Đăng ký Đăng nhập
Trang chủ Tổng hợp, nghiên cứu tính chất phức chất 2-phenoxybenzoat của Eu(III), Gd(III) v...

Tài liệu Tổng hợp, nghiên cứu tính chất phức chất 2-phenoxybenzoat của Eu(III), Gd(III) và phức chất hỗn hợp của chúng với o-phenantrolin

.PDF
63
295
116

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM LÊ ĐÌNH CHI TỔNG HỢP, NGHIÊN CỨU TÍNH CHẤT PHỨC CHẤT 2-PHENOXYBENZOAT CỦA Eu(III), Gd(III) VÀ PHỨC CHẤT HỖN HỢP CỦA CHÚNG VỚI O-PHENANTROLIN LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT THÁI NGUYÊN, NĂM 2015 Số hóa bởi Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM LÊ ĐÌNH CHI TỔNG HỢP, NGHIÊN CỨU TÍNH CHẤT PHỨC CHẤT 2-PHENOXYBENZOAT CỦA Eu(III), Gd(III) VÀ PHỨC CHẤT HỖN HỢP CỦA CHÚNG VỚI O-PHENANTROLIN Chuyên ngành: Hóa vô cơ Mã số: 60 44 01 13 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT Ngƣời hƣớng dẫn khoa học: PGS.TS. NGUYỄN THỊ HIỀN LAN THÁI NGUYÊN, NĂM 2015 Số hóa bởi Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, các số liệu, kết quả nghiên cứu trong luận văn là trung thực và chưa có ai công bố trong một công trình nào khác. Thái Nguyên, tháng 08 năm 2015 Tác giả luận văn Lê Đình Chi Xác nhận của Trƣởng khoa Hóa học Xác nhận của giáo viên hƣớng dẫn Khoa học PGS.TS. Nguyễn Thị Hiền Lan Số hóa bởi Trung tâm Học liệu – ĐHTN PGS.TS. Nguyễn Thị Hiền Lan i http://www.lrc.tnu.edu.vn LỜI CẢM ƠN Với tấm lòng thành kính, em xin bày tỏ lòng biết ơn sâu sắc của mình tới cô giáo - PGS. TS. Nguyễn Thị Hiền Lan - người hướng dẫn khoa học đã tận tình chỉ bảo, giúp đỡ và hướng dẫn em trong suốt quá trình học tập, nghiên cứu và hoàn thành luận văn. Em xin trân trọng cảm ơn các thầy, cô giáo trong bộ môn Hóa Vô Cơ, khoa Hóa Học, phòng Đào tạo (bộ phận Sau đại học) Trường Đại học Sư phạm Thái Nguyên đã tạo mọi điều kiện thuận lợi cho chúng em hoàn thành bản luận văn này. Tôi xin gửi lời cảm ơn chân thành tới BGH, Lãnh đạo phòng Đào tạo, bạn bè, đồng nghiệp trường Đại học Nông lâm Thái Nguyên, cùng những người thân yêu trong gia đình đã luôn giúp đỡ, quan tâm, động viên, chia sẻ và tạo mọi điều kiện giúp tôi hoàn thành tốt khóa học. Thái Nguyên, tháng 08 năm 2015 Tác giả Lê Đình Chi Số hóa bởi Trung tâm Học liệu – ĐHTN ii http://www.lrc.tnu.edu.vn MỤC LỤC LỜI CAM ĐOAN ................................................................................................. i LỜI CẢM ƠN ...................................................................................................... ii MỤC LỤC ..........................................................................................................iii CÁC KÍ HIỆU VIẾT TẮT ................................................................................. iv DANH MỤC CÁC BẢNG .................................................................................. v DANH MỤC CÁC HÌNH .................................................................................. vi MỞ ĐẦU ............................................................................................................. 1 Chƣơng 1. TỔNG QUAN TÀI LIỆU ............................................................... 2 1.1. Tình hình nghiên cứu trong và ngoài nước .................................................. 2 1.2. Giới thiệu chung về các NTĐH và khả năng tạo phức của chúng .......... 3 1.2.1. Đặc điểm chung của các NTĐH ................................................................ 3 1.2.2. Khả năng tạo phức của các NTĐH ............................................................ 7 1.3. Axit cacboxylic và cacboxylat kim loại ....................................................... 9 1.3.1. Đặc điểm cấu tạo và khả năng tạo phức của các axit monocacboxylic .......... 9 1.3.1.1. Axit 2-phenoxybenzoic .......................................................................... 11 1.3.1.2. o-phenantrolin ........................................................................................ 11 1.3.2. Các cacboxylat kim loại .......................................................................... 12 1.4. Một số phương pháp hoá lí nghiên cứu phức chất ..................................... 13 1.4.1. Phương pháp phổ hấp thụ hồng ngoại ..................................................... 13 1.4.2. Phương pháp phân tích nhiệt ................................................................... 14 1.4.3. Phương pháp phổ khối lượng .................................................................. 16 1.4.4. Phương pháp phổ huỳnh quang ............................................................... 17 Chƣơng 2. ĐỐI TƢỢNG, MỤC ĐÍCH VÀ PHƢƠNG PHÁP NGHIÊN CỨU ..... 19 2.1. Đối tượng nghiên cứu ................................................................................. 19 2.2. Mục đích, nội dung nghiên cứu .................................................................. 19 2.3. Phương pháp nghiên cứu ............................................................................ 19 2.3.1. Phương pháp xác định hàm lượng ion đất hiếm trong phức chất ............ 19 Số hóa bởi Trung tâm Học liệu – ĐHTN iii http://www.lrc.tnu.edu.vn 2.3.2. Phương pháp phổ hấp thụ hồng ngoại ..................................................... 19 2.3.3. Phương pháp phân tích nhiệt ................................................................... 20 2.3.4. Phương pháp phổ khối lượng .................................................................. 20 2.3.5. Phương pháp phổ huỳnh quang ............................................................... 20 Chƣơng 3. THỰC NGHIỆM, KẾT QUẢ VÀ THẢO LUẬN ...................... 21 3.1. Dụng cụ và hoá chất ................................................................................... 21 3.1.1. Dụng cụ .................................................................................................... 21 3.1.2. Hóa chất ................................................................................................... 21 3.2. Chuẩn bị hoá chất ....................................................................................... 22 3.2.1. Dung dịch LnCl3 ...................................................................................... 22 3.2.2. Dung dịch NaOH 0,1M ........................................................................... 22 3.2.3. Dung dịch EDTA 10-2M .......................................................................... 22 3.2.4. Dung dịch Asenazo III ~ 0,1% ................................................................ 22 3.2.5. Dung dịch đệm axetat có pH ≈ 5 ............................................................. 23 3.3. Tổng hợp các phức chất của Eu(III) và Gd(III)..........................................23 3.3.1. Tổng hợp các phức chất 2-phenoxybenzoat của Eu(III) và Gd(III) ........ 23 3.3.2. Tổng hợp các phức chất hỗn hợp phối tử của Eu(III) và Gd(III) với 2-phenoxybenzoat và o-Phenantrolin .......................................................... 24 3.4. Nghiên cứu các phức chất bằng phương pháp phân tích xác định hàm lượng ion....................................................................................................24 3.5. Nghiên cứu các phức chất bằng phương pháp phổ hấp thụ hồng ngoại..... 26 3.6. Nghiên cứu các phức chất bằng phương pháp phân tích nhiệt ................... 32 3.7. Nghiên cứu các phức chất bằng phương pháp phổ khối lượng .................. 36 3.8. Nghiên cứu khả năng phát huỳnh quang của các phức chất ...................... 43 KẾT LUẬN....................................................................................................... 48 TÀI LIỆU THAM KHẢO............................................................................... 50 Số hóa bởi Trung tâm Học liệu – ĐHTN iv http://www.lrc.tnu.edu.vn CÁC KÍ HIỆU VIẾT TẮT HPheb : Axit 2-phenoxybenzoic Phen : o-phenantrolin Ln : Nguyên tố lantanit NTĐH : Nguyên tố đất hiếm EDTA : Etylendiamintetraaxetat CTCT : Công thức cấu tạo Số hóa bởi Trung tâm Học liệu – ĐHTN iv http://www.lrc.tnu.edu.vn DANH MỤC CÁC BẢNG 1.1. ........................................ 5 Bảng 3.1. Hàm lượng ion kim loại trong các phức chất ……..……………….26 Bảng 3.2. Các số sóng hấp thụ đặc trưng trong phổ hấp thụ hồng ngoại của phối tử và các phức chất ................................................................ 29 Bảng 3.3. Kết quả phân tích nhiệt của các phức chất …………….......……....34 Bảng 3.4. Các mảnh ion giả thiết trong phổ khối lượng của các phức chất ..... 39 Số hóa bởi Trung tâm Học liệu – ĐHTN v http://www.lrc.tnu.edu.vn DANH MỤC CÁC HÌNH Hình 3.1. Phổ hấp thụ hồng ngoại của axit HPheb............................................26 Hình 3.2. Phổ hấp thụ hồng ngoại của Phen .....................................................27 Hình 3.3. Phổ hấp thụ hồng ngoại của phức chất Na[Eu(Pheb)4].3H2O ........... 27 Hình 3.4. Phổ hấp thụ hồng ngoại của phức chất Na[Gd(Pheb)4].3H2O .......... 28 Hình 3.5. Phổ hấp thụ hồng ngoại của phức chất [Eu(Pheb)2(Phen)2]Cl .......... 28 Hình 3.6. Phổ hấp thụ hồng ngoại của phức chất [Gd(Pheb)2(Phen)2]Cl ......... 29 Hình 3.7. Giản đồ phân tích nhiệt của phức chất Na[Eu(Pheb)4].3H2O ............. 32 Hình 3.8. Giản đồ phân tích nhiệt của phức chất Na[Gd(Pheb)4].3H2O ........... 33 Hình 3.9. Giản đồ phân tích nhiệt của phức chất [Eu(Pheb)2(Phen)2]Cl .......... 33 Hình 3.10. Giản đồ phân tích nhiệt của phức chất [Gd(Pheb)2(Phen)2]Cl ........ 34 Hình 3.11. Phổ khối lượng của phức chất Na[Eu(Pheb)4].3H2O ..................... 36 Hình 3.12. Phổ khối lượng của phức chất Na[Gd(Pheb)4].3H2O ..................... 37 Hình 3.13. Phổ khối lượng của phức chất [Eu(Pheb)2(Phen)2]Cl ..................... 37 Hình 3.14. Phổ khối lượng của phức chất [Gd(Pheb)2(Phen)2]Cl ..................... 38 Hình 3.15. Phổ phát xạ huỳnh quang của phức chất Na[Eu(Pheb)4].3H2O ............. 43 Hình 3.16. Phổ phát xạ huỳnh quang của phức chất Na[Gd(Pheb)4].3H2O .......... 43 Hình 3.17. Phổ phát xạ huỳnh quang của phức chất [Eu(Pheb)2(Phen)2]Cl ....... 44 Hình 3.18. Phổ phát xạ huỳnh quang của phức chất [Gd(Pheb)2(Phen)2]Cl ...... 44 Số hóa bởi Trung tâm Học liệu – ĐHTN vi http://www.lrc.tnu.edu.vn MỞ ĐẦU Có thể khẳng định rằng hoá học phức chất đang phát triển rực rỡ và là nơi hội tụ những thành tựu của hoá lí, hoá phân tích, hoá hữu cơ, hoá sinh, hoá dược. Ngoài những phối tử vô cơ đơn giản, việc sử dụng các phối tử hữu cơ trong hoá học phức chất tạo nên một không gian phát triển vô tận trong hóa học các hợp chất phối trí. Khoảng hai mươi năm trở lại phát triển rất mạnh mẽ. Sự đa dạng trong phối trí (một càng, vòng - hai càng, cầu - hai càng) và sự phong phú trong ứng dụng thực tiễn đã làm cho phức chất cacboxylat kim loại giữ một vị trí đặc biệt trong hóa học phức chất. Chúng được ứng dụng trong nhiều lĩnh vực như phân tích, tách, làm sạch nguyên tố, tổng hợp hữu cơ, chế tạo các vật liệu từ, vật liệu siêu dẫn, vật liệu phát huỳnh quang... Đã thành công về ứng …. Tuy nhiên, , đặc biệt việc nghiên cứu các phức chất với hỗn hợp phối tử còn ít công trình đề cập đến. Vì vậy, việc tổng hợp, nghiên cứu tính chất các phức chất cacboxylat thơm của đất hiếm là rất có ý nghĩa cả về mặt khoa học và thực tiễn, ngày càng được nhiều nhà nghiên cứu quan tâm và chọn đó là hướng nghiên cứu ưu tiên. Với mục đích góp phần nghiên cứu vào lĩnh vực cacboxylat kim loại, chúng tôi tiến hành: "Tổng hợp, nghiên cứu tính chất phức chất 2-phenoxybenzoat của Eu(III), Gd(III) và phức chất hỗn hợp của chúng với o-phenantrolin". Chúng tôi hy vọng các . Số hóa bởi Trung tâm Học liệu – ĐHTN 1 http://www.lrc.tnu.edu.vn Chƣơng 1 TỔNG QUAN TÀI LIỆU 1.1. Tình hình nghiên cứu trong và ngoài nƣớc Hóa học phức chất của đất hiếm với các cacboxylat thơm đang thu hút được nhiều sự quan tâm nghiên cứu bởi sự phong phú về tính chất và khả năng ứng dụng của chúng. Việc nghiên cứu tính chất cũng như khả năng phát quang của các phức chất đất hiếm được ứng dụng rộng rãi trong rất nhiều lĩnh vực khoa học kĩ thuật. Tác giả [31] đã tổng hợp thành công phức chất của Eu (III) với HTTA, N-HPA và 1,10-phenanthroline (HTTA: α-thenoyltrifluoroaceton; N-HPA: axit Nphenylanthranilic), phức chất này phát ra huỳnh quang màu đỏ rất mạnh khi được kích thích bởi ánh sáng UV. Các phức chất có khả năng phát quang của La(III), Eu(III), Tb(III) với axit (Z)-4-(4-metoxyphenoxy)-4-oxobut-2-enoic, đã được nhóm tác giả [22] tổng hợp, trong đó nhóm cacboxylat phối trí chelat hai càng với các ion đất hiếm, chúng có cường độ phát quang mạnh với ánh sáng đơn sắc có bước sóng bằng 616 nm đối với phức chất của Eu(III) và 547 nm đối với phức chất của Tb(III). Nhóm tác giả [23] tổng hợp được phức chất [Eu(TTA)3TDPHEN].1,5CH3CN (TTA: 2-thenoyl trifluoroaceton; TDPHEN: [1, 2, 5] thiadiazolo [3, 4-f] [1, 10] phenanthrolin), có khả năng phát quang ánh sáng đỏ ở ngay nhiệt độ thường do quá trình chuyển đổi 5D0 → 7F2. Nhóm tác giả [27] đã tổng hợp được các phức chất [Ln(Pip-Dtc)3(Phen)] (Ln: La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Er(III); Pip-Dtc: piperidin dithiocarbamat; Phen: 1,10-phenanthrolin), chúng đều có khả năng phát quang mạnh và khả năng xúc tác tốt. Nhóm tác giả [30] đã tổng hợp được phức chất dạng dime-chelate [Er(benzoate)3(bipyridine)]2 trong khoảng cách giữa hai ion Er3+ đã được xác định và khả năng phát xạ huỳnh quang của phức chất Er(III) đã được nghiên cứu. Nhóm tác giả [24] đã tổng hợp thành công phức chất [Tb(acac)3TDZP], (acac: Acetylacetone; TDZP: [1,2,5] thiadiazolo [3,4-f] Số hóa bởi Trung tâm Học liệu – ĐHTN 2 http://www.lrc.tnu.edu.vn [1,10] phenanthroline), phức chất này phát ra ánh sáng màu xanh lá cây ở trạng thái rắn ngay tại nhiệt độ thường. Ở Việt Nam, người ta đã chế tạo [10], [11], [12]. Nhóm tác giả [8] đã nghiên cứu tổng hợp chất phát quang ytri silicat kích hoạt bởi tecbi theo phương pháp đồng kết tủa, đồng thời đưa ra giải pháp công nghệ mới là tẩm ion K + vào kết tủa để thu được sản phẩm có cường độ phát quang rất mạnh. Khả năng phát quang của phức chất hỗn hợp phối tử salixylat và o-phenantrolin với một số nguyên tố đất hiếm nặng đã được nhóm tác giả [7] tổng hợp và nghiên cứu. Tuy nhiên, ở Việt Nam những nghiên cứu về phức chất cacboxylat thơm ở dạng đơn phối tử và hỗn hợp phối tử cũng như chúng còn hạn chế. 1.2. Giới thiệu chung về các nguyên tố đất hiếm và khả năng tạo phức của chúng 1.2.1. Đặc điểm chung của các nguyên tố đất hiếm (NTĐH) Các (NTĐH) là tập hợp của mười bảy nguyên tố hoá học thuộc bảng tuần hoàn Menđêlêep bao gồm: 3 nguyên tố thuộc nhóm IIIB là scandi (Sc, Z=21), ytri (Y, Z=39), lantan (La, Z=57) và các nguyên tố họ lantanit. Họ lantan (Ln) gồm 14 nguyên tố 4f có số thứ tự từ 58 đến 71 được xếp vào cùng một ô với lantan: Xeri ( 58Ce), prazeodim ( 59Pr), neodim (60Nd), prometi ( 61Pm), samari ( 62 Sm), europi ( 63Eu), gadolini ( 64Gd), tecbi (65Tb), disprozi ( 66Dy), honmi ( 67 Ho), ecbi ( 68Er), tuli ( 69Tu), ytecbi ( 70 Yb) và lutexi ( 71Lu). Như vậy các nguyên tố đất hiếm thuộc nhóm IIIB và chu kỳ 6 của bảng tuần hoàn các nguyên tố hóa học. Cấu hình electron chung của nguyên tử các nguyên tố họ Lantan là: 1s22s22p63s23p63d104s24p64d104fn5s25p65dm6s2. Trong đó: n thay đổi từ 0 đến 14 m chỉ nhận giá trị 0 hoặc 1 Số hóa bởi Trung tâm Học liệu – ĐHTN 3 http://www.lrc.tnu.edu.vn Dựa vào đặc điểm xây dựng electron trên phân lớp 4f mà các lantanit được chia thành hai phân nhóm. phân hay electron phân hay , . La 4f05d1 Phân n Phân n Ce Pr Nd Pm Sm Eu Gd 4f2 4f3 4f4 4f5 4f6 4f7 4f75d1 Tb Dy Ho Er Tm Yb Lu 4f7+2 4f7+3 4f7+4 4f7+5 4f7+6 4f7+7 4f7+75d1 Các nguyên tố lantanit có phân lớp 4f đang được xây dựng và có số electron lớp ngoài cùng như nhau (6s 2). Theo các dữ kiện hóa học và quang phổ, phân lớp 4f và 5d có mức năng lượng gần nhau, nhưng phân lớp 4f thuận lợi hơn về mặt năng lượng. 5s25p6 , g. Sự khác nhau về cấu trúc nguyên tử của các nguyên tố trong họ chỉ thể hiện ở lớp thứ ba từ ngoài vào, lớp này ít ảnh hưởng đến tính chất hóa học của các nguyên tố nên tính chất hóa học của các nguyên tố lantanit rất giống nhau. Tuy có tính chất giống nhau nhưng do có sự khác nhau về số electron trên phân lớp 4f nên ở mức độ nào đó các nguyên tố lantanit cũng có một số tính chất không giống nhau. Từ Ce đến Lu, một số tính chất biến đổi và một số tính chất biến đổi tuần hoàn. Số hóa bởi Trung tâm Học liệu – ĐHTN 4 http://www.lrc.tnu.edu.vn NTĐH ion Ln3+ (Ln) (Å ) sôi 0 0 (Å ) ( C) ( C) g/cm3 La 57 1,877 1,061 920 3464 6,16 Ce 58 1,825 1,034 804 3470 6,77 Pr 59 1,828 1,013 935 3017 6,77 Nd 60 1,821 0,995 1024 3210 7,01 Pm 61 - 0,979 1080 3000 7,26 Sm 62 1,802 0,964 1072 1670 7,54 Eu 63 2,042 0,950 826 1430 5,24 Gd 64 1,082 0,938 1312 2830 7,89 Tb 65 1,782 0,923 1368 2480 8,25 Dy 66 1,773 0,908 1380 2330 8,56 Ho 67 1,776 0,894 1500 2380 8,78 Er 68 1,757 0,881 1525 2390 9,06 Tm 69 1,746 0,899 1600 1720 9,32 Yb 70 1,940 0,858 824 1320 6,95 Lu 71 1,747 0,848 1675 2680 9,85 Số hóa bởi Trung tâm Học liệu – ĐHTN 5 http://www.lrc.tnu.edu.vn . le . , (4f76s2 này đều đạt (4f146s2 7 4f14 không tham gia. 5d16s2 oxi hóa bền và đặc trưng của nguyên tố là +3. Tuy nhiên, n (4f0), Gd (4f7), Lu (4f14) có số oxi hóa thay đổi như Ce (4f25d0) ngoài số oxi hóa +3 còn có số oxi hóa đặc trưng là +4 Pr (4f36s2) có thể có số oxi hóa +4 nhưng kém đặc trưng hơn , Eu (4f76s2) ngoài số oxi hóa +3 Ce nên còn có số oxi hóa +2 do mất hai electron ở phân lớp 6s; Sm (4f66s2) cũng có số oxi hóa +2 nhưng kém đặc trưng hơn so với Eu. Ln3+ 4f0, 4f7 4f1 4f13 (4f1 4f0 , 4f13 4f14 , 4f. Số hóa bởi Trung tâm Học liệu – ĐHTN 6 http://www.lrc.tnu.edu.vn 4f14 La3+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ (4f0) (4f1) (4f2) (4f3) (4f4) (4f5) (4f6) (4f7) Lu3+ Yb3+ Tm3+ Er3+ Ho3+ Dy3+ Tb3+ không màu không màu lục vàng tím hồng trắng ngà hồng nhạt không màu (4f14) (4f13) (4f12) (4f11) (4f10) (4f9) (4f8) không màu không màu lục nhạt hồng vàng vàng nhạt hồng nhạt Về mặt hóa học, các lantanit là những kim loại hoạt động, chỉ kém kim loại kiềm và kiềm thổ. Các nguyên tố phân nhóm xeri hoạt động mạnh hơn các nguyên tố phân nhóm tecbi. l . 2000C - 4000 . Lantan và các lantanit kim loại có tính khử mạnh. Trong dung dịch đa số các lantanit tồn tại dưới dạng ion bền Ln3+. Các ion Eu2+, Yb2+ và Sm2+ khử H+ thành H2 trong dung dịch nước. H3PO4 . 1.2.2. Khả năng tạo phức của các nguyên tố đất hiếm So với các nguyên tố họ d, khả năng tạo phức của các nguyên tố đất hiếm kém hơn do có các electron f bị chắn mạnh bởi các electron ở lớp ngoài cùng và các ion đất hiếm Ln3+ có kích thước lớn làm giảm lực hút tĩnh điện giữa chúng với các phối tử. Bán kính của ion đất hiếm (0,99 ÷ 1,22 Å) lớn hơn của các nguyên tố họ d (0,85 ÷ 1,06 Å) do đó, khả năng tạo phức của các nguyên tố đất hiếm chỉ tương đương với các kim loại kiềm thổ. Liên kết trong các phức chất chủ yếu là liên kết ion. Tuy nhiên, liên kết cộng hoá trị cũng đóng góp một phần nhất định do các obitan 4f không hoàn toàn bị che chắn nên sự xen phủ giữa obitan kim loại và phối tử vẫn có thể xảy ra mặc dù yếu [5]. Số hóa bởi Trung tâm Học liệu – ĐHTN 7 http://www.lrc.tnu.edu.vn : Các ion đất hiếm Ln3+ có thể tạo những phức chất N không bền với nhiều phối tử vô cơ như NO3 , CO32-, CN , halogenua… . Trong dung dịch loãng, các hợp chất này phân ly hoàn toàn, còn trong dung dịch đặc chúng kết tinh ở dạng tinh thể muối kép. Những muối kép này tương đối khác nhau về độ bền nhiệt và độ tan nên có thể được sử dụng để tách các nguyên tố đất hiếm. Các nguyên tố đất hiếm có khả năng tạo các phức chất vòng càng bền với các phối tử hữu cơ (đặc biệt là các phối tử có dung lượng phối trí cao và điện tích âm lớn). Đi từ lantan đến lutexi thì khả năng tạo phức của ion đất hiếm và độ bền của phức chất tăng do bán kính ion giảm nên lực hút của các ion trung tâm với các phối tử mạnh lên. . - 3+ - đó là các là N, c [1]. Khi tạo phức, ion đất hiếm có số phối trí lớn hơn ion kim loại chuyển tiếp họ d. Đặc thù tạo phức của các ion đất hiếm là có số phối trí cao và thay đổi. Số phối trí đặc trưng của chúng là 6, ngoài ra còn có các số phối trí lớn hơn như 7, 8, 9 thậm chí là 10, 11 và 12. Ví dụ, Ln3+ có số phối trí 8, trong các phức chất Ln(Hfac)3.3H2O; số phối trí 9 trong phức chất NH4Y(C2O4)2.H2O; số phối trí 10 trong phức chất HLnEDTA.4H2O; số phối trí 11 trong phức chất Ln(Leu)4(NO3)4 và số phối trí 12 trong phức chất Ce2(SO4)3.9H2O. Số phối trí cao và thay đổi của các nguyên tố đất hiếm phụ thuộc vào nhiều nguyên nhân khác nhau như bán kính của ion đất hiếm, đặc trưng hình học của phối tử và kiểu phân bố electron trên phân lớp 4f của các nguyên tố đất hiếm. Số hóa bởi Trung tâm Học liệu – ĐHTN 8 http://www.lrc.tnu.edu.vn Một đặc trưng rất quan trọng của các phức chất NTĐH là hằng số bền : La3+( RLa 3 3+ 1, 06 A0 ( RLu 0,88 A0 ) sau 14 nguyên 3 0,18Å , khuynh phức chất được tạo d bởi các ion đất hiếm Ln3+ - ( . 1.3. Axit cacboxylic và cacboxylat kim loại 1.3.1. Đặc điểm cấu tạo và khả năng tạo phức của các axit monocacboxylic Axit monocacboxylic: Axit monocacboxylic là hợp chất hữu cơ có công thức cấu tạo chung: O R C H O Như vậy, phân tử axit gồm hai phần: Nhóm chức cacboxyl (-COOH) và gốc hiđrocacbon (-R). Nhóm cacboxyl là tổ hợp của hai nhóm cacbonyl C=O và hiđroxyl -OH. Hai nhóm này tác động qua lại lẫn nhau do có sự liên hợp giữa electron ở liên kết đôi của nhóm C=O và electron p tự do của nguyên tử O trong nhóm -OH. Do đó, liên kết O-H ở phân tử axit phân cực hơn ở phân tử ancol và liên kết hiđro cũng mạnh hơn. Vì vậy, các axit có thể tạo những đime vòng: O R H O C C O Số hóa bởi Trung tâm Học liệu – ĐHTN H 9 R O http://www.lrc.tnu.edu.vn hoặc các polime dạng: O H O O C H O C R R Do đó các axit cacboxylic có nhiệt độ sôi cao hơn nhiệt độ sôi của các dẫn xuất halogen và ancol tương ứng. Mặt khác, các phân tử axit cacboxylic tạo liên kết hiđro với các phân tử nước bền hơn so với các ancol nên chúng dễ tan trong nước hơn các ancol . O ...... H R H O ....... C O H.......O H ....... H Khả năng tan trong nước của các axit cacboxylic giảm khi tăng số nguyên tử cacbon trong gốc hiđrocacbon R. Tính chất đặc trưng của axit cacboxylic do nhóm chức -COOH quyết định. Vì hiệu ứng liên hợp p - đã trình bày ở trên mà liên kết O-H trong axit cacboxylic phân cực hơn so với trong ancol và chúng dễ bị proton hoá hơn các ancol. Tuy nhiên, chúng đều là các axit yếu (Ka 10-5) và tính axit giảm khi mạch cacbon của gốc R càng dài hoặc càng phân nhánh. Nhờ tính linh động của nguyên tử H trong nhóm –OH và khả năng cho electron của nguyên tử oxi trong nhóm C=O nên các axit cacboxylic tạo phức tốt với nhiều kim loại, đặc biệt là khả năng tạo nên các phức chất vòng càng, trong đó ion kim loại đồng thời thay thế nguyên tử hiđro của nhóm –OH và tạo liên Số hóa bởi Trung tâm Học liệu – ĐHTN 10 http://www.lrc.tnu.edu.vn kết phối trí với nguyên tử oxi của nhóm –C=O trong phân tử axit monocacboxylic. Axit 2-phenoxybenzoic: Axit 2-phenoxybenzoic là axit monocacboxylic có công thức phân tử là C13H10O3, công thức cấu tạo : Axit 2-phenoxybenzoic có khối lượng mol phân tử: 214,22 g/mol, là tinh thể không màu, không mùi, nhiệt độ nóng chảy 1100C ÷ 1120C, nhiệt độ sôi 3550C. Tan tốt trong các dung môi hữu cơ như ancol etylic, ete, clorofom. Trong phân tử axit 2-phenoxybenzoic, nguyên tử H ở nhóm cacboxyl –COOH rất linh động và trong nhóm cacboxylat –COO-, nguyên tử oxi có khả năng cho electron nên axit 2-phenoxybenzoic có khả năng tạo phức tốt với ion kim loại. Thường gặp nhất là trường hợp trong đó nguyên tử kim loại thay thế nguyên tử H của nhóm hyđroxyl trong chức -COOH và liên kết kim loại - phối tử được thực hiện qua nguyên tử O của nhóm cacbonyl trong chức -COOH tạo nên các phức chất vòng càng bền vững. 1.3.2. O-phenantrolin: công thức phân tử: C12H8N2 ; khối lượng mol phân tử: 180 g/mol; công thức cấu tạo là: Ở điều kiện thường, o-phenantrolin là tinh thể tồn tại ở dạng mono hydrat C12H8N2.H2O, không màu, không mùi, không vị, nóng chảy ở 117 OC, tan trong nước, benzen, tan rất tốt trong cồn và các axit loãng. Số hóa bởi Trung tâm Học liệu – ĐHTN 11 http://www.lrc.tnu.edu.vn
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất