Tóm tắt luận văn thạc sĩ kỹ thuật mô hình hóa hệ phức hợp ứng dụng mạng nơron

  • Số trang: 36 |
  • Loại file: PDF |
  • Lượt xem: 11 |
  • Lượt tải: 0
hoangtuavartar

Đã đăng 24721 tài liệu

Mô tả:

-0- ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP TÓM TĂT LUẬN VĂN THẠC SỸ KỸ THUẬT MÔ HÌNH HÓA HỆ PHỨC HỢP ỨNG DỤNG MẠNG NƠRON Ngành : TỰ ĐỘNG HÓA Mã Số : Học Viên : TÔ THẾ DIỆN HD Khoa học: TS. NGUYỄN ĐỨC THĂNG THÁI NGUYÊN 2011 -1- MỤC LỤC Trang Chƣơng 1. Giới thiệu chung ........................................................................................... 4 1.1. Tính cấp thiết của đề tài ........................................................................................... 4 1.2. Ý nghĩa khoa học và thực tiễn của đề tài.................................................................4 1.3. Mục đích của đề tài ..................................................................................................5 1.4. Nội dung thực hiện ..................................................................................................5 1.5. Phương pháp nghiên cứu ......................................................................................... 5 Chƣơng 2. Tổng quan về hệ phức hợp ..........................................................................6 2.1. Định nghĩa ...............................................................................................................6 2.2. Các tính năng của hệ phức hợp................................................................................6 2.3. Phân loại hệ thống phức hợp ...................................................................................7 2.3.1. Hệ thống hỗn loạn .............................................................................................. 7 2.3.2. Hệ thống thích nghi phức hợp ...........................................................................7 2.3.3. Hệ thống phi tuyến. ............................................................................................ 8 2.4. Mô hình hóa hệ phức hợp ........................................................................................ 8 2.4.1. Mô hình hóa là gì ............................................................................................... 8 2.4.2. Mô hình hóa hệ phức hợp. .................................................................................8 Chƣơng 3. Tổng quan về mạng nơron nhân tạo......................................................... 10 3.1. Lịch sử phát triển của mạng nơron nhân tạo ......................................................... 10 3.2. Các tính chất của mạng nơron nhân tạo ................................................................ 10 3.3. Mô hình mạng nơron. ............................................................................................ 10 3.3.1. Mô hình mạng nơron sinh học .........................................................................10 3.3.1.1. Chức năng, tổ chức và hoạt động của bộ não con người ........................... 10 3.3.1.2. Mạng nơron sinh học .................................................................................11 3.3.2. Mạng nơron nhân tạo ....................................................................................... 11 3.3.2.1. Khái niệm ...................................................................................................11 3.3.2.2. Phân loại mạng nơron nhân tạo..................................................................11 3.3.2.3. Phương thức làm việc của mạng nơron nhân tạo .......................................12 3.3.2.4. Các luật học ................................................................................................ 12 3.3.3. Mô hình toán học mạng nơron truyền thẳng và mạng nơron hồi quy .............13 3.3.3.1. Mạng nơron truyền thẳng ...........................................................................13 3.3.3.2. Mạng nơron hồi quy ...................................................................................14 3.4. Phạm vi ứng dụng của mạng nơron .......................................................................14 3.4.1. Những bài toán thích hợp ................................................................................14 3.4.2. Các lĩnh vực ứng dụng của mạng nơron .......................................................... 14 3.4.3. Ưu nhược điểm của mạng nơron .....................................................................15 -2- 3.5. Quá trình huấn luyện mạng nơron nhiều lớp ......................................................... 15 3.5.1. Quá trình thực hiện .......................................................................................... 15 3.5.2. Quy tắc chuỗi ...................................................................................................16 3.5.3. Độ chính xác của lan truyền ngược .................................................................16 Chƣơng 4. Hệ thống xử lý nƣớc thải ...........................................................................17 4.1. Các thông số đánh giá ô nhiễm và yêu cầu xử lý ..................................................17 4.1.1. Các thông số đánh giá ô nhiễm nước thải ....................................................... 17 4.1.2. Yêu cầu xử lý ...................................................................................................17 4.2. Quy trình của một hệ thống xử lý nước thải .......................................................... 17 4.2.1. Xử lý sơ cấp .....................................................................................................18 4.2.2. Xử lý sinh học trong điều kiện kỵ khí ............................................................. 18 4.2.3. Xử lý bằng phân hủy Ozon ..............................................................................18 4.2.4. Tuyển nổi thứ cấp và lắng thứ cấp ...................................................................19 4.2.5. Xử lý và tái sử dụng bùn ..................................................................................19 4.3. Công nghệ xử lý nước thải công nghiệp ................................................................ 19 4.3.1. Đặc trưng của nước thải công nghiệp .............................................................. 19 4.3.2. Thuyết minh quy trình công nghệ ....................................................................19 Chƣơng 5. Mô hình hóa hệ thống xử lý nƣớc thải sử dụng mạng nơron .................21 5.1. Mô hình hóa quá trình xử lý nước thải. .................................................................21 5.2. Mạng nơ ron nhân tạo và mô hình thống kê kinh điển. .........................................22 5.2.1. Sự tương đồng ..................................................................................................22 5.2.2. Sự khác nhau. ...................................................................................................22 5.3. Ứng dụng trong kỹ thuật môi trường. ....................................................................23 5.4. Phát triển mô hình .................................................................................................23 5.4.1. Phương pháp luận. ........................................................................................... 23 5.4.1.1. Thu thập dữ liệu và xử lý dữ liệu. .............................................................. 23 5.4.1.2. Xây dựng mô hình...................................................................................... 23 5.4.1.3. Luyện mạng................................................................................................ 24 5.4.1.4. Kiểm chứng mạng ...................................................................................... 24 5.4.1.5. Khai thác mô hình. .....................................................................................24 5.4.2. Xây dựng chương trình máy tính. ....................................................................24 5.5. Ứng dụng mô hình cho trạm xử lý nước thải. ....................................................... 26 5.5.1. Tổng quát chung .............................................................................................. 26 5.5.2. Trạm xử lý nước thải của nhà máy NatSteelVina.Thái Nguyên .....................27 5.5.2.1. Giới thiệu về hệ thống xử lý nước thải. .....................................................27 5.5.2.2. Thu thập số liệu. ......................................................................................... 28 5.5.2.3. Xử lý số liệu. .............................................................................................. 28 -3- 5.5.2.4. Luyện và mô phỏng. ..................................................................................28 5.6. Một số vấn đề về tự động hóa xử lý nước thải ...................................................... 30 5.6.1. Mục đích áp dụng tự động hóa xử lý nước thải ...............................................30 5.6.2. Yêu cầu và cơ sở xây dựng hệ thống tự động hoá. ..........................................30 Kết luận và kiến nghị.......................................................................................................33 Tài liệu tham khảo ...........................................................................................................34 -4- CHƢƠNG I GIỚI THIỆU CHUNG 1.1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI Sự phát triển không ngừng của khoa học công nghệ làm xuất hiện các đối tượng điều khiển có độ phức tạp ngày càng tăng. Khoa học phức hợp (Complexity science) là môn khoa học nghiên cứu về các hệ thống phức hợp. Nói đơn giản, một hệ thống là phức hợp nếu nó chứa nhiều thành phần con tương tác với nhau và nếu hệ thống đó lại biểu hiện những tính chất, những lối hành xử mà chúng ta không thể suy ra một cách hiển nhiên từ tương tác của những thành phần cấu thành nó. Yêu cầu thực tế đặt ra là phải điều khiển các hệ thống động ngày càng phức tạp trong điều kiện ngày càng quan tâm tới các yếu tố bất định cũng như đòi hỏi chất lượng điều khiển ngày càng cao. Các vấn đề trên không thể được đáp ứng một cách trọn vẹn và đồng thời nếu chỉ dùng các lý thuyết điều khiển kinh điển sẵn có. Đây chính là động lực cho sự ra đời các lý thuyết điều khiển hiện đại, hứa hẹn một hướng giải quyết triệt để các bài toán điều khiển phi tuyến phức tạp[3]. Trong thời gian gần đây, mạng nơron đã thâm nhập vào nhiều lĩnh vực khác nhau như: trong y học; trong công tác dự báo; các bài toán nhận dạng {[7],[9],[2]}, …Mạng nơron bắt chước cơ chế “học” của bộ não người, mạng nơron “học” các hành vi của hệ thống từ các dữ liệu đầu vào và đầu ra của hệ thống đó. Mạng nơron có khả năng tổng quát hóa tốt. Chính khả năng “học” và khả năng tổng quát hóa tốt này cho phép mạng nơron mô tả có hiệu quả các mối quan hệ phi tuyến phức tạp, các vấn đề thay đổi theo thời gian và đặc biệt là trong điều kiện nhiễu. Các hệ thống phức hợp thường được đặc trưng bởi một số các biến lớn, các tính chất không chắc chắn, phi tuyến. Do đó mạng nơron sẽ giải quyết được những hạn chế còn tồn tại trong các lý thuyết điều khiển kinh điển. Hiện nay, vấn đề xử lý nước thải đã xây dựng một số lý thuyết tính toán song còn ở mức độ đơn giản, điều kiện tính toán thường là lý tưởng hóa và kết quả thu được chỉ mang tính chất gần đúng, ước lượng mà chưa sát với kết quả thực. Bài toán xử lý nước thải được xem là một hàm phức hợp của các thông số đầu ra với các thông số đầu vào và các thông số vận hành, chưa có một mô hình toán học mô tả đầy đủ các mối liên hệ đó[11]. Trong trường hợp này, ứng dụng nơron nhân tạo mô hình hóa hệ thống xử lý nước thải là một (trong những khả năng) hướng đi cần thiết. Đây cũng là lý do tác giả lựa chọn đề tài nghiên cứu này với hy vọng bước đầu đưa ứng dụng mạng nơron nhân tạo vào mô hình hóa hệ phức hợp và cụ thể là bài toán mô hình hóa hệ thống xử lý nước thải ứng dụng mạng nơron. 1.2. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN CỦA ĐỀ TÀI  Ý nghĩa khoa học: Kết quả nghiên cứu của đề tài sẽ góp phần bổ sung phương pháp giải quyết cũng như cách tiếp cận bài toán mô hình hóa và điều khiển hệ phức hợp. -5-  Ý nghĩa thực tiễn: Kết quả nghiên cứu của đề tài là cơ sở để giải quyết một số bài toán điều khiển hệ phức hợp cụ thể ứng dụng mạng nơron. 1.3. MỤC ĐÍCH CỦA ĐỀ TÀI Đề tài được thực hiện với các mục tiêu xác định như sau:  Tìm hiểu và tiếp cận về hệ phức hợp  Nghiên cứu khả năng ứng dụng của mạng nơron nhân tạo xây dựng mô hình và mô phỏng hệ phức hợp và cụ thể ở đây là bài toán xử lý nước thải. 1.4. NỘI DUNG THỰC HIỆN Với các mục tiêu trên, luận văn thực hiện những nội dung sau:  Chương 1. Giới thiệu chung  Chương 2. Tổng quan về hệ phức hợp: Chương này sẽ giới thiệu một cách tổng quát hệ phức hợp, qua đó nêu được vị trí và tầm quan trọng của mạng nơron nhân tạo.  Chương 3. Tổng quan về mạng nơron nhân tạo: Trong phạm vi có hạn, luận văn sẽ trình bày một cách cô đọng nhất phần lý thuyết cũng như các thuật toán của mạng nơron.  Chương 4. Giới thiệu về hệ thống xử lý nước thải: Trong chương này, tác giả sẽ đề cập đến quy trình cũng như công nghệ xử lý nước thải hiện nay.  Chương 5. Giải bài toán phức hợp cụ thể đó là ứng dụng mạng nơron mô hình hóa hệ thống xử lý nước thải: Chương này trình bày quá trình xây dựng chương trình ứng dụng mạng nơron trên nền ngôn ngữ Matlab để tính toán đầu ra cho hệ thống xử lý nước thải.  Cuối cùng là kết luận và kiến nghị. 1.5. Phƣơng pháp nghiên cứu  Nghiên cứu lý thuyết: Nghiên cứu sách, giáo trình, bài báo, báo cáo khoa học, luận văn và các tài liệu liên quan.  Tìm hiểu các công cụ mô phỏng  Kiểm nghiệm và đánh giá kết quả dựa trên mô hình mô phỏng. -6- CHƢƠNG II TỔNG QUAN VỀ HỆ PHỨC HỢP 2.1. ĐỊNH NGHĨA Một hệ thống phức hợp là hệ thống chứa nhiều thành phần con tương tác với nhau và nó biểu hiện những tính chất, những lối hành xử mà chúng ta không thể suy ra một cách hiển nhiên từ tương tác của những thành phần cấu thành nó[3]. Hình 2.1. Bản đồ trực quan tổ chức khoa học hệ thống phức hợp Những hệ thống động học nằm ngoài trạng thái cân bằng và có tính phi tuyến mới là những hệ thống quan trọng trong vũ trụ. Những hệ thống phức hợp như: kinh tế, thị trường chứng khoán,…Như vậy, có thể sẽ không có một lý thuyết đơn giản cho các hệ thống phức hợp. Tuy nhiên, chúng ta có thể phân loại chúng và xếp chúng thành nhóm để nghiên cứu. Đặc trƣng quan trọng nhất của hệ phức hợp là gì? Đó là hiện tượng đột sinh. Hiện tượng đột sinh là hiện tượng xuất hiện những quy luật, những hình thái, những trật tự mới từ hiệu ứng tập thể của các tương tác giữa các thành phần trong hệ thống. Ví dụ: Nhiệt độ và các định luật về chất khí; tổ chức quần thể loài kiến; hiện tượng ùn tắc giao thông. Tất cả các ví dụ về hệ thống phức hợp ở trên thể hiện một số đặc điểm chung: 1. Chúng bao gồm một số lượng lớn các đại lượng tương tác. 2. Hệ phức hợp thường là hệ phân cấp, hơn nữa thường có nhiều cấp. 3. Hệ phức hợp thường là hệ động, nghĩa là thay đổi theo thời gian t theo nghĩa tổng quát nhất, không chỉ là thay đổi trạng thái mà thay đổi cả phần tử, cấu trúc, hành vi và mục tiêu của nó. 4. Hành vi của chúng không nổi lên kết quả từ sự tồn tại của một trung tâm điều khiển. 2.2. CÁC TÍNH NĂNG CỦA HỆ THỐNG PHỨC HỢP Hệ thống phức hợp có thể có những tính năng sau:  Khó xác định ranh giới: -7- Xác định ranh giới của một hệ thống phức hợp có thể gặp khó khăn. Người quan sát sẽ đưa ra quyết định cuối cùng.  Hệ thống phức hợp có thể đƣợc mở: Hệ thống phức hợp thường là các hệ thống mở - nghĩa là chúng tồn tại trong một đường dốc nhiệt động lực học và tiêu tán năng lượng.  Hệ thống phức hợp có thể đƣợc lồng vào nhau: Các thành phần trong một hệ thống phức hợp có thể là những hệ thống phức hợp của chính bản thân chúng.  Hệ thống phức hợp có thể có bộ nhớ: Lịch sử của một hệ thống phức hợp có thể rất quan trọng. Bởi vì hệ thống phức hợp là những hệ thống động học, chúng thay đổi theo thời gian và trạng thái trước có thể có ảnh hưởng đến trạng thái hiện tại.  Có thể tạo ra những hiện tƣợng nổi: Hệ thống phức hợp có thể biểu hiện những hành vi đặc trưng, điều này nhằm để khẳng định rằng: trong khi các kết quả có thể được xác định đầy đủ bằng hoạt động của các thành phần cơ bản trong hệ thống thì chúng có thể có các thuộc tính mà chỉ được nghiên cứu ở một mức độ cao hơn.  Mối quan hệ không tuyến tính: Trên thực tế, điều này có nghĩa là một sự thay đổi nhỏ có thể gây ra ảnh hưởng lớn, tác động có tỷ lệ tương ứng hoặc thậm chí không có tác động nào.  Mối quan hệ có chứa vòng lặp thông tin phản hồi: Cả hai tín hiệu phản hồi âm và khuếch đại luôn luôn được tìm thấy trong các hệ thống phức hợp. Những tác động từ hành vi của một phần tử được phản hồi theo cách mà các yếu tố chính nó thay đổi. 2.3. PHÂN LOẠI HỆ THỐNG PHỨC HỢP 2.3.1. Hệ thống Chaotic Đối với một hệ thống động được phân loại như hệ thống Chaotic thì hầu hết các nhà khoa học sẽ phải đồng ý rằng nó có các thuộc tính sau[24]: a. Nó nhất định (phải) nhạy cảm với các điều kiện đầu. b. Nó nhất định sẽ có sự pha trộn về cấu trúc. c. Tập quỹ đạo mang tính chu kỳ của nó nhất định (phải) dày đặc. 2.3.2. Hệ thống thích nghi phức hợp Hệ thống thích nghi phức hợp là trường hợp đặc biệt của các hệ thống phức tạp. Chúng rất phức tạp ở chỗ chúng đa dạng và được tạo thành từ nhiều yếu tố liên kết nội bộ và thích nghi ở chỗ chúng có khả năng thay đổi và học hỏi từ những kinh nghiệm. -8- 2.3.3. Hệ thống phi tuyến Các hành vi của các hệ thống phi tuyến là không tùy thuộc vào nguyên tắc của sự chồng chất trong khi các hệ thống tuyến tính phụ thuộc vào sự chồng chất. Như vậy, một hệ thống phi tuyến là nó có hành vi không thể được thực hiện như một tổng hợp của các hành vi bộ phận (hoặc bội số của chúng). 2.4. MÔ HÌNH HÓA HỆ THỐNG PHỨC HỢP 2.4.1. Mô hình hóa là gì? Một trong những phương pháp quan trọng nhất để nghiên cứu hệ thống là phương pháp mô hình hóa, nhất là đối với những hệ thống mà người ta không thể tiến hành thực nghiệm trên chúng. Phương pháp mô hình hóa là không nghiên cứu trực tiếp đối tượng mà thông qua việc nghiên cứu một đối tượng khác “tương tự” hay là “hình ảnh” của nó mà có thể sử dụng được các công cụ khoa học. Kết quả nghiên cứu trên mô hình được áp dụng vào cho đối tượng thực tế. [3] 2.4.2. Mô hình hóa hệ phức hợp Các mô hình phức hợp của hệ thống động luôn là một đề tài nghiên cứu đầy thách thức vì trong thực tế các mô hình không thể miêu tả chính xác được bản chất hệ thống. Một hệ thống thực sự thường là phi tuyến với một kích thước vô hạn, nhiễu, các nhiễu loạn bên ngoài và các đặc tính có thể thay đổi theo thời gian. Không thể mô tả những đặc điểm động này bằng các phương trình toán học và đạt được mức độ chính xác cao cho cùng một đầu vào/đầu ra của mô hình với các hệ thống thực tế trên toàn bộ phổ tần số.[21] Sự phát triển mạnh mẽ của máy tính và vi điện tử đồng thời với việc giảm chi phí thực hiện điều này sẽ mở đường cho việc thiết kế hệ thống điều khiển phức tạp dựa trên mô hình hệ thống phức tạp hơn nhiều. Ngoài ra, việc thực hiện không còn bị giới hạn bởi các hạn chế tính toán trong quá khứ, những vấn đề điều khiển và các phạm vi mới nổi lên, mang lại những thách thức mới và nhu cầu mới, kỹ thuật điều khiển phi truyền thống. Các mô hình truyền thống của một hệ thống thực tế là một hệ thống tuyến tính bất biến theo thời gian như hình thức sau: . X  Ax  Bu (2.1) Y  Cx  Du Hoặc hàm truyền dưới dạng đầu vào/đầu ra: Y  G( s)u (2.2) Các mô hình này thỏa mãn nhu cầu của một lớp rộng các vấn đề điều khiển. Lý do là nhiều hệ thống điện được thiết kế để hoạt động như tuyến tính, bất biến theo thời gian trong dải tần số quan tâm. Điều khiển các hệ thống phức hợp sử dụng mạng nơron -9- Trong thời gian gần đây, mạng nơron đã thâm nhập vào nhiều lĩnh vực khác nhau chẳng hạn như: trong y học; trong công tác dự báo; các hệ thống nhận dạng tiếng nói,…Mạng nơron bắt chước cơ chế “học” của bộ não người, chúng “học” các hành vi của hệ thống từ các dữ liệu đầu vào và đầu ra của hệ thống đó. Đặc biệt, chúng có khả năng tổng quát hóa tốt. Chính khả năng “học” và khả năng tổng quát hóa tốt này cho phép mạng nơron mô tả có hiệu quả các mối quan hệ phi tuyến phức tạp, các vấn đề thay đổi theo thời gian và đặc biệt là trong điều kiện nhiễu. Do đó, mạng nơron sẽ giải quyết được những hạn chế còn tồn tại trong các lý thuyết điều khiển kinh điển. Trong đề tài này, tác giả ứng dụng mạng nơron để mô hình hóa hệ phức hợp, với bài toán cụ thể là mô hình hóa hệ thống xử lý nước thải. Chính vì thế nên trong chương tiếp theo, tác giả sẽ đi tìm hiểu về mạng nơron nhân tạo. - 10 - CHƢƠNG III TỔNG QUAN VỀ MẠNG NƠRON NHÂN TẠO 3.1. LỊCH SỬ PHÁT TRIỂN CỦA MẠNG NƠRON NHÂN TẠO Quá trình nghiên cứu và phát triển nơron nhân tạo có thể chia ra 4 giai đoạn sau: Giai đoạn 1: Có thể tính từ cuối TK 19, đầu TK 20, các công trình nghiên cứu của họ chỉ mới dừng lại ở lý thuyết tổng quát và một số mô hình mạng nơron đơn giản. Giai đoạn 2: Vào những năm 1960, một số mô hình nơron hoàn thiện hơn đã được đưa ra như: Mô hình Perceptron rất được quan tâm vì nguyên lý đơn giản, nhưng nó cũng có hạn chế vì nó không dùng được cho các hàm logic phức. Giai đoạn 3: Có thể tính vào đầu thập niên 80. Những đóng góp lớn cho mạng nơron trong giai đoạn này phải kể đến Grossberg, Kohonen, Rumelhart và Hopfield. Giai đoạn 4: Tính từ năm 1987 đến nay, rất nhiều công trình được nghiên cứu để ứng dụng mạng nơron vào các lĩnh vực như: kỹ thuật tính [10], điều khiển {[6],[1]}, bài toán nhận dạng {[7]; [9]; [2]}, thống kê [8],...Cho đến nay mạng nơron đã tìm và khẳng định được vị trí của mình trong rất nhiều ứng dụng khác nhau. 3.2. CÁC TÍNH CHẤT CỦA MẠNG NƠ RON NHÂN TẠO - Là hệ phi tuyến: Mạng nơron có khả năng to lớn trong lĩnh vực nhận dạng và điều khiển các đối tượng phi tuyến. - Là hệ xử lý song song: Mạng nơron có cấu trúc song song, do đó tốc độ tính toán rất cao, rất phù hợp với lĩnh vực nhận dạng và điều khiển. - Là hệ học và thích nghi: Mạng được luyện từ số liệu quá khứ, có khả năng tự chỉnh khi số liệu đầu vào bị mất, có thể điều khiển on-line. - Là hệ nhiều biến, nhiều đầu vào, nhiều đầu ra (MIMO): rất tiện dụng khi điều khiển đối tượng có nhiều biến số. 3.3. MÔ HÌNH MẠNG NƠRON 3.3.1. Mô hình mạng nơron sinh học 3.3.1.1. Chức năng, tổ chức và hoạt động của bộ não con ngƣời Bộ não người có chức năng hết sức quan trọng trong đời sống của con người. Nó hầu như kiểm soát hết hành vi của con người từ hoạt động cơ bắp đơn giản đến những hoạt động phức tạp như học tập, nhớ, suy luận, tư duy, sáng tạo,… Hình 3.1. Bộ não người - 11 - Hoạt động của cả hệ thống thần kinh bao gồm não bộ và các giác quan như sau: Trước hết con người bị kích thích bởi các giác quan từ bên ngoài hoặc trong cơ thể. Sự kích thích đó được biến thành các xung điện bởi chính các giác quan tiếp nhận kích thích. Những tín hiệu này được chuyển về trung ương thần kinh là não bộ để xử lý. Trong thực tế, não bộ liên tục nhận thông tin xử lý, đánh giá và so sánh với thông tin lưu trữ để đưa ra các quyết định thích đáng. 3.3.1.2. Mạng nơron sinh học  Cấu tạo Hình 3.2. Mô hình mạng nơron sinh học Một nơron điển hình có 3 phần tử chính: - Thân nơron (soma): Nhân của nơron được đặt ở đây. - Các nhánh (dendrite): Đây chính là các mạng cây của các dây thần kinh để nối các soma với nhau. - Sợi trục (Axon): Đây là một kết nối, hình trụ dài và mang các tín hiệu từ đó ra ngoài. Phần cuối của sợi trục được chia thành nhiều nhánh nhỏ. Mỗi nhánh nhỏ kết thúc trong một cơ quan nhỏ hình củ hành được gọi là nơi tiếp giáp hai tế bào thần kinh mà tại đây các nơron đưa các tín hiệu của nó vào các nơron khác. Những điểm tiếp nhận với các khớp thần kinh trên các nơron khác có thể ở các nhánh hay chính thân nơron. 3.3.2. Mạng nơron nhân tạo 3.3.2.1. Khái niệm Mạng nơron nhân tạo là một mô phỏng xử lý thông tin được xây dựng trên mô hình một số tính chất của mạng nơron sinh học, tuy nhiên, khác với mô hình nhận thức, phần lớn các ứng dụng lại có bản chất kỹ thuật. Mạng nơron nhân tạo là máy mô phỏng cách hoạt động của bộ não thực hiện nhiệm vụ của nó. Một mạng nơron nhân tạo là bộ xử lý song song phân tán lớn, nó giống bộ não người về 2 mặt: - Tri thức được nắm bắt bởi nơron thông qua quá trình học - Độ lớn của trọng số kết nối nơron đóng vai trò khớp nối cất giữ thông tin. 3.3.2.2. Phân loại mạng nơron  Dựa vào số lớp có trong mạng: Mạng một lớp: là tập hợp các phần tử nơron có đầu vào và đầu ra trên mỗi một phần tử. - 12 - Mạng nhiều lớp: Gồm một lớp đầu vào và một lớp đầu ra riêng biệt, Các lớp nằm giữa lớp đầu vào và lớp đầu ra gọi là các lớp ẩn (hidden layers).  Dựa vào đường truyền tín hiệu trong mạng: Mạng truyền thẳng: Là mạng hai hay nhiều lớp mà quá trình truyền tín hiệu từ đầu ra của lớp này đến đầu vào lớp kia theo một hướng. Mạng phản hồi: Là mạng trong đó có một hoặc nhiều đầu ra của phần tử lớp sau truyền ngược tới đầu vào lớp trước. Mạng tự tổ chức: Là mạng có khả năng sử dụng những kinh nghiệm quá khứ để thích ứng với những biến đổi của môi trường (không dự báo trước). Loại mạng này thuộc nhóm tự học, thích nghi không cần có tín hiệu chỉ đạo bên ngoài. 3.3.2.3. Phƣơng thức làm việc của mạng nơron Phương thức làm việc của mạng nơron nhân tạo có thể chia làm hai giai đoạn: - Tự tái tạo (Reproduction) - Giai đoạn học (Learning Phase) Mạng nơron khi mới hình thành chưa có tri thức, tri thức của mạng hình thành dần sau một quá trình học. Mạng nơron được dạy bằng cách dựa vào những đầu vào kích thích và hình thành những đáp ứng tương ứng, những đáp ứng phù hợp với từng loại kích thích sẽ được lưu giữ, giai đoạn này được gọi là giai đoạn học của mạng. 3.3.2.4.Các luật học Hình 3.13. Cấu trúc huấn luyện mạng nơron Có ba phương pháp học: - Học có giám sát (Supervised Learning): Là quá trình học ở mỗi thời điểm thứ i khi đưa tín hiệu xi vào mạng nơron, tương ứng sẽ có đáp ứng mong muốn d i của đầu ra cho trước ở thời điểm đó (hình 3.14). Hay, trong quá trình học có giám sát, mạng nơron được cung cấp liên tục các cặp số liệu mong muốn vào/ra ở từng thời điểm ( x1 , d1 ) , ( x2 , d 2 ) ,…, ( xk , d k ) ,…khi cho đầu vào thực của mạng là xk tương ứng sẽ có tín hiệu đầu ra cũng được lặp lại là d k giống như mong muốn. Hình 3.14. Mô hình học có giám sát và học củng cố - 13 - - Học củng cố (Reinforcement Learning): Tín hiệu d có thể được đưa từ bên ngoài môi trường (hình 3.14), tín hiệu này có thể không được đưa đầy đủ mà chỉ đưa đại diện 1bit có tính chất kiểm tra quá trình đúng hay sai. Tín hiệu đó được gọi là tín hiệu củng cố (Reinforcement signal). - Học không có giám sát (Unsupervised Learning): Học không có giám sát hoàn toàn không có tín hiệu từ bên ngoài (hình 3.15). Giá trị mục tiêu điều khiển không được cung cấp và không được tăng cường. Mạng phải khám phá các mẫu, các nét đặc trưng, tính cân đối, tính tương quan,…trong khi tự khám phá các đặc trưng mạng tự thay đổi thông số, vấn đề đó còn gọi là tự tổ. Hình 3.15. Học không có giám sát. 3.3.3. Mô hình toán học mạng nơron truyền thẳng và mạng nơron hồi quy 3.3.3.1. Mạng nơron truyền thẳng a, Mạng truyền thẳng một lớp Là mô hình liên kết cơ bản và đơn giản nhất. Các nơron tổ chức lại với nhau tạo thành một lớp, tín hiệu được truyền theo một hướng nhất định nào đó. Các đầu vào được nối với các nơron theo trọng số khác nhau, sau quá trình xử lý cho ra một chuỗi các tín hiệu đầu ra. Hình 3.17. Mô hình mạng truyền thẳng 1 lớp b, Mạng truyền thẳng nhiều lớp Khi giải bài toán phức tạp thì mạng nơron truyền thẳng một lớp với cấu trúc đơn giản sẽ gặp rất nhiều khó khăn. Để khắc phục nhược điểm này người ta đã xây dựng mạng truyền thẳng gồm nhiều lớp kết hợp với nhau. Hình 3.18. Mạng nơron nhiều lớp truyền thẳng - 14 - 3.3.3.2. Mạng nơron hồi quy Hinh 3.20. Mạng nơron hồi quy nhiều lớp a, Mạng nơron hồi quy không hoàn toàn Cấu trúc mạng nơron hồi quy không hoàn toàn phần lớn là cấu trúc truyền thẳng nhưng có cả sự lựa chọn cho một bộ phận có cấu trúc hồi quy. Trong nhiều trường hợp, trọng số của cấu trúc hồi quy được duy trì không đổi, như vậy luật học lan truyền ngược có thể dễ dàng được sử dụng. Trong các mạng loại này, sự truyền thẳng được xảy ra rất nhanh hoặc không phụ thuộc vào thời gian. Mạng có thể nhận dãy mẫu dựa vào tình trạng cuối cùng của dãy và có thể dự báo tiếp theo cho tín hiệu của dãy theo thời gian. b, Mạng nơron hồi quy hoàn toàn Là một trong những mạng nơron hồi quy đầu tiên được Gossberg xây dựng để học và biểu diễn các mẫu bất kỳ. Loại mạng hồi quy hoàn toàn có tác dụng nhận số lượng mẫu nhiều hơn. Với mạng hồi quy hoàn toàn đã hình thành quan điểm thực hiện và luyện mạng hồi quy từ mạng truyền thẳng nhiều lớp được xây dựng từ một lớp cho mỗi bước tính. Khái niệm này được gọi là lan truyền ngược theo thời gian phù hợp khi quan tâm đến các dãy với độ lớn T là nhỏ. 3.4. PHẠM VI ỨNG DỤNG CỦA MẠNG NƠRON 3.4.1. Những bài toán thích hợp Mạng nơron được coi như một hộp đen để biến đổi véctơ đầu vào m biến thành véctơ đầu ra n biến. Nói chung bài toán có thể áp dụng cho mạng nơron có 4 loại: - Mô hình hóa (Modening). - Phân loại (classification). - Liên kết và kỹ thuật dịch chuyển cửa sổ (asosiation and moving window). - Biến đổi, thực hiện ánh xạ từ không gian đa biến này vào không gian đa biến khác tương ứng (Transformation add mapping). 3.4.2. Các lĩnh vực ứng dụng của mạng nơron Từ khi ra đời và phát triển cho tới nay thì mạng nơron được ứng dụng trong rất nhiều lĩnh vực. Có thể liệt kê một số lĩnh vực ứng dụng mạng nơron điển hình như sau: * Lĩnh vực vũ trụ hàng không: * Trong y học * Trong quốc phòng * Trong điều khiển tự động - 15 - Ngoài ra còn ứng dụng trong lĩnh vực: Công nghệ giải trí, công nghiệp, bảo hiểm,… 3.4.3. Ƣu nhƣợc điểm của mạng nơron 3.4.3.1. Ƣu điểm - Xử lý song song - Thiết kế hệ thống thích nghi - Không đòi hỏi các đặc trưng mở rộng của bài toán (chủ yếu dựa trên tập học). - Có thể chấp nhận lỗi do tính song song. 3.4.3.2. Nhƣợc điểm - Không có các quy tắc, hướng dẫn thiết kế rõ ràng đối với một ứng dụng nhất định. - Không có cách tổng quát để đánh giá hoạt động bên trong mạng. - Việc học đối với mạng có thể khó (hoặc không thể) thực hiện. - Khó có thể đoán trước được hiệu quả của mạng trong tương lai. 3.5. QUÁ TRÌNH HUẤN LUYỆN MẠNG NƠRON NHIỀU LỚP Trong phần này chúng ta sẽ chỉ ra một phương pháp huấn luyện là phương pháp lan truyền ngược. Kỹ thuật cơ bản của phương pháp lan truyền ngược là cập nhật trọng số theo hướng giảm độ dốc. Như đã nêu, mạng nhiều lớp có đầu ra của lớp trước là đầu vào của lớp tiếp theo. Sơ đồ cấu trúc được cho như hình vẽ 3.20. Biểu thức toán học mô tả sự hoạt động như (3.13) am 1  f m 1 ( wm 1.am  bm 1 ) với m = 0,1,2,…,M-1. (3.13) Trong đó M là số lớp cấu trúc trong mạng. Các nơron của lớp thứ nhất nhận tín hiệu đầu vào từ bên ngoài: a0  p (3.14) Đầu ra của các nơron ở lớp cuối cùng của mạng được coi là đầu ra của mạng: y  am (3.15) 3.5.1. Quá trình thực hiện Thuật toán lan truyền ngược của mạng nhiều lớp là một phương pháp làm giảm độ dốc. Phương pháp này được dùng để cập nhật những thông số sao cho giảm thiểu sai số của mô hình. Sai số được đo bằng phương pháp trung bình bình phương sai lệch. Tập hợp mẫu vào ra được cho dưới dạng như (3.16): p1,t1 p2 ,t2  … p , t  q q (3.16) Trong đó Pq là một đầu vào của mạng, và tq tương ứng là một đầu ra. Mỗi một đầu vào tác động vào mạng sẽ có một đầu ra thực được so sánh với đáp ứng mẫu. Hàm thông số của mạng được xác định theo biểu thức tổng bình phương sai lệch cực tiểu như (3.17): Q Q q 1 q 1 F ( x)   eq2   (tq  aq ) 2 (3.17) - 16 - Trong đó x là véctơ bao gồm cả trọng số liên kết và độ dốc của mạng. Nếu mạng có nhiều đầu ra thì biểu thức tổng quát được tính như (3.18): Q Q F ( x)   e e   (tq  aq )T (tq  aq ) T q q q 1 (3.18) q 1 Sử dụng phương pháp xấp xỉ, chúng ta sẽ thay thế tổng bình phương sai lệch bằng sai lệch của đáp ứng hiện tại.  F ( x)  {t (k )  a(k )}T {t (k )  a(k )} (3.19) Trong đó bình phương sai lệch đã được xét tại thời điểm k. Thuật toán giảm độ dốc theo phương pháp xấp xỉ bình phương sai lệch là:  F wijm (k  1)  wijm (k )  a m wij (3.20)  F bijm (k  1)  bim (k )  a wim (3.21) 3.5.2. Quy tắc chuỗi Với mạng nhiều lớp, trọng số là hàm ẩn của các hàm trọng lượng ở các lớp ẩn, vì thế các phép đạo hàm sẽ tính khó khăn. Bởi vì sai lệch là hàm ẩn của các trọng số ở các lớp ẩn nên chúng ta sẽ sử dụng quy tắc chuỗi toán học để tính đạo hàm riêng trong các biểu thức (3.20) và (3.21).   F F nim   wijm nim wijm  (3.22)  F F nim   bim nim bim (3.23) 3.5.3. Độ chính xác của lan truyền ngƣợc Nhiệm vụ của chúng ta là tính toán độ chính xác S m , nó cần đến các ứng dụng khác của quy tắc chuỗi. Đó là quá trình chúng ta cho số hạng lan truyền ngược, bởi vì nó biểu diễn mỗi liên hệ phản hồi và độ chính xác ở lớp m được tính từ độ chính xác của lớp m+1.  m S  2. F (nm ).(t  a) m S m (3.33)  m  F (n m ).(wm 1 )T .( S m 1 ) m  M  1; M  2;...;2;1 (3.34) - 17 - CHƢƠNG IV GIỚI THIỆU VỀ HỆ THỐNG XỬ LÝ NƢỚC THẢI 4.1. CÁC THÔNG SỐ ĐÁNH GIÁ Ô NHIỄM VÀ YÊU CẦU XỬ LÝ 4.1.1. Các thông số đánh giá ô nhiễm nƣớc thải - Độ pH: Chỉ số này cho ta biết cần thiết phải trung hòa hay không và tính lượng hóa chất cần thiết trong quá trình xử lý đông tụ keo, khử khuẩn,… - Hàm lƣợng các chất rắn: Tổng chất rắn các thành phần quan trọng của nước thải, được xác định phần còn lại khô sau khi cho bay hơi. - Màu: Nước thải thường có màu nâu đen hoặc màu đỏ nâu. - Oxy hòa tan (DO): Phân tích chỉ số oxy hòa tan (DO) là một trong những chỉ tiêu quan trọng đánh giá sự ô nhiễm của nước và giúp ta đề ra biện pháp xử lý thích hợp. - Chỉ số BOD: là chỉ tiêu thông dụng nhất để xác định mức độ ô nhiễm của nước thải. - Chỉ số COD: Chỉ số này được dùng rộng rãi để đặc trưng cho hàm lượng chất hữu cơ của nước thải và sự ô nhiễm của nước tự nhiên. 4.1.2. Yêu cầu xử lý Do nguồn nước sạch ngày càng cạn kiệt và thiếu hụt nghiêm trọng. Điều đó khiến việc cung cấp nước sạch cho con người trở thành vấn đề hết sức khó khăn. Chình vì vậy, xử lý nước thải là một vấn đề đang được chú trọng và nghiên cứu. 4.2. QUY TRÌNH CỦA MỘT HỆ THỐNG XỬ LÝ NƢỚC THẢI Hình 4.1. Quy trình của một hệ thống xử lý nước thải - 18 - 4.2.1. Xử lý sơ cấp Song chắn rác: Dùng để giữ lại các tạp chất thô như giấy, rác, túi nilon, vỏ cây và các tạp chất lớn có trong nước thải nhằm đảm bảo cho máy bơm, các công trình và thiết bị xử lý nước thải hoạt động ổn định. Bể lắng cát: Dùng để loại những hạt cặn lớn vô cơ chứa trong nước thải mà chủ yếu là cát. Tuyển nổi I: Trong xử lý nước thải tuyển nổi thường được sử dụng để khử các chất lơ lửng và nén bùn cặn. Bể lắng I: Lắng là một phương pháp đơn giản nhất để tách các chất bẩn không hoà tan ra khỏi nước thải. 4.2.2. Xử lý phân hủy sinh học trong điều kiện kỵ khí Quá trình chuyển hoá chất hữu cơ nhờ vi sinh kỵ khí chủ yếu được diễn ra theo nguyên lý lên men qua các bước sau: - Vi sinh vật phân huỷ các chất hữu cơ phức tạp và lipit thành các chất hữu cơ đơn giản có trọng lượng riêng nhẹ. - Vi khuẩn tạo men axit, biến đổi các chất hữu cơ đơn giản thành axit hữu cơ. - Vi khuẩn tạo men metan chuyển hoá hydro và các axit được tạo thành ở giai đoạn trước thành khí metan và cacbonic. Ưu điểm của phương pháp là tiết kiệm năng lượng, nhân công và xử lý triệt để. Hiệu suất xử lý: COD giảm 60-65%. 4.2.3. Xử lý phân hủy bằng ozone Hiện nay, để xử lý nước thải người ta thường áp dụng nhóm các phương pháp sau một cách độc lập hoặc kết hợp: Phƣơng pháp cơ học: Lắng cặn, gạt nổi, lọc… Phƣơng pháp hóa lý: Dùng hóa chất để trung hòa, tạo huyền phù, tạo kết tủa, hấp phụ trao đổi… Ozone phản ứng trực tiếp với chất tan Ozone khi hòa tan vào nước sẽ tác dụng với chất hữu cơ (P), tạo thành dạng oxy hóa của chúng theo phương trình động học sau: d[P]/dt = kP [P][O3]. (4.2) Ozone phản ứng với chất tan theo cơ chế gốc. Khi tan vào nước tinh khiết, ozone sẽ phân hủy tạo thành gốc OH theo phản ứng kiểu dây chuyền. phương trình tốc độ phân hủy ozone như sau: d[O3] /dt = kA[O3] + kB[OH¯ ]1/2[O3]3/2 (4.3) Trong đó, kA = 2 k22; kB = 2k25 ( k23/ k26 )1/2 - 19 - 4.2.4. Tuyển nổi thứ cấp và lắng thứ cấp Sau khi được xử lý qua công đoạn phân hủy kỵ khí và phân hủy ozone, nước thải vẫn chưa đạt tiêu chuẩn thải ra môi trường. Vì vậy, cần có thêm hệ thống bể tuyển nổi thứ cấp và lắng thứ cấp. 4.2.5. Xử lý và tái sử dụng bùn thải Bùn thải sinh ra trong nhà máy xử lý nước thải chủ yếu ở bể lắng I, bể phân huỷ sinh học và bể lắng II. Lượng bùn cặn này sẽ được hút ra bằng máy bơm. Việc xử lý bùn thải là cần thiết vì sẽ ảnh hưởng trực tiếp đến môi trường đất nếu chúng ta không tiến hành xử lý. 4.3. CÔNG NGHỆ XỬ LÝ NƢỚC THẢI CÔNG NGHIỆP Hình 4.2. Quy trình công nghệ xử lý nước thải. 4.3.1. Đặc trƣng của nƣớc thải công nghiệp Nước thải công nghiệp gồm hai loại chính: nước thải sinh hoạt từ các khu văn phòng và nước thải sản xuất từ các nhà máy sản xuất. Đặc tính nước thải sinh hoạt thường là ổn định so với nước thải sản xuất. Nước thải sinh hoạt ô nhiễm chủ yếu bởi các thông số BOD5, COD, SS, Tổng N, Tổng P, dầu mỡ - chất béo. Các thông số ô nhiễm nước thải công nghiệp chỉ xác định được ở từng loại hình và công nghệ sản xuất cụ thể. 4.3.2. Thuyết minh quy trình công nghệ. Nước thải phát sinh từ các nhà máy trong khu công nghiệp theo mạng lưới thoát nước chảy vào hố thu của trạm xử lý. Tại đây, để bảo vệ thiết bị và hệ thống đường ống công nghệ phía sau, song chắn rác thô được lắp đặt trong hố để loại bỏ các tạp chất có kích thước lớn ra khỏi nước thải. Sau đó nước thải sẽ được bơm lên bể điều hòa. Tại bể điều hòa, hệ thống phân phối khí sẽ hòa trộn đồng đều nước thải trên toàn diện tích bể, ngăn ngừa hiện tượng lắng cặn ở bể sinh ra mùi khó chịu, đồng thời có chức năng
- Xem thêm -