Tổng hợp, nghiên cứu cấu trúc và tính chất của coban ferit và niken ferit cấp hạt nano

  • Số trang: 183 |
  • Loại file: PDF |
  • Lượt xem: 101 |
  • Lượt tải: 2
tailieuonline

Đã đăng 27609 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN  Formatted: Top: (Thin-thick small gap, Auto, 3 pt Line width, Margin: 1 pt Border spacing: ), Bottom: (Thick-thin small gap, Auto, 3 pt Line width, Margin: 1 pt Border spacing: ), Left: (Thin-thick small gap, Auto, 3 pt Line width, Margin: 4 pt Border spacing: ), Right: (Thick-thin small gap, Auto, 3 pt Line width, Margin: 4 pt Border spacing: ) Formatted: Font: 15 pt, Font color: Text 1 Formatted: Font: 15 pt, Font color: Text 1 VŨ ĐÌNH NGỌ TỔNG HỢP, NGHIÊN CỨU CẤU TRÚC VÀ TÍNH CHẤT CỦA COBAN FERIT VÀ NIKEN FERIT CẤP HẠT NANO Formatted: Font: 16 pt, Font color: Text 1 Chuyên ngành: Hóa vô cơ Mã số: 62 44 25 01 LUẬN ÁN TIẾN SỸ HÓA HỌC Người hướng dẫn khoa học : 1. PGS. TS. NGÔ SỸ LƢƠNG 2. GS.TS. PHAN VĂN TƢỜNG Formatted: Tab stops: 2.47", Left Formatted: Font: 15 pt, Font color: Text 1 Formatted: Font: 16 pt, Font color: Text 1 Formatted: Font: 14 pt, Font color: Text 1 Formatted: Font: 16 pt, Font color: Text 1 Hà Nội - 2012 Formatted: Font: 15 pt, Font color: Text 1, Vietnamese (Vietnam) MỤC LỤC MỤC LỤC Formatted: Font: 14 pt, Not Bold, Font color: Text 1 LỜI CAM ĐOAN Formatted: Line spacing: Multiple 1.35 li LỜI CẢM ƠN Formatted: Justified, Line spacing: Multiple 1.35 li DANH MỤC CÁC CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH MỞ ĐẦU .......................................................................................................... 1 CHƢƠNG 1: TỔNG QUAN ............................................................................ 5 1.1. Cấu trúc tinh thể và tính chất của ferit spinen ........................................ 5 1.1.1. Cấu trúc tinh thể............................................................................... 5 1.1.2. Tính chất và ứng dụng của ferit spinen............................................ 7 1.1.2.1. Tính chất từ và ứng dụng ........................................................... 7 1.1.2.2. Tính chất xúc tác và ứng dụng ................................................. 12 1.1.3. Cấu trúc tinh thể, tính chất của coban ferit và niken ferit ............. 13 1.2. Các phương pháp tổng hợp ferit spinen cấp hạt nano .......................... 14 1.2.1. Phương pháp gốm truyền thống ........................................................ 15 1.2.2. Phương pháp đồng kết tủa ............................................................. 18 1.2.3. Phương pháp sol- gel ..................................................................... 22 1.2.4. Phương pháp thủy nhiệt ................................................................. 31 CHƢƠNG 2: NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU ........... 40 2.1. Nội dung nghiên cứu ............................................................................ 40 2.2. Phương pháp nghiên cứu ...................................................................... 41 2.2.1. Hóa chất để tổng hợp vật liệu ........................................................ 41 2.2.2. Tổng hợp vật liệu bằng phương pháp đồng kết tủa ....................... 41 2.2.3. Tổng hợp vật liệu bằng phương pháp thủy nhiệt ........................... 42 Formatted: Justified, Line spacing: Multiple 1.35 li Formatted: Normal, Justified, Level 1, Line spacing: Multiple 1.35 li, Tab stops: Not at 6.1" Formatted: Line spacing: Multiple 1.35 li 2.2.4. Tổng hợp coban ferit và niken ferit cấp hạt nano phân tán trong nền SiO2 bằng phương pháp sol - gel ..................................................... 42 2.3. Các phương pháp nghiên cứu đặc trưng cấu trúc và tính chất từ của vật liệu ......................................................................................................... 43 2.3.1. Phương pháp nhiễu xạ Rơnghen (XRD) ........................................ 43 2.3.2. Phương pháp phân tích nhiệt (DTA-TG) ....................................... 45 2.3.3. Phương pháp hiển vi điện tử quét (SEM)....................................... 46 2.3.4. Phương pháp hiển vi điện tử truyền qua (TEM) ............................ 47 2.3.5. Phương pháp xác định từ tính của vật liệu bằng từ kế mẫu rung (VSM) .............................................................................................. 49 CHƢƠNG 3: KẾT QUẢ VÀ BÀN LUẬN .................................................. 50 3.1. Tổng hợp coban ferit và niken ferit cấp hạt nano ................................. 50 bằng phương pháp đồng kết tủa................................................................... 50 3.1.1. Khảo sát ảnh hưởng của pH dung dịch ......................................... 50 3.1.1.1. Cấu trúc tinh thể ...................................................................... 52 3.1.1.2. Tính chất từ .............................................................................. 54 3.1.2. Khảo sát ảnh hưởng của nồng độ cation kim loại ......................... 55 3.1.2.1. Cấu trúc tinh thể ...................................................................... 55 3.1.2.2. Tính chất từ .............................................................................. 58 3.1.3. Khảo sát ảnh hưởng của nhiệt độ dung dịch và thời gian khuấy..........58 3.1.3.1. Cấu trúc tinh thể ...................................................................... 59 3.1.3.2. Tính chất từ .............................................................................. 62 3.1.4. Khảo sát ảnh hưởng của dung môi trong dung dịch kết tủa .......... 62 3.1.4.1. Cấu trúc tinh thể ...................................................................... 62 3.1.4.2. Tính chất từ............................................................................... 65 3.1.5. Khảo sát ảnh hưởng của nhiệt độ nung ......................................... 65 3.1.5.1. Kết quả phân tích nhiệt (DTA-TG) để xác định nhiệt độ nung mẫu 65 3.1.5.2. Cấu trúc tinh thể ...................................................................... 68 3.1.5.3. Tính chất từ .............................................................................. 71 3.1.6. Khảo sát ảnh hưởng của thời gian nung ........................................ 75 3.1.6.1. Cấu trúc tinh thể ....................................................................... 75 3.1.6.2. Tính chất từ .............................................................................. 76 3.2. Tổng hợp coban ferit và niken ferit hạt nano bằng phương pháp thủy nhiệt ..................................................................................................... 83 3.2.1. Khảo sát ảnh hưởng của nồng độ cation kim loại trong dung dịch thủy nhiệt .................................................................................................. 83 3.2.1.1. Cấu trúc tinh thể ...................................................................... 83 3.2.1.2. Tính chất từ .............................................................................. 88 3.2.2. Khảo sát ảnh hưởng của tỷ lệ etanol/nước trong dung dịch thủy nhiệt.........89 3.2.2.1. Cấu trúc tinh thể ...................................................................... 89 3.2.2.2. Tính chất từ .............................................................................. 92 3.2.3. Khảo sát ảnh hưởng của nhiệt độ thủy nhiệt ................................. 93 3.2.3.1. Cấu trúc tinh thể ...................................................................... 93 3.2.3.2. Tính chất từ .............................................................................. 96 3.2.4. Ảnh hưởng của thời gian thủy nhiệt ............................................... 99 3.3.4.1. Cấu trúc tinh thể ...................................................................... 99 3.2.4.2. Tính chất từ ............................................................................ 102 3.3. Tổng hợp coban ferit và niken ferit cấp hạt nano phân tán trong nền SiO2 bằng phương pháp sol - gel .............................................................. 106 3.3.1. Khảo sát ảnh hưởng của pH dung dịch đến quá trình tạo gel ..... 106 3.3.2. Khảo sát ảnh hưởng của nhiệt độ nung ....................................... 109 3.3.2.1. Cấu trúc nanocomposite ........................................................ 111 3.3.2.2. Tính chất từ của nanocomposite ....................................... 114 3.3.3.Khảo sát ảnh hưởng của thời gian nung .................................. 118 3.3.3.1. Cấu trúc nanocomposite .................................................... 118 3.3.3.1. Tính chất từ nanocomposite ............................................... 119 3.3.4. Ảnh hưởng của tỉ lệ khối lượng ferit trong nanocomposite ......... 120 3.3.4.1. Cấu trúc nanocomposite ........................................................ 120 3.3.4.2. Tính chất từ của nanocomposite ............................................ 118 KẾT LUẬN .................................................................................................. 130 DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN ................................ Error! Bookmark not defined. TÀI LIỆU THAM KHẢO .......................................................................... 132 PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT CA : Citric Acide CTAB : Cetyltrimetyl Amonium Bromide CVD : Chemical Vapour Deposition DTA : Diffrential Thermal Analysis EG : Ethylene Glycol Hc (Oe) : Lực kháng từ HWHM (rad): Bề rộng tại ½ chiều cao pic cực đại trên giản đồ XRD Ms (emu/g) : Từ độ bão hòa Mr (emu/g) : Từ dư PA : Pure Analysis PVA : Polyvinyl Alcohol PVC : Polyvinyl Chloride PVD : Physical Vapour Deposition SEM : Scaning Electron Microscopy TGA : Thermal Gravity Analysis TEM : Tranmission Electron Microscopy TEOS : Tetraethorxyorthorsilicate VSM : Vibrating Sample Magnetometer XRD : X-Ray Diffraction Formatted: Left, Indent: First line: 0.5" DANH MỤC CÁC BẢNG Formatted: Font: 16 pt, Font color: Text 1 Formatted: Font: 16 pt, Font color: Text 1 Formatted: Line spacing: Multiple 1.15 li Bảng 1.1. Một số công trình tổng hợp nano ferit bằng phương pháp gốm..... 17 Formatted: Font: 14 pt, Font color: Text 1 Bảng 1.2. Một số công trình tổng hợp nano ferit bằng phương pháp đồng kết tủa. 21 Formatted: Font: 14 pt, Font color: Text 1, Condensed by 0.4 pt Bảng 1.3. Một số công trình tổng hợp nano ferit bằng phương pháp sol - gel30 Formatted: Font: 14 pt, Font color: Text 1 Bảng 1.4. Một số công trình tổng hợp nano ferit bằng phương pháp thủy nhiệt .. 38 Formatted: Font: 14 pt, Font color: Text 1, Condensed by 0.3 pt Bảng 3.1. Kích thước tinh thể ferit và giá trị pH dung dịch thuỷ phân .......... 53 Formatted: Font: 14 pt, Font color: Text 1 Bảng 3. 2. Các giá trị đặc trưng cấu trúc tinh CoFe2O4 thể và NiFe2O4 tổng Formatted: Font: 14 pt, Font color: Text 1 hợp với nồng độ khác nhau ........................................................... 56 Bảng 3.3. Kích thước tinh thể các mẫu đồng kết tủa ở nhiệt độ khác nhau ... 60 Formatted: Font: 14 pt, Font color: Text 1 Bảng 3.4. Đặc trưng cấu trúc tinh thể nano ferit đươc tổng hợp ở các thời gian Formatted: Font: 14 pt, Font color: Text 1 khuấy khác nhau ............................................................................ 60 Bảng 3.5: Đặc trưng cấu trúc tinh thể CoFe2O4 tổng hợp với các tỉ lệ etanol Formatted: Font: 14 pt, Font color: Text 1 trong dung dịch khác nhau ............................................................ 63 Bảng 3.6. Các đặc trưng cấu trúc và từ tính của các mẫu NiFe2O4 nung ở nhiệt Formatted: Font: 14 pt, Font color: Text 1 độ khác nhau, thời gian lưu 2 giờ .................................................... 72 Bảng 3.7. Các đặc trưng cấu trúc và từ tính của các mẫu CoFe2O4 nung ở các Formatted: Font: 14 pt, Font color: Text 1 nhiệt độ khác nhau, thời gian lưu 2 giờ ............................................ 73 Bảng 3.8. Đặc trưng cấu trúc tinh thể và từ tính của mẫu NiFe2O4 nung ở nhiệt Formatted: Font: 14 pt, Font color: Text 1 độ 700 0C với thời gian nung khác nhau ....................................... 77 Bảng 3.9. Đặc trưng cấu trúc và từ tính của các mẫu CoFe2O4 nung ở 700 0C Formatted: Font: 14 pt, Font color: Text 1 với thời gian khác nhau ................................................................. 78 Bảng 3.10. Sự phụ thuộc của kích thưc tinh thể NiFe2O4 vào tỷ lệ etanol/nước Formatted: Font: 14 pt, Font color: Text 1 (% thể tích dung dịch) ................................................................... 90 Bảng 3.11. Đặc trưng từ tính các mẫu nano ferit thủy nhiệt ở nhiệt độ 150, 200 và 250 0C, thời gian thủy nhiệt 1,5 giờ, nung 500 0C/ 2 giờ ................. 97 Formatted: Font: 14 pt, Font color: Text 1 Bảng 3.12. Đặc trưng từ tính các mẫu nano ferit thủy nhiệt ở nhiệt độ 200 0C Formatted: Font: 14 pt, Font color: Text 1 với thời gian thủy nhiệt khác nhau, nung 500 0C/2 giờ .............. 103 Bảng 3.13. Kích thước tinh thể và từ tính của các mẫu nano ferit tổng hợp so Formatted: Font: 14 pt, Font color: Text 1 sánh với kết quả của các tác giả khác ......................................... 105 Bảng 3.14. Kết quả khảo sát khả năng tạo gel các mẫu (MFe2O4/SiO2) ở các Formatted: Font: 14 pt, Font color: Text 1 pH khác nhau............................................................................... 107 Bảng 3.15. Đặc trưng cấu trúc tinh thể MFe2O4/SiO2 tổng hợp ở pH 1 - 2 .. 109 Formatted: Font: 14 pt, Font color: Text 1 Bảng 3.16. Kích thước tinh thể ferit và từ tính các mẫu MFe2O4/SiO2 nung ở Formatted: Font: 14 pt, Font color: Text 1 các nhiệt độ khác nhau, lưu 1 giờ ............................................... 116 Bảng 3.17. Kích thước tinh thể và từ tính mẫu MFe2O4/SiO2 nung ở 1100 0C Formatted: Font: 14 pt, Font color: Text 1 với thời gian nung khác nhau: 45, 60 và 90 phút........................ 120 Bảng 3.18. Kích thước tinh thể và từ tính của các mẫu tổng hợp với các tỉ lệ ferit trong nanocomposite khác nhau .......................................... 125 Formatted: Font: 14 pt, Font color: Text 1 DANH MỤC CÁC HÌNH Hình 1.1. Cấu trúc tinh thể ferit spinen [112]...................................................................5 Hình 1.2. Đường cong từ trễ (B- H) của ferit từ mềm [21].............................................9 Hình 1.3. Đường cong từ trễ (B- H) của ferit từ cứng [21] .......................................... 10 Hình 1.4. Sự phụ thuộc lực kháng từ Hc vào kích thước hạt (MD - vùng hạt đa đômen; SD- vùng hạt đơn đômen; SP- vùng hạt siêu thuận từ) [28].............. 11 Hình 1.5. Hình ảnh ổ đĩa cứng lưu trữ thông tin [21] ................................................... 12 Hình 1.6. Mô tả cơ chế khuếch tán trong phản ứng pha rắn tạo spinen [15]............. 16 Hình 1.7. Sự phụ thuộc của áp suất hơi nước vào nhịêt độ ở các thể tích không đổi [29] ............................................................................................................. 35 Hình 1.8. Bình thuỷ nhiệt - autoclab được sử dụng để nuôi các đơn tinh thể ............ 36 Hình 2.1. Hiện tượng nhiễu xạ tia X theo mô hình nghiên cứu của Bragg ............... 44 Hình 2.2. Sơ đồ nguyên lý hệ hiển vi điện tử quét SEM.............................................. 46 Hình 2.3. Sơ đồ nguyên lý hệ hiển vi điện tử truyền qua (TEM) ................................ 48 Hình 3.1. Giản đồ XRD của các mẫu NiFe2O4 tổng hợp ở pH = 8 (P8), pH=9 (P9), pH = 10 (P10), pH = 11 (P11), pH = 12 (P12), sau nung 8000C /2 giờ.................................................................................................... 53 Hình 3.2. Giản đồ XRD của các mẫu CoFe2O4 tổng hợp ở pH = 9 .......................... 53 Hình 3.3. Ảnh SEM (a) và TEM (b) của mẫu CoFe2O4 tổng hợp ở pH = 9 ........... 54 Hình 3.4. Đường từ trễ của mẫu niken ferit (a) và coban ferit (b) được tổng hợp ở pH = 9 ........................................................................................................... 55 Hình 3.5. Giản đồ XRD các mẫu CoFe2O4 (A1 - A6) tổng hợp ở các nồng độ khác nhau, nung 700 0C/2 giờ.................................................................................. 57 Hình 3.6. Ảnh SEM mẫu A4- CoFe2O4 (a) và ảnh TEM của mẫu A9NiFe2O4 (b) ..................................................................................................... 58 Hình 3.7. Đường từ trễ mẫu CoFe2O4 - A4 (a) và mẫu NiFe2O4 - A9 (b)................... 58 Hình 3.8. Giản đồ XRD mẫu CoFe2O4 (a) đồng kết tủa ở nhiệt độ 30 0C (E1), 600C (E2) và 90 0C ( E3) và mẫu NiFe2O4 (b) đồng kết tủa ở nhiệt độ 300C (E4) và 60 0C (E5) ................................................................................. 59 Formatted: Line spacing: Multiple 1.25 li Hình 3.9. Giản đồ XRD các mẫu NiFe2O4 (a) với thời gian khuấy khác nhau M1:15 phút, M2: 30 phút, M3: 45 phút, M4: 60 phút và các mẫu CoFe2O4 (b) với thời gian khuấy M5: 15 phút, M6: 30 phút, M7: 45 phút, M8: 60 phút............................................................................................ 60 Hình 3.10. Ảnh SEM các mẫu CoFe2O4 (M7) và mẫu NiFe2O4 (M3) ...................... 61 Hình 3.11. Đường từ trễ mẫu NiFe2O4 - M1 và M3 (a) và mẫu CoFe2O4 - M7 (b) ........ 62 Hình 3.12. Giản đồ XRD của các mẫu CoFe2O4 với tỷ lệ etanol trong dung dịch khác nhau: K1: 0 %, K2: 5 %, K3:10 %, K4: 15 %, K5: 20 %.................... 63 Hình 3.13. Giản đồ XRD của các NiFe2O4 mẫu tổng hợp với tỷ lệ 1,2 - propadiol là 0 % (mẫu P0 %), 5 % (mẫu P5 %) và 10 % (mẫu P10 %) ............................ 64 Hình 3.14. Giản đồ phân tích nhiệt precursor tổng hợp NiFe2O4 (mẫu đồng kết tủa với nồng độ Ni2+ = 2,5.10-3 M, Fe3+ = 5.10-3 M, lượng dung môi etanol 15 %, nhiệt độ khuấy 60 0C thời gian 45 phút, pH = 9,5) . 66 Hình 3.15. Giản đồ phân tích nhiệt precursor tổng hợp CoFe2O4 (mẫu đồng kết tủa với nồng độ Co2+ = 4.10-3 M, Fe3+ = 8.10-3 M, lượng dung môi etanol 15%, nhiệt độ khuấy 60 0C thời gian 45 phút, pH = 9,5).............................. 67 Hình 3.16. Giản đồ XRD mẫu NiFe2O4 nung ở các nhiệt độ: 400, 500, 600, 700, 800, 850 và 900 0C, lưu 2 giờ ........................................................................ 69 Hình 3.17. Giản đồ XRD các mẫu CoFe2O4 nung ở các nhiệt độ 500, 600, 700, 800 và 900 0C, lưu 2 giờ................................................................................ 70 Hình 3.18. Ảnh SEM mẫu CoFe2O4 (a) và ảnh TEM mẫu CoFe2O4 (b) nung ở 700 0 C/2 giờ .................................................................................................... 71 Hình 3.19. Đường từ trễ của các mẫu NiFe2O4 (a) và CoFe2O4 (b) nung ở các nhiệt độ khác nhau, lưu 2 giờ......................................................................... 72 Hình 3.20. Đồ thị biểu diễn sự phụ thuộc kích thước tinh thể (a) và từ độ bão hòa (b) của nano ferit vào nhiệt độ nung ............................................................ 74 Hình 3.21. Giản đồ XRD các mẫu NiFe2O4 nung ở 700 0C với thời gian lưu khác nhau: 0,5, 1, 2, 3, 4, 5, 6 và 7 giờ................................................................... 75 Hình 3.22. Giản đồ XRD các mẫu CoFe2O4 nung 700 0C với thời gian lưu khác nhau: 1, 2, 3, 4, 5 và 6 giờ .............................................................................. 76 Hình 3.23. Đường từ trễ của các mẫu NiFe2O4 với thời gian nung khác nhau .......... 77 Hình 3.24. Sự phụ thuộc kích thước hạt (a) và từ độ bão hòa của ferit vào thời gian nung (b) ................................................................................................... 78 Hình 3.25. Qui trình tổng hợp coban ferit và niken ferit cấp hạt nano bằng phương pháp đồng kết tủa.............................................................................. 83 Hình 3.26. Giản đồ XRD các mẫu NiFe2O4 với nồng độ Ni2+ thay đổi từ 2.10-2 ÷ 10-1M, thủy nhiệt ở 200 0C/1,5 giờ ................................................. 84 Hình 3.27. Đồ thị sự phụ thuộc của kích thước tinh thể NiFe2O4 vào nồng độ ion Ni2+ trong dung dịch thuỷ nhiệt Hình 3.28. Giản đồ XRD các mẫu CoFe2O4 tổng hợp thủy nhiệt với nồng độ Co2+ bằng: 0,02, 0,04, 0,06 và 0,08 M sau nung 500 0C/ 2 giờ ................. 86 Hình 3.29. Sự phụ thuộc của kích thước tinh thể CoFe2O4 vào nồng độ ion Co2+ trong dung dịch thuỷ nhiệt ............................................................................. 86 Hình 3.30. Ảnh SEM và ảnh TEM mẫu NiFe2O4 (a), (c) và mẫu CoFe2O4 (b), (d) tổng hợp ở nồng độ Ni2+ bằng 4.10-2 M và Co2+ bằng 6.10-2 M.. ... 87 Hình 3.31. Đường từ trễ mẫu NiFe2O4 (a) và CoFe2O4 (b) tổng hợp với nồng độ Ni2+ bằng 4.10-2 M và nồng độ Co2+ bằng 6.10-2 M ..................................... 88 Hình 3.32. Giản đồ XRD các mẫu NiFe2O4 tổng hợp với các tỉ lệ etanol/ nước từ 5 – 50 % trong dung dịch thủy nhiệt ............................................................. 89 Hình 3.33. Đồ thị biểu diễn sự phụ thuộc của kích thước tinh thể NiFe2O4 vào tỉ lệ etanol trong dung dịch thủy nhiệt.............................................................. 91 Hình 3.34. Giản đồ XRD mẫu CoFe2O4 tổng hợp ở 200 0C với tỷ lệ etanol bằng 15 % thể tích dung dịch thủy nhiệt................................................................ 91 Hình 3.35. Ảnh SEM và ảnh TEM mẫu NiFe2O4 (a), (c) và mẫu CoFe2O4 (b), (d) được tổng hợp với lượng etanol bằng 15 % thể tích dung dịch.................. 92 Hình 3.36. Đường từ trễ mẫu NiFe2O4 (a) và CoFe2O4 (b) tổng hợp ở nồng độ Ni2+ bằng 4.10-2 M; mẫu có Co2+ bằng 5.10-2 M, tỉ lệ etanol 15 % thể tích dung dịch.......................................................................................................... 93 Hình 3.37. Giản đồ XRD các mẫu NiFe2O4 được tổng hợp thủy nhiệt ở 100, 150, 200, 250 0C với thời gian 1,5 giờ, nung 500 0C/2 giờ ................... 94 Hình 3.38. Giản đồ XRD các mẫu CoFe2O4 được tổng hợp thủy nhiệt ở 100, 130, 150, 170, 190, 210, 250 0C với thời gian 1,5 giờ, nung 5000C/2 giờ ..................................................................................................... 94 Hình 3.39. Đồ thị sự phụ thuộc của kích thước tinh thể ferit vào nhiệt độ thủy nhiệt các mẫu NiFe2O4 (1), CoFe2O4 (2), nung ở 500 0C/2giờ ................... 95 Hình 3.40. Ảnh TEM mẫu NiFe2O4 tổng hợp ở 170 0C (a), 200 0C (c) và mẫu CoFe2O4 tổng hợp ở 170 0C (b), 190 0C (d), nung 500 0C/2 giờ ................ 96 Hình 3.41. Đường từ trễ mẫu NiFe2O4 và CoFe2O4 tổng hợp ở các nhiệt độ thủy nhiệt 150, 200, 250 0C, thời gian 1,5 giờ, nung 500 0C/ 2 giờ .................... 98 Hình 3.42. Giản đồ XRD các mẫu NiFe2O4 tổng hợp thủy nhiệt ở 180 0C với thời gian khác nhau: 30, 60, 90, 120, 150 và 180 phút, nung 500 0C/2 giờ ...... 99 Hình 3.43. Giản đồ XRD các mẫu CoFe2O4 tổng hợp thủy nhiệt ở 180 0C với thời gian khác nhau: 30, 60, 90, 120, 150 và 180 phút, nung 5000C/2giờ ..................................................................................................... 100 Hình 3.44. Ảnh SEM mẫu NiFe2O4 (a) và mẫu CoFe2O4 (b) thủy nhiệt 200 0C thời gian 90 phút ........................................................................................... 101 Hình 3.45. Ảnh TEM mẫu NiFe2O4 thời gian thủy nhiệt 60 phút (c), 90 phút (e) và mẫu CoFe2O4 thủy nhiệt 60 phút (d), 90 phút (f) ở 200 0C, sau khi nung 500 0C/ 2 giờ ........................................................................................ 101 Hình 3.46. Đồ thị quan hệ giữa kích thước tinh thể NiFe2O4 (1) và CoFe2O4 (2) thủy nhiệt ở 180 0C với thời gian khác nhau: 30, 60, 90, 120, 150 và 180 phút, nung 500 0C/2 giờ ........................................................................ 102 Hình 3.47. Đường từ trễ mẫu NiFe2O4 thủy nhiệt ở 200 0C thời gian 60 phút (a), 90 phút (b)...................................................................................................... 102 Hình 3.48. Đường từ trễ mẫu CoFe2O4 thủy nhiệt ở 200 0C thời gian 60 phút (a), 90 phút (b) sau khi nung 500 0C/2 giờ ........................................................ 103 Hình 3.49. Sơ đồ qui trình tổng hợp ferit cấp hạt nano bằng phương pháp thủy nhiệt ...................................................................................................... 106 Hình 3.50. Giản đồ XRD các mẫu CoFe2O4/SiO2 và NiFe2O4/SiO2 tạo gel ở pH=1 - 2, sau nung 1100 0C/ 1 giờ.............................................................. 108 Hình 3.51. Giản đồ DTA-TG mẫu gel CoFe2O4 / SiO2............................................. 110 Hình 3.52. Giản đồ XRD các mẫu CoFe2O4/SiO2 nung ở các nhiệt độ: 800, 900, 1000, 1100 và 1200 0C, lưu 1 giờ................................................................ 112 Hình 3.53. Giản đồ XRD các mẫu NiFe2O4/SiO2 nung ở các nhiệt độ 900, 1000, 1100 và 1200 0C, lưu 1 giờ .......................................................................... 112 Hình 3.54. Ảnh SEM các mẫu NiFe2O4/SiO2 (a) và CoFe2O4/SiO2 (b) sau nung 1100 0C, lưu 1 giờ. ........................................................................................ 113 Hình 3.55. Đồ thị biểu diễn quan hệ giữa nhiệt độ nung và kích thước tinh thể CoFe2O4 (1) và NiFe2O4 (2) trong nền SiO 2 ........................................... 114 Hình 3.56. Đường từ trễ các mẫu CoFe2O4/SiO2 nung ở các nhiệt độ 800, 900, 1000, 1100 0C, lưu 1 giờ ............................................................................. 114 Hình 3.57. Đường từ trễ các mẫu NiFe2O4/SiO2 nung ở các nhiệt độ: 900 (a), 1100 0C (b) lưu 1 giờ .................................................................................... 115 Hình 3.58. Đồ thị quan hệ giữa nhiệt độ nung và từ độ bão hòa (a) của các mẫu CoFe2O4/SiO2, và mẫu NiFe2O4/SiO2 và quan hệ giữa lực kháng từ của các mẫu CoFe2O4/SiO2 với nhiệt độ nung (b)............................................ 117 Hình 3.59. Giản đồ XRD các mẫu CoFe2O4/SiO2 nung 1100 0C, thời gian 30, 45, 60 và 90 phút ................................................................................................. 118 Hình 3.60. Giản đồ XRD các mẫu NiFe2O4/SiO2 nung ở 1100 0C, thời gian 45, 60 và 90 phút ................................................................................................. 119 Hình 3.61. Giản đồ XRD các mẫu CoFe2O4/SiO2 với tỉ lệ khối lượng ferit ............ 121 Hình 3.62. Giản đồ XRD các mẫu NiFe2O4/SiO2 với tỉ lệ khối lượng ferit bằng 10, 20, 30 và 40 % trong nanocomposite, nung ở 11000C/1giờ 121 Hình 3.63. Ảnh SEM mẫu CoFe2O4/SiO2: (a), (b) ứng với mẫu có tỉ lệ CoFe2O4 bằng 20 % và 30 % và mẫu NiFe2O4/SiO2: (c), (d) có tỉ lệ NiFe2O4 bằng 20 % và 30 % trong nanocomposite .................................................. 122 Hình 3.64. Đồ thị biểu diễn quan hệ giữa kích thước tinh thể ferit và tỉ lệ khối lượng ferit trong nanocomposite ................................................................. 123 Hình 3.65. Đường từ trễ các mẫu CoFe2O4/SiO2 với tỉ lệ khối lượng CoFe2O4 khác nhau trong nanocomposite .................................................................. 124 Hình 3.66. Đường từ trễ các mẫu NiFe2O4/SiO2 với tỉ lệ khối lượng NiFe2O4 bằng 20 % và 40 % trong nanocomposite ................................................. 124 Hình 3.67. Đồ thị biểu diễn quan hệ giữa từ độ bão hòa và tỉ lệ khối lượng ferit trong nanocomposite ................................................................................... 126 Hình 3.68. Sơ đồ qui trình tổng hợp nanocomposite MFe2O4/SiO2 (với M là Ni và Co) với pha tinh thể ferit cấp hạt nano phân tán trong nền SiO2 vô định hình bằng phương pháp sol - gel........................................................ 128 Formatted: Justified, Line spacing: Multiple 1.4 li Formatted: Font color: Text 1, English (United States) MỞ ĐẦU Formatted: Font: 14 pt, Font color: Text 1 Tổng hợp và ứng dụng của vật liệu nano là những lĩnh vực đang được nhiều quốc gia và đông đảo các nhà khoa học quan tâm đặc biệt, bởi vì những tính chất hóa học, vật lý của các vật liệu nano khác nhiều so với vật liệu khối [2, 6, 12,]. Sự khác biệt về tính chất đó xuất phát từ hai nguyên nhân là: Khi kích thước vật liệu giảm đến cỡ nanomet tỷ số nguyên tử nằm trên bề mặt và nguyên tử bên trong các hạt tăng lên nhiều làm thay đổi tính chất bề mặt vật liệu. Hai là, khi hạt vật liệu giảm kích thước đến cỡ nanomet tương ứng với bán kính Bohr sẽ xuất hiện hiệu ứng kích thước lượng tử (Quantum Size Effects), trong đó các trạng thái electron cũng như các dao động trong hạt nano bị lượng tử hóa. Các trạng thái bị lượng tử hóa trong cấu trúc nano sẽ quyết định tính chất điện, quang, tính chất từ, tính chất hóa học của cấu trúc đó [2, 5, 7, 112]. Các vật liệu từ cấu trúc nano nói chung và các ferit cỡ hạt nano nói riêng đã cho thấy một số đặc trưng từ tính mới, rất đặc biệt, khác với các vật liệu từ thông thường. Một trong những nguyên nhân gây nên các hiệu ứng từ đặc biệt đó là sự tương quan giữa kích thước cấu trúc nano và chiều dài đặc trưng từ tính. Ví dụ, trong các hạt nano không thể tồn tại các vách đômen vì chiều dày vách đômen lớn hơn kích thước hạt hay trong nhiều hệ vật liệu từ nano tinh thể, chiều dài liên kết từ tính lớn hơn nhiều kích thước các tinh thể... Mặt khác, do cấu trúc nano làm thay đổi các đặc trưng bề mặt, tính đối xứng của tinh thể... làm xuất hiện các tính chất vật lý mới lạ [4, 5, 6, 14]. Một trong các tính chất từ đặc biệt của các vật liệu nano đã được khám phá đó là, hiệu ứng từ trở khổng lồ (Giant Magneto Resistance - GMR) trong các màng nano đa lớp sắt từ và phi từ. Khám phá quan trọng này mở ra khả năng phát triển loại linh kiện điện tử với nguyên tắc vật lý hoàn toàn mới dựa trên đặc tính spin 1 của electron. Hiệu ứng đơn đômen (Single domain) của các hạt nano từ và những ứng dụng trong chế tạo các ổ đĩa từ mật độ cao, các băng từ, các thiết bị đọc và ghi từ; chế tạo các chất lỏng từ (Magnetic Liquid) ứng dụng trong nhiều lĩnh vực khoa học, công nghệ hiện đại: y - dược và công nghệ sinh học, kỹ thuật bôi trơn và bảo vệ các trục quay, các máy in phun, các vật liệu đánh bóng, các thiết bị giảm trấn và đệm từ, các loại sơn hấp thụ sóng rada... [2, 5, 9, 21, 112]. Coban ferit (CoFe2O4) và niken ferit (NiFe2O4) là các ferit rất điển hình, ở dạng vật liệu khối đã được nghiên cứu và ứng dụng rộng rãi trong đời sống và kỹ thuật mà không có vật liệu từ nào thay thế được. Nhiều sản phẩm, linh kiện được chế tạo từ các ferit này: cuộn cảm, lõi dẫn từ để chế tạo các linh kiện trong radio, tivi, điện thoại, máy tính điện tử, thiết bị ghi từ, thiết bị sóng ngắn, ...[1, 3, 4, 21, 86]. Tuy nhiên, ngày nay không dừng lại ở đó, các ứng dụng của chúng ở dạng hạt nano, màng mỏng nano, sợi nano, các nano composit đang mở ra những hướng nghiên cứu đầy tiềm năng. Một số kết quả mới công bố về khả năng ứng dụng của các nano ferit, trong đó có CoFe2O4 và NiFe2O4 đang dành được quan tâm đặc biệt của các nhà khoa học thuộc nhiều lĩnh vực. Khi các hạt ferit này có kích cỡ 1 - 100 nm chúng có thể dùng chế tạo các chất lỏng từ ứng dụng làm tăng độ tương phản của ảnh chụp cộng hưởng từ hạt nhân (MRI) trong chuẩn đoán hình ảnh [2, 26, 112], làm tác nhân phân tách các tế bào, thuốc điều trị khối u, chất dẫn truyền thuốc [42, 112], chế tạo các đĩa từ, băng mật độ cao, đầu đọc, đầu ghi [21, 24, 31, 117, 119, 121], các nguyên liệu chế tạo pin Liti dung lượng cao, chế tạo các sensor khí [27, 69, 89, 107, 112], vật liệu xúc tác cho các phản ứng hóa học và xử lý môi trường [25, 45, 56, 65, 104]. Ngoài ra, khi phân tán các hạt nano coban ferit hoặc niken ferit vào các vật liệu nền phi từ sẽ cho các sản phẩm nanocomposite với các tính chất từ rất đặc biệt, có thể kiểm soát được các 2 thông số từ tính bằng cách điều chỉnh các điều kiện tổng hợp để chế tạo các sản phẩm theo yêu cầu sử dụng [18, 47, 58, 83, 94, 95]. Ở nước ta, việc nghiên cứu chế tạo và ứng dụng các vật liệu nano trong các lĩnh vực của nền kinh tế và đời sống - xã hội đang là nhiệm vụ được Nhà nước, các Bộ, Ngành đặc biệt quan tâm. Tuy vậy, những thành tựu thu được còn rất khiêm tốn so với các quốc gia trong khu vực và thế giới. Vì vậy việc nghiên cứu về lĩnh vực trên đang là đòi hỏi bức thiết, vừa có tính khoa học vừa có tính thực tiễn đóng góp vào một lĩnh vực nghiên cứu mới đầy tiềm năng ở nước ta. Từ những lý do trên chúng tôi chọn đề tài “Tổng hợp, nghiên cứu cấu trúc và tính chất của coban ferit và niken ferit cấp hạt nano” làm đề tài luận án của mình. *Mục đích của luận án là: Nghiên cứu tổng hợp coban ferit và niken ferit cấu trúc tinh thể spinen, kích thước nano bằng phương pháp đồng kết tủa và thủy nhiệt; tổng hợp các nanocomposite CoFe2O4/SiO2 và NiFe2O4/SiO2 bằng phương pháp sol - gel; khảo sát đặc trưng cấu trúc và tính chất từ của vật liệu. * Những đóng góp mới của luận án: - Đã tổng hợp được các nano ferit: CoFe2O4 và NiFe2O4, cấu trúc tinh thể đơn pha spinen, kích thước hạt trung bình 13-18 nm, đặc trưng của các hạt từ đơn đômen. Các nano ferit tổng hợp được có kích thước hạt và đặc trưng từ tính tương đương hoặc ưu việt hơn kết quả của một số công trình khoa học của tác giả quốc tế mới công bố trong thời gian gần đây. Các nano ferit này có khả năng ứng dụng trong thực tế để chế tạo chất lỏng từ và một số sản phẩm khác dùng trong các kỹ thuật hiện đại. - Đã khảo sát một cách chi tiết và có hệ thống các yếu tố ảnh hưởng tới quá trình thực nghiệm và kích thước hạt nano ferit như: pH, nồng độ cation 3 kim loại, nhiệt độ và thời gian khuấy, lượng dung môi sử dụng, nhiệt độ nung, thời gian nung…, tìm được các điều kiện tối ưu để xây dựng qui trình tổng hợp vật liệu. - Đã tổng hợp được các nanocomposite CoFe2O4/SiO2 và NiFe2O4/SiO2 với các hạt nano CoFe2O4 và NiFe2O4 (10-13 nm) phân tán trong nền SiO2 vô định hình, khảo sát các yếu tố ảnh hưởng tới quá trính thực nghiệm và đặc trưng các nanocomposite: pH, nhiệt độ nung, thời gian nung, tỷ lệ pha tinh thể trong nanocomposite, từ đó xây dựng qui trình tổng hợp vật liệu, là cơ sở cho việc chế tạo loại vật liệu từ mới với nhiều tính năng ưu việt như điện trở lớn, bền nhiệt, bền hóa. - Đã nghiên cứu được mối quan hệ giữa cấu trúc tinh thể, kích thước hạt các nano ferit CoFe2O4 và NiFe2O4 và đặc trưng từ tính của chúng, cũng như mối quan hệ giữa kích thước tinh thể, hàm lượng pha tinh thể nano ferit với đặc trưng từ tính của các nanocomposite: CoFe2O4/SiO2 và NiFe2O4/SiO2. Luận án gồm 145 trang kể cả tài liệu tham khảo, 22 bảng, 78 hình vẽ và đồ thị. Cấu trúc luận án bao gồm các phần sau: Mở đầu; Chương 1- Tổng quan; Chương 2 - Nội dung và phương pháp nghiên cứu; Chương 3 - Kết quả và bàn luận; Kết luận; Tài liệu tham khảo; Phụ lục. 4 CHƢƠNG 1 TỔNG QUAN 1.1. Cấu trúc tinh thể và tính chất của ferit spinen 1.1.1. Cấu trúc tinh thể Ferit spinen về mặt hóa học là oxit phức hợp có công thức hóa học chung MFe2O4 với M là các ion kim loại hóa trị 2 như: Zn, Cd, Cu, Ni, Co, Mg hoặc Fe [15, 21, 57]. Các ferit spinen hỗn hợp có thể có nhiều hơn 2 ion M. Ví dụ: Zn0.5Ni0.5Fe2O4, Zn0.5Co0.5Fe2O4 ... Các ferit spinen có cấu trúc tinh thể lập phương tâm mặt xếp chặt bởi các ion oxi, thuộc nhóm không gian Fd3m. Hằng số mạng của tinh thể (dạng khối)  8,4 Å. Ví dụ, hằng số mạng của tinh thể niken ferit dạng khối bằng 8,3390 Å, coban ferit bằng 8,3890 Å, kẽm ferrit bằng 8,440 Å [21, 112]. Một tế bào mạng của ferit spinen chứa 8 phân tử MFe2O4 trong đó có 32 ion oxi tạo nên 64 hốc tứ diện (hốc T) và 32 hốc bát diện (hốc O). Tuy nhiên, chỉ có 8 hốc tứ diện và 16 hốc bát diện có các ion kim loại chiếm chỗ. Các lỗ trống được ion kim loại chiếm chỗ trên, qui ước gọi là vị trí A và B hay phân mạng A (hốc tứ diện) và phân mạng B (hốc bát diện) tương ứng. Hình 1.1. Cấu trúc tinh thể ferit spinen [112] 5
- Xem thêm -