể, ví dụ cho các mục đích phân tán thuốc qua mạch máu, làm môi trường cho việc phá hủy cục bộ các tế bào ung thư... đòi hỏi các hạt nanô từ phải có tính tương thích cao về mặt sinh học. Đối với các ứng dụng ngoài cơ thể, ví dụ dùng các hạt nanô từ làm tác nhân tương phản cho chụp ảnh cộng hưởng từ hạt nhân (MRI), mức độ yêu cầu mặc dù có thấp hơn nhưng đối tượng của các kỹ thuật này vẫn là các tế bào sống. Vì vậy, việc xem xét ảnh hưởng của các vật liệu lên các tế bào nghiên cứu vẫn cần được quan tâm. Thêm vào đó, để có sự tương thích sinh học, vật liệu cần phải có khả năng chức năng hóa bởi một hoặc nhiều phần tử, vẫn phải duy trì được từ tính 2 trong một thời gian thích hợp trong môi trường có độ pH thay đổi, không bị đào thải quá nhanh trong quá trình tuần hoàn máu, ổn định và không lắng đọng hay kết đám. Thông thường, các hạt oxit sắt từ Fe3O4 được biết đến như các vật liệu từ dùng cho các ứng dụng y - sinh học bởi ít tính độc tố, ít bị đào thải, có mômen từ lớn và nhiệt độ Curie TC cao. Tuy nhiên, trong các ứng dụng thực tế đối với phương pháp nhiệt trị, các vật liệu có nhiệt độ làm việc trên nhiệt độ phòng đã thu hút được sự quan tâm đặc biệt. Bản chất của nhiệt trị trong điều trị ung thư là dùng một nguồn nhiệt để đốt các tế bào ác tính. Các nghiên cứu lâm sàng đã chỉ ra rằng, nếu duy trì nhiệt độ từ 42 đến 43 oC trong vòng nửa giờ các tế bào ác tính có thể bị tiêu diệt và tính tổn thương nhiệt của các tế bào này là cao hơn nhiều so với tế bào lành. Khó khăn của việc sử dụng phương pháp nhiệt trị là kiểm soát quá trình một cách có hiệu quả, an toàn cho người bệnh mà cụ thể là ngăn chặn hiện tượng quá nhiệt. Khi quá nhiệt xảy ra không những các tế bào bệnh mà cả các tế bào lành cũng bị ảnh hưởng và làm tổn thương người bệnh. Về phương diện này, các vật liệu nanô từ có nhiệt độ Curie thấp (320 370 K) là giải pháp hữu hiệu. Để vận chuyển thuốc thông qua hệ thống tuần hoàn đến đích yêu cầu và cung cấp tác nhân cho nhiệt trị, một trong các phương pháp hữu hiệu nhất mà các nhà khoa học đặt nhiều hy vọng đó là quá trình điều khiển các hạt nanô từ bằng từ trường ngoài. Yêu cầu của phương pháp này đòi hỏi các hạt nanô phải có từ độ tự phát đủ lớn. Bên cạnh đó, các hạt nanô từ phải có tính dẫn điện để có thể thực hiện quá trình trao đổi nhiệt cảm ứng. Dù trên thực tế có nhiều loại vật liệu thỏa mãn các yêu cầu này, nhưng việc sử dụng chúng trong y học bị cản trở bởi nhiều yếu tố. Trong đề tài này, chúng tôi đề xuất sử dụng các vật liệu thông minh trên các oxit kim loại có khả năng ngăn chạn các tác dụng phụ nói trên. Việc thay đổi thành phần cation trong các oxit có cấu trúc perovskite Ca(CuxMn3-x)Mn4O12 cho phép thu được các hợp chất có TC trong dải nhiệt độ 300 - 350 K phù hợp với dải nhiệt độ yêu cầu cho phương pháp nhiệt trị. Một điều quan trọng là trong các hợp chất này, nhiệt độ chuyển pha từ trạng thái kim loại (TTC) xảy ra đồng thời với chuyển pha sắt từ - thuận từ. Cho đến nay, các hạt oxit sắt Fe3O4 và perovskite từ tính có thể tổng hợp được bằng nhiều phương pháp hóa học khác nhau như: phương pháp đồng kết tủa, phương pháp son-gen, phương pháp vi nhũ tương, phương pháp phân hủy siêu âm - phun, phương pháp phân hủy laser, phương pháp CVD và phương pháp thủy phân nhiệt. Tất cả các phương pháp này đều sử dụng các hợp chất ban đầu ở trạng thái phân tán cao, sau đó thực hiện các bước tiếp theo ở nhiệt độ tương đối thấp để thu được các hạt đồng nhất. Phương pháp son-gen được sử dụng rộng rãi để tổng hợp các vật liệu có kích thước nanô mét. Tuy nhiên, phương pháp này còn gặp nhiều hạn chế bởi tính ổn định 3 của các thành phần ban đầu và gặp nhiều khó khăn trong việc pha tạp thêm các thành phần ion kim loại phức tạp khác. Việc triển khai hương nghiên cứu “TỔNG HỢP VÀ NGHIÊN CỨU TÍNH CHẤT CỦA CÁC HẠT NANÔ TỪ THÔNG MINH ỨNG DỤNG TRONG Y SINH HỌC” không chỉ được chúng tôi lựa chọn là đề tài luận văn, mà còn được xem như một mũi nhọn chủ lực của Phòng Thí nghiệm Vật liệu và Linh kiện từ tính nanô thuộc Khoa Vật lý và Công nghệ Nanô - Trường Đại học Công nghệ - ĐHQG Hà Nội trong những năm gần đây và trong tương lai. Các vấn đề cần giải quyết và các mục tiêu cơ bản cần hướng tới của bản luận văn: - Hoàn thiện quy trình tổng hợp các hạt nanô từ tính thông minh như: Fe3O4, Perovskite Ca(CuxMn3-x)Mn4O12 ( 0,0 ≤ x ≤ 3,0) … bằng phương pháp hóa học tại nhiệt độ phòng. Các hóa chất được sử dụng trong quá trình tổng hợp phải có độ sạch cao, đạt tiêu chuẩn phân tích - Để áp dụng cho các ứng dụng đề cập ở trên, trước hết các vật liệu nghiên cứu phải có từ độ tự phát đủ lớn cũng như sự thay đổi tính chất điện xảy ra tại nhiệt độ chuyển pha sắt từ - thuận từ. Sự ảnh hưởng của nhiệt độ ủ mẫu và việc thay đổi thành phần thay thế Cu cho Mn trong hệ vật liệu Ca(CuxMn3-x)Mn4O12 ( 0,0 ≤ x ≤ 3,0) lên nhiệt độ Curie và kính thước hạt cũng được khảo sát. - Bên cạnh các yêu cầu về tính chất vật lý và hóa học, tính tương thích sinh học của các hạt nanô từ tính đối với cơ thể sống động vật, thực vật và con người là cự kỳ quan trọng. Để đạt được yêu cầu này, các hạt nanô từ tính sẽ cần được bọc lớp vỏ tương thích sinh học. - Các thí nghiệm lâm sàng ứng dụng các hạt nanô từ tính trong liệu pháp phân tán thuốc – curcumin thụ động đối với dòng vi rút viêm gan vịt (Duck Hepatitis virus type 1- DHV1) trên vịt con hai tuần tuổi cũng được đề cập đến. Bố cục của luận văn Luận văn có bố cục như sau: ngoài phần mở đầu và phần kết luận, các nội dung còn lại được trình bày trong bốn chương, bao gồm: Chương 1: Liệu pháp vận chuyển và phân tán thuốc hướng đích sử dụng các hạt nanô từ tính. Chương 2: Vật liệu nanô từ tính, các polime tự nhiên và đối tượng sinh học thực nghiệm. Chương 3: Chế tạo mẫu và các phương pháp thực nghiệm Chương 4: Kết quả thực nghiệm và thảo luận. 4 CHƯƠNG 1 LIỆU PHÁP VẬN CHUYỂN VÀ PHÂN TÁN THUỐC HƯỚNG ĐÍCH SỬ DỤNG CÁC HẠT NANÔ TỪ TÍNH Việc vận chuyển và phân tán thuốc dựa trên các vật liệu nền có cấu trúc nanô, đặc biệt là các hạt nanô siêu thuận từ, đang ngày càng được chú ý do chúng có nhiều tác dụng trong chẩn đoán, điều trị bệnh nhân ung thư, rối loạn tĩnh mạch và điều trị các bệnh khác. Tiềm năng ứng dụng của các hạt nanô từ tính xuất phát từ sự kết hợp giữa các tính chất từ của lõi bên trong với khả năng tương thích sinh học cao của lớp vỏ bên ngoài được chức năng hóa theo các dòng thuốc, protein hay các plasmit khác nhau. Trong chương này chúng tôi sẽ giới thiệu và thảo luận những đặc tính và những ứng dụng gần đây của các hạt nanô từ tính trong việc phân tán thuốc (liệu pháp nhiệt trị, quá trình cắt bỏ bằng nhiệt và các ứng dụng trong phẫu thuật sử dụng các hạt nanô sẽ không được đề cập ở đây). 1.1. Giới thiệu chung Nhìn chung, các hạt nanô từ tính được tổng hợp từ các vật liệu vô cơ hoặc hữu cơ có kích thước từ 1 đến 100 nm theo phương pháp “bottom-up”. Các vật liệu nanô này được tạo thành từ các phân tử, nguyên tử thông quá trình nhiệt động học [8]. Chúng bao gồm phần lõi là các oxit kim loại hoặc kim loại, phần vỏ được chức năng hóa bởi các chất vô cơ, hữu cơ hoặc polime tạo nên tương thích sinh học. Các tính chất từ của các hạt nanô từ tính này được sử dụng trong một số ứng dụng y – sinh như sau: (i) Ứng dụng trong chẩn đoán - làm tác nhân tương phản ảnh cộng hưởng từ hạt nhân (MRI) [14]. (ii) Liệu pháp nhiệt trị trong điều trị ung thư, sử dụng trường ngoài tần số cao để đốt/cắt nhiệt các tế bào ác tính [31]. (iii) Liệu pháp vận chuyển và phân tán thuốc hướng đích [32]. Mặc dù, theo đánh giá của Hiệp hội ung thư Mỹ, những người chết vì ung thư ở Mỹ đã giảm xuống trong hai năm trở lại đây [12]. Đó là do tỷ lệ hút thuốc giảm xuống và sự phát triển của các phương pháp xử lý khối u. Tuy nhiên, bệnh ung thư hiện vẫn là một trong những nguyên nhân gây tử vong rất cao ở các nước phát triển. Các phương pháp chữa bệnh truyền thống như: phẫu thuật, trị xạ, hoá trị liệu và những liệu pháp sinh học (phương pháp miễn dịch) đều bị giới hạn do khả năng xâm nhập vào khối u, tạo rủi ro cho các bộ phận, các tổ chức sống khác. Cơ chế phân tán và vận chuyển thuốc dựa trên các vật liệu nền là các hạt nanô từ tính đem lại nhiều hứa hẹn trong điều trị và chẩn đoán bởi các các đặc tính ưu việt sau: (i) cho phép phân tán thuốc đến các bộ phận, các tổ chức sống phức tạp trong cơ 5 thể bởi kích thước siêu nhỏ, (ii) tăng khả năng vận chuyển thuốc hướng đích, đủ liều đến các bộ phận và tổ chức sống cần điều trị, (iii) làm giảm sự tập trung của thuốc tại những vùng, các bộ phận và các tổ chức sống lành tính – làm giảm tác dụng phụ ở mức nhỏ nhất [50]. Tiềm năng ứng dụng của các hạt nanô từ trong y – sinh học được biểu thị trên biểu đồ hình 1.1. Hình 1.1. Biểu đồ phát triển và ứng dụng của các hạt nanô từ tính trong y sinh học [40] Các hạt nanô cho phép can thiệp đến cấp độ mô, cấp độ tế bào. Có nghĩa là chúng có thể thâm nhập vào nội bào hoặc đại thực bào, nhờ vào tính tương thích sinh học của các hạt nanô. Trong quá trình này, các hạt nanô có thể xâm nhập vào các màng tế bào chất và trong một số trường hợp có thể là các màng bào tương. Cơ chế vận chuyển thuốc hướng đích đến các mô hay các tế bào bệnh bằng các hạt nanô bao gồm: liệu pháp hướng đích chủ động; hướng đích thụ động và hướng đích vật lý. Phương pháp hướng đích thụ động: thuốc được tập trung vào bên trong cơ thể với các đặc tính truyền không thay đổi (những loại thuốc chuyên dụng). Các hạt nanô từ tính lợi dụng hiện tượng thoát mạch tại các mô bệnh. Ở đó các vi mạch máu nhỏ dễ bị thấm và bị thủng do quá trình thoát lympho (bạch huyết) tới hại ở khối u. Kết hợp các nhân tố này dẫn tới sự tích luỹ các hạt nanô trong mô tế bào, hiện tượng này được gọi là thẩm thấu và lưu giữ tăng cường [8]. Phần lớn các mô đều ở thể rắn, kích thước mạch máu nằm trong khoảng từ 380 nm đến 780 nm. Hơn nữa, tổ chức mạch máu là không giống nhau do sự hình thành bất thường tùy thuộc vào mầm bệnh, loại khối u và 6 môi trường [23]. Sự tương thích về mặt kích thước hạt nanô trong quá trình khuếch tán và phân bố thông qua mao mạch đến các u ác tính được trình bày trong bảng 1.1 [40]. Quá trình phân tán thuốc sẽ không bị giới hạn khi đường kính của các hạt nanô nhỏ hơn các mao mạch có kính thước nhỏ nhất. Thay vì điều đó, chúng lại bị giới hạn bởi thời gian lưu trú của các hạt nanô trong mạch máu của cở thể. Do đó, sử dụng các hạt nanô từ trong việc phân tán thuốc theo phương pháp truyền thống thường là thụ động. Khả năng tiếp cận của chúng tới các mô trong hệ thống thực bào đơn phân (gan, lá lách và tủy xương) bị hạn chế. Đối với những các mô khác, dường như không có khả năng tác động nếu như không có sự bổ trợ bởi các liệu pháp hướng đích chủ động khác. Vì thời gian lưu trú ngắn và độ tập trung của các hạt nanô thấp, nên chúng chỉ hoạt động được ở những vùng bị u (bất chấp hiệu ứng lưu giữ tăng cường), điều này dẫn tới sự tập trung thuốc dưới mức cho phép. Bảng 1.1. Sự tương thích về mặt kích thước của các hạt nanô trong liệu pháp phân tán và vận chuyển thuốc thông qua hệ thống tuần hoàn trong cơ thể người [40]. Kích thước Các tổ chức sống Các mao mạch không cho Vận chuyển phép thâm nhập < 1 nm Hệ thần kinh trung tâm, màng máu - não thuốc Các mao mạch duy trì ~ 6 nm Các mô như cơ, da phổi.. Các mao mạch có lỗ thủng ~50-60 nm Thận, ruột, nội tiết, ngoại tiết Các mao mạch dạng sinusoid 100-1000 nm Gan, lá lách, tủy xương Bán kính động mạch con 0,005-0,07 mm Bán kính động mạch 0,08-7,5 mm Ứng dụng chạy thận nhân tạo, lọc máu. Đào thải bằng opxonin, bạch cầu đơn nhân Bán kính tĩnh mạch nhỏ 8 đến 100 µm Phân tán thuốc Phương pháp hướng đích chủ động: cho phép thuốc truyền một cách trực tiếp vào các tế bào đặc trưng, các u hoặc các tổ chức nhờ vào cơ chế nhận dạng đặc trưng bởi các ”quyết định kháng nguyên” (epitope - là vị trí cấu trúc trên một phân tử kháng nguyên có thể phản ứng với một kiểu cấu trúc hóa học của phân tử kháng thể hoặc phân tử thụ thể), các thụ thể hay đặc trưng vật lý. Các tác nhân vật lý (như: nhiệt độ, pH, điện tích, ánh sáng, âm thanh, từ trường) không chỉ nhạy cảm với quá trình lây nhiễm bệnh mà còn tác động trực tiếp đến quá trình vận chuyển và phân tán thuốc hướng đích. Mặt khác, liệu pháp hướng đích chủ động cũng có thể thông qua các cấu trúc có khối lượng phân tử thấp (như: axit folic, sinh tố B, đường), các peptit (RGD, LHRD), các protein (tranferrin, kháng thể, lectin), polisaccarit (axit hialuronic), các axit béo không có khả năng tạo colesteron, các peptit, DNA,… [40]. 7 Liệu pháp hướng đích vật lý: cho phép phân tán và vận chuyển thuốc dưới tác động bởi các đặc trưng vật lý của trường ngoài. Các hạt từ tính được biết đến trong liệu pháp này là các hồng cầu từ tính, các albumin từ, và các hạt polime có kích thước micro mét [60]. Chúng có chức năng làm giàu và vận chuyển thuốc thông qua tĩnh mạch đến vùng bị tổn thương và các khối u dưới tác dụng của trường ngoài. Tuy nhiên, do tính chất từ của chúng quá nhỏ, không đáp ứng đủ mức cần thiết cho liệu pháp phân tán thuốc nên không được phát triển tiếp. Song hành cùng với các liệu pháp phân tán thuốc này là các vật liệu nền truyền thống được biết đến đều có nguồn gốc từ các hợp chất hữu cơ hay tự nhiên như: trong liệu pháp hướng đích thụ động là các hạt nanô polime, liposome, “dendrimer”, mixen, thể nhũ tương…, liệu pháp hướng đích chủ động là kháng thể, hay liệu pháp vật lý là liposome từ tính. Tuy nhiên, các hệ vật liệu hữu cơ này thường bị giới hạn bởi các đặc tính hóa – lý như sự phân bố kích thước hạt không đồng nhất, sự phân nhánh các cấu tử phức tạp dẫn đến các đặc tính dược lý không thống nhất bởi sự ổn định, tính tương thích sinh học và độ thụ cảm khi bị các thụ thể sinh học tác động. Hình 1.2. Tiềm năng ứng dụng của các hạt nanô từ trong vận chuyển và phân tán thuốc hướng đích [60] Như chúng tôi đã đề cập ở phần trên, các hạt nanô siêu thuận từ điển hình là các oxit sắt có kích thước từ 10 đến 100 nm, được chức năng hóa bề mặt đã đem lại nhiều hứa hẹn trong việc thay thế các dòng vật liệu truyền thống trước đây (xem hình 1.2) [60]. Tiềm năng của dòng vật liệu nền này đã được kiểm chứng bởi nhiều nhóm tác giả như: ảnh hưởng của các hạt nanô siêu thuận từ oxit sắt được chức năng hoá bề mặt bởi polime anhydrogluco mang thuốc epirubicin đối với các u ác tính, ung thư di căn vòm họng ở chuột [3]; hay sự suy giảm tế bào ung thư biểu mô VX-2; u di căn ở thỏ bởi sự tác động của các hạt nanô từ mang thuốc etoxin carminomycin và rubomycin [11]. Tuy 8 nhiên, các tác giả cũng chỉ ra rằng, sự tương thích sinh học của các hạt nanô từ tính phụ thuộc rất nhiều vào các tham số liên quan đến quá trình phân tán và dẫn truyền trong cơ thể như: các tính chất hóa lý, kích thước hạt, độc lực, sự tích điện bề mặt, khả năng bám hút protein, tính không ưa nước của bề mặt, tỷ lệ tải, động năng nghỉ, độ ổn định, quá trình thoái hoá của hệ truyền, quá trình hydrat hoá, tính biến đổi của hiện tượng điện chuyển, góc tiếp xúc, khối lượng hạt nanô, khả năng mang thuốc (kiểu: đưa kèm, hút bám, kết nang), thời gian lưu trú của các hạt siêu thuận từ dưới tác động của trường ngoài và lưu lượng máu vận chuyển đến các mô bệnh cũng ảnh hưởng đến hiệu quả của phương pháp này. Mặt khác, các thông số sinh-lý của bệnh nhân như trọng lượng cơ thể, thể tích máu, rối loạn tim, khả năng chịu đựng bởi các điều kiện ngoại vi của hệ tuần hoàn và các chức năng của các tổ chức sống vùng lân cận cũng chịu ảnh hưởng dưới tác dụng của trường ngoài đặt vào…[42]. Kích thước hạt, độc lực, sự tích điện bề mặt, khả năng bám hút protein là những đặc tính quan trọng trong việc vận chuyển thuốc và liệu pháp in vivo sẽ được trình bày ở phần dưới đây. 1.2. Điều kiện tương thích sinh học và các đặc tính của các hạt nanô từ tính 1.2.1. Kích thước của các nanô từ tính Do sự phụ thuộc vào năng lượng từ, các hạt nanô từ tính luôn có xu hướng liên kết lại với nhau, làm giảm khả năng tích điện trên bề mặt. Điều này có thể dẫn đến sự kết tủa, gây nguy hiểm nếu như các hạt nanô từ được đưa vào trong tĩnh mạch. Do đó, các hạt nanô từ tính phải là các hạt siêu thuận từ. Đường cong từ hoá của hạt siêu thuận từ là một đường thuận nghịch, có độ từ dư Mr bằng không và giá trị của lực kháng từ Hc bằng không (xem hình 1.3). Điều quan trọng nữa là phải biết được khả năng tích điện bề mặt và khả năng dung nạp các hạt nanô từ này trong máu [48]. Các hạt nanô từ khi thâm nhập vào cơ thể đều được nhận dạng và phát hiện bởi các đại thực bào của hệ thực bào đơn nhân. Các hạt có kích thước nhỏ hơn 4µm được nhận dạng bởi các tế bào nội mô, chiếm chủ yếu trong gan (60-90%) và trong lá lách (310%) [42,48]. Trong khi đó, các hạt có kích thước nằm trong khoảng từ 100 nm đến 200 nm, sẽ thâm nhập vào thực bào thông qua tế bào gan (khe hở ở bên trong giữa các tế bào nội mô ở gan từ 100 đến 150 nm) [37]. Các hạt lớn hơn 200 nm sẽ bị lọc bởi xoang tĩnh mạch ở lá lách. Nếu các hạt có kích thước giữa 30 và 100 nm được sử dụng trong tĩnh mạch, gan sẽ đào thải các hạt có kích thước lớn nhanh hơn so với các hạt có kích thước nhỏ [53]. Vì vậy thời gian lưu trú của các hạt có kích thước lớn trong huyết thanh ngắn hơn, những phần tử lớn có chu kỳ bán rã của huyết tương ngắn hơn. Sự phụ thuộc vào kích thước hạt có thể phân tách bởi thực bào (với mọi kích thước) hoặc trong quá trình thấm bào (các hạt có kích thước cỡ 150 nm) [54]. Nghĩa là các hạt có kích thước lớn sẽ bị đào thải thông qua quá trình thấm bào (tất cả các tế bào đều có khả năng thấm bào). Dưới góc nhìn sinh lý học, các hạt có kích thước lớn hơn 10 nm không thể thâm nhập vào nội mô [63]. Tuy nhiên, về bệnh lý học, đặc biệt là sự góp mặt của từ trường
- Xem thêm -