Tìm hiểu công nghệ sản xuất cao su isopren

  • Số trang: 34 |
  • Loại file: PDF |
  • Lượt xem: 37 |
  • Lượt tải: 0
nganguyen

Đã đăng 34173 tài liệu

Mô tả:

TRƯỜNG ĐẠI HỌC MỎ ĐỊA CHẤT BỘ MÔN LỌC HÓA DẦU –KHOA DẦU KHÍ    TIỂU LUẬN MÔN CÔNG NGHỆ HÓA DẦU VÀ CHẾ BIẾN POLYME NHÓM 3: TÌM HIỂU CÔNG NGHỆ SẢN XUẤT CAO SU ISOPREN Giảng viên hướng dẫn : Nguyễn Thị Linh DANH SÁCH THÀNH VIÊN TRONG NHÓM : 1. 2. 3. 4. 5. 6. Bùi Quang Hiếu Nguyễn Văn Hiếu Phạm Văn Hiếu Phan Văn Hiếu Nguyễn Văn Hồi Nguyễn Thị Bích Hồng Hà Nội Ngày 30-10-2011 1 Lời Mở Đầu Những bước phát triển của khoa học ngày nay đem đến cho đời sống con người vô số những tiện nghi về cả vật chất lẫn tinh thần. Những thành quả này nối tiếp những thành quả kia, những sản phẩm của ngày hôm qua chứa trong nó một hứa hẹn về một ngày mai sẽ có một sản phẩm ưu việt hơn… Lĩnh vực nghiên cứu các ứng dụng và phương pháp sản xuất các vật liệu polymer đã trải qua những chặng đường phát triển mạnh mẽ, và có những bước tiến dài. Các vật liệu từ polymer đóng vai trò vô cùng quan trọng và không thể thiếu trong mọi lĩnh vực từ đời sống cho tới các ứng dụng trong công nghiệp. Theo ước tính hiện nay gần 80% vật liệu mà con người sử dụng trên thế giới là polymer. Hợp chất tự nhiên được sử dụng đầu tiên và quan trọng bậc nhất hiện nay là cao su thiên nhiên. Từ những năm 1890, khi các phương tiện giao thông đường bộ được sử dụng rộng rãi, nhu cầu sử dụng cao su làm săm lốp cho các phương tiện giao thông tăng lên nhanh chóng. Đến những năm 1925 khi mà giá cao su tự nhiên tăng quá cao, nguồn cung cấp thiếu hụt, đặc biệt là trong thời gian chiến tranh dẫn đến nhu cầu phải tổng hợp ra cao su tổng hợp để thay thế cao su thiên nhiên, rất nhiều công ty đã bắt đầu tìm kiếm các phương pháp sản xuất cao su nhân tạo nhằm thay thế nguồn từ thiên nhiên. Cho đến đầu những năm 1960, sản lượng cao su tổng hợp đã vượt qua cao su tự nhiên. Nhận thấy tầm quan trọng của quá trình tổng hợp cao su nhân tạo nhằm đáp ứng nhu cầu sử dụng ngày càng gia tăng, Nhóm 4 – Lớp Lọc Hóa dầu K52 đã thực hiện tìm hiểu về Công nghệ sản xuất cao su Isopren. Các phương pháp hiện đại tổng hợp cao su isopren dựa trên cở sở tổng hợp hóa dầu nhằm thu được sản phẩm có cấu trúc và những đặc tính tương tự như cao su thiên nhiên. Do vấn đề về tính bảo mật của quá trình công nghệ và hạn chế thời gian tìm hiểu nên bài tiểu luận còn nhiều thiếu sót. Mong Cô và các bạn có những đóng góp thêm . 2 Phần I : Tổng quan về Polyisopren 1. Cấu tạo Polyisopren là sản phẩm của quá trình trùng hợp Monome Isopren Do vậy các công thức cấu tạo có thể có trong cao su isopren khi trùng hợp Isopren: Trong đó cấu hình cis-1,4 chiếm tới 94%, hoặc thậm chí cao hơn 3 2. Tính chất hóa lý Ở nhiệt độ thấp, polyisopren có cấu trúc tinh thể. Kết tinh với vận tốc nhanh nhất ở -25°C. Tinh thể nóng chảy ở 40°C. - Khối lượng riêng: 913 g/cm³ - Nhiệt độ hóa thủy tinh (Tg): -70°C - Hệ số dãn nở thể tích: 656.10-4 dm³/°C - Nhiệt dẫn riêng: 0,14 w/m°K - Nhiệt dung riêng: 1,88 kJ/kg°K - Nửa chu kỳ kết tinh ở -25°C: 2÷4 giờ - Không thấm không khí và nước - Tan tốt trong các dung môi hữu cơ mạch thẳng, mạch vòng và CCl4. Tuy nhiên, không tan trong rượu và xetôn. - Khả năng chịu được biến dạng rất lớn ngay cả ở nhiệt độ cao và sau đó trở về trạng thái ban đầu của nó một cách dễ dàng, tính đàn hồi rất tốt, tính dẻo nhờ sự lưu hóa cao su ispren tốt (có cấu trúc điều hòa lập thể) gần giống với cao su thiên nhiên. - Sự lưu hóa : do trong phân tử polyisopren không no, vẫn còn các nối đôi do vậy có khả năng phản ứng với một số chất như lưu huỳnh, peroxit… đây là quá trình lưu hóa cao su, qua đó cao su chuyển từ trạng thái mạch thẳng sang mạch không gian ba chiều, nhờ sự lưu hóa mà cao su giữ được tính đàn hồi 4 trong khoảng nhiệt độ rộng hơn, ít bị mài mòn dưới sự tác dụng của ma sát hơn, ít bị hòa tan trong dung môi hữu cơ hơn. 3. Lịch sử phát triển Tổng hợp thành công Polyisoprene có cấu trúc lập thể thích hợp (IR) là mục tiêu tìm kiếm của các nhà hóa học polymer cho gần một thế kỷ. Các nhà nghiên cứu nhận ra rằng cao su Isopren tổng hợp có cấu trúc hóa học và những đặc tính quý báu của cao su thiên nhiên. Ban đầu, việc tổng hợp ra polyisopren không thành công trong việc tìm kiếm những đặc tính quý và mong muốn của cao su thiên nhiên do khác biệt trong cấu trúc, và tính chất vật lý của polyisoprene tổng hợp với cao su thiên nhiên. Vào giữa những năm 1950, các nhà nghiên cứu đã phát hiện ra quá trình trùng hợp monome isopren có mặt chất xúc tác cho phép thu nhận sản phẩm có cấu trúc lập thể cis-1,4 gần như tinh khiết và bắt đầu phát triển công nghệ sản xuất cao su thiên nhiên tổng hợp. Việc sản xuất cao su Isopren có cấu trúc lập thể cis-1, 4 với hàm lượng 90% đến 92% được thực hiện vào năm 1960 bởi Công ty Hóa chất Shell, chất xúc tác của quá trình là alkyl lithium (Li-IR). Tuy nhiên, việc sử chất xúc tác này cho ra sản phẩm cao su isopren không đạt được các thuộc tính quý báu và quan trọng như của cao su thiên nhiên. Trong năm 1962, Goodyear giới thiệu công nghệ NATSYN , sử dụng xúc tác Ziegler-Natta (Ti-IR) thu được sản phẩm cis-1,4 ( 98,5%), với chất xúc tác này thì sản phẩm đạt được những đặc tính mong muốn của cao su thiên nhiên như độ biến dạng và độ đàn hồi tốt, độ kết tinh cao. 4. Ứng dụng Hiện nay cao su Isopren tổng hợp đang được sử dụng rất rộng rãi trong mọi lĩnh vực từ đời sống cho tới các ngành công nghiệp, trong các ứng dụng đòi hỏi vật liệu có độ bền kéo cao, khả năng phục hồi tốt, chịu nóng cao. Phần lớn 5 cao su Isopren được sử dụng làm săm lốp cho các phương tiện giao thông, và để chế tạo các đường ống đẫn, chỉ 44% lượng còn lại được sử dụng để sản xuất các loại hàng hóa nói chung:  Trong công nghiệp ô tô: Làm lốp xe, nệm ghế xe, các loại joint tạo độ kín khít cho máy móc trong xe, …  Trong các máy công nghiệp: Làm các loại joint chịu nhiệt, chịu dầu, đệm cao su, các bộ phận cần khả năng đàn hồi tốt, …  Trong y tế: Làm ống dẫn nước biển, các loại ống truyền dịch, găng tay y tế, ống nghe, …  Trong công nghiệp đồ gia dụng: Giày dép, găng tay, ủng, keo dán, nệm, các loại đồ chơi trẻ con (thú nhún, búp bê, …)  Trong ngành điện, điện tử : Vỏ bọc cách điện, cách quạt tubin, các đệm chống sóc, vỏ bọc một số thiết bị điện tử…  Trong xây dựng và trang trí nội thất : Tấm lợp, thảm lót, các vật dụng trang trí…  Trong thể thao : cao su nhân tạo được dùng làm mặt cỏ nhân tạo, sàn nhà thi đấu, một số dụng cụ thể thao như vợt bóng bàn, quả bóng…  Trong quân sự và phàng cháy chữa cháy : Được dùng làm đế của các loại súng, làm đạn cao su, mặt nạ chống độc, làm đường ống dẫn nước chữa cháy…  Trong kỹ thuật : Được dùng làm một số chi tiết quan trọng trong robot, nhờ có đặc kháng thời tiết và ozon tốt nên cao su tổng hợp được dùng làm các chi tiết trên tàu vũ trụ và trạm không gian Cao su isoprene lỏng (LIR), không màu trong suốt và gần như không mùi cao su . Nó hoạt động như một chất làm dẻo hóa. Đó là vì, trên thực tế, cao su này có trọng lượng phân tử cao nhất trong số những vật liệu có thể thực hiện chức năng dẻo. Chất lỏng cao su isoprene có thể được lưu hoá, liên kết với cao su rắn như NR, SBR, BR và EPDM nhờ sử dụng lưu huỳnh hoặcperoxide. 6 Phần II : Nội dung Chương I : Monome và các phương pháp sản xuất Monome 1. Monome - IsoPren hay 2-Metyl-1,3-Butadien có CTPT: CH2=C(CH3)CH=CH2 - Tính chất vật lý cơ bản của isopren :  Là chất lỏng không màu ở điều kiện thường, dễ bay hơi ở nhiệt độ 34 oC, tan hầu hết trong các dung môi Hydrocacbon tuy nhiên không tan trong nước, có thể tạo hỗn hợp đẳng phí với nhiều chất khác nhau như nước, methanol, axeton, axetonitril, etyl ete…  Khối lượng phân tử 68,12 g/mol  Khối lượng riêng 0,681 g/cm 3  Nhiệt độ nóng chảy -143,95oC  Nhiệt độ sôi 34,067oC  Điểm bốc cháy – 48oC  Nhiệt độ tự bốc cháy 220 oC - Tính chất hóa học của isoprene : do trong phân tử isoprene có chứa các liên kết đôi do vậy nó có thể tham gia nhiều phản ứng khác nhau đặc trưng của các hợp chất không no như phản ứng cộng, phản ứng oxy hóa, và phản ứng trùng hợp. Tuy nhiên trong phạm vi đồ án chỉ quan tâm nghiên cứu đến phản ứng polymer hóa của isopren để sản xuất cao su tổng hợp. 7 - Ứng dụng: o Polyme hóa với xúc tác cơ kim sản xuất cao su polyisopren o Copolyme hóa với styren sản xuất cao su Isopren - Styren 2. Các phương pháp sản xuất monome Isopren có thể tổng hợp từ :  Phương pháp tách isopren từ phân đoạn C5 bằng quá trình cracking hơi nước  Phương pháp dehydro hóa isopentan  Phương pháp dehydro hóa isoamyl  Phương pháp đi từ axetilen và axeton  Phương pháp đi từ isobuten và focmandehit  Phương pháp Isome hóa Propylen 3. Các công nghệ sản xuất Isopren : 3.1 Quá trình dehydro hóa Isopentan.Công nghệ Houdry và UOP Isopentan chiếm một lượng lớn trong trong phân đoạn C5 từ quá trình cracking hơi nước, isopren có thể được sản xuất bởi từ n-pentan. Tuy nhiên vì Isopentan có trị số Octan cao nên thường được dùng cho công nghệ sản xuất khí nhiên liệu và vì giá thành công nghệ nên phương pháp này chỉ mang tính lý thuyết ít có ứng dụng trong công nghiệp. Đây là công nghệ phát triển trên công nghệ của hãng Houdry và UOP sản xuất Butadien, áp dụng điều kiện hoạt động tương tự. Phản ứng hóa học chính của quá trình như sau : 8 3.2 Quá trình dehydro hóa isoamyl Phân đoạn Naphta của quá trình cracking xúc tác bao gồm 30 – 40% isoamylen 2 – metyl 1- buten và 2- metyl 2-buten ,bằng quá trình chiết 2 bậc (2 bước) chúng có thể đạt độ tinh khiết 95-99% (như kỹ thuật ARCO):  Đầu tiên là với dung môi axit sunfuric  Sau đó bằng các HC như n-C7, hoạt động trên pha lỏng trong bước 1, sau đó được thu hồi lại bằng quá trình chưng đơn giản. Liên kết đôi được isome hóa trong suốt quá trình này, bởi vậy hỗn hợp sản phẩm cuối cùng chứa ~ 90% 2-mety 2-buten và 10% 2metyl – 1buten. Cả 2 isome này đều có thể được dehydro hóa tạo isopren bằng phương trình dưới đây: CH2=C(CH3)-C2H5 hoặc (CH3)2-C=C2H5 -> CH2=C(CH3)-CH=CH2 + H2 Sự chuyển hóa này tương tự như quá trình từ Buten thành Butadien được đưa ra bởi Shell với sự có mặt của hơi nước, trên xúc tácFe2O3/Cr2O3/K2CO3 ở nhiệt độ khoảng 600 oC. Các chất đi ra được làm lạnh bằng dầu, nó hấp thụ các polyme hình thành. Chất khí được nén lại trước khi vào quá trình tách bằng pp chưng trích ly với dung môi aceton-nitril, sau đó được tinh chế để tạo isopren. Shell cho rằng có khả năng xử lý buten và isoamylen đồng thời để sản xuất butadien và isopren. Thành phần của dòng ra từ quá trình chiết sử dụng acit sunfuric và quá trình dehydro hóa được cho trong bảng sau: 9 Hydrocacbon Trích ly với dung môi Dehydro hóa Axit sunfuric C4 Vết 0,9 Isopentan 0,3 0,2 n- pentan 0,1 0,1 1-penten 0,2 0,1 3-metyl 1-buten 0,1 0,1 2-metyl 1-buten 8,7 4,2 2 -metyl 2 –buten 87,5 23,9 Isopren - 35,4 Trans 2- penten 0,5 29,3 Cis 2- penten 0,2 0,1 Cis và trans pentadien - 0,3 C6- 2,4 1,5 Hầu hết các dây chuyền sản xuất butadien có thể được mở rộng để sản xuất isopren. Chúng bao gồm quá trình dehydro hóa với sự có mặt của halogen. Nguồn thu isoamyl khác từ pư tách (dismutation) phân đoạn C4 đã được tách dien (liên kết đôi) sử dụng 1 kỹ thuật bắt nguồn từ Philips (quá trình Triols). Trong bước đầu tiên, sử dụng phân đoạn C4, isobuten và 2 buten phản ứng với nhau để tạo ra isopenten và propylen. Propylen phản ứng lại với isobuten tạo isopenten và làm tăng lượng isopenten và etylen. Etylen, bằng phản ứng với isohexen, sản phẩm phụ nặng của quá trình chuyển hóa 1-buten và isobuten, tái sinh các chất phản ứng ban đầu trong bước thứ 2. 10 Trong các điều kiện này, isoamyl có thể tạo ra isopren từ quá trình dehydro hóa. Để sản xuất 1 tấn isopren đòi hỏi 1.16 tấn isobuten và 1.1 tấn nbuten. Ngoài ra, còn tạo thành 0.165 tấn etylen, 0.059 tấn propylen và 0.675 tấn các sản phẩm dễ cháy. 3.3 Công nghệ tách isopren từ phân đoạn C5 của quá trình cracking hơi nước Thành phần C5 được cho trong bảng dưới đây Hydrocacbon Nguồn Cracking Hơi nước Cracking xúc tác C4 – 1,0 2,0 N- pnetan 26,0 5,5 Isopentan 24,0 31,5 n- penten 4,5 22,5 Metylbuten 12,0 37,5 Cyclopenten 1,5 - Isopren 13,5 - Pentadien (piperylen) 9,0 - Cyclopentadien 7,5 - C6 – 1,0 1,0 Tổng 100,0 100,0 Mặc dù hàm lượng thu isopren từ phân đoạn C5 là không nhiều nhưng đây vẫn là quá trình thích hợp để sản xuất Điolefin (đặc biệt là isopren). Để tách isopren trong phân đoạn C5 cần áp dụng phương pháp tách rất phức tạp vì phân đoạn C5 và isopren có nhiệt độ sôi rất gần nhau. Phương pháp tốt nhất để tách isopren ra khỏi phân đoạn là phương pháp chưng trích ly, dung môi được chọn cũng giống như quá trình sản xuất butadien là Acetonitril ( ARCO ,Exxon, Janpan Synthetic Rubber, Nippon 11 Pertrochemical, Shell), N- methylpyrroli (BASF), dimetyl focmamit (Nipp Zeon). Các dung môi này có thể làm thay đổi độ bay hơi tương đối của các cấu tử, làm cho việc phân tách chất dễ dàng hơn so với phương pháp chưng cất thông thường. Điều này được trình bày rõ ràng trong bảng dưới : Hydrocacbon Tos(oC) Độ bay hơi tương đối Không có Trong dung môi dung môi DMF 30 1,16 2,35 2-metyl 1-buten 31,2 1,11 2,05 Isopren 34,1 1,00 1,00 n-penten 36,1 0,94 3,6 trans 2 –penten 36,4 0,93 2,0 cis 2 –penten 36,9 0,92 1,9 2-metyl 2-buten 38,6 0,86 1,65 Cyclobentadien 41,0 0,82 0,55 Trans piperylen 42 0,76 0,75 1-penten Một số cấu tử trong phân đoạn C5 có thể tạo hỗn hợp đẳng phí có nhiệt độ sôi gần nhiệt độ sôi của isopren , ví dụ như piperylen tạo hỗn hợp đẳng phí với n- pentan (35,3 oC), với 2-metyl 2- buten (38oC), và với cis-2- penten (36,9 oC). Dicyclopentadien được hình thành có nhiệt độ sôi 170 oC ở áp suất khí quyển, được tách ra khỏi hỗn hợp C5, quá trình depolyme hóa cũng xảy ra ở nhệt độ này. Chỉ cần dùng chưng cất đơn giản nếu chỉ cần thu sản phẩm không có độ tinh khiết cao,giàu cyclopentadien, piperyden, isopren. Tỷ lệ dung môi trên dung dịch đầu vào là 5-6 với sự có mặt của chất ức chế là 5-10% nước trong trường hợp sử dụng dung môi là acetonitril, và nmetylpyridon, để tăng độ chọn lọc của quá trình. Nếu sử dụng là dung môi 12 dimetylformamit thì môi trường phản ứng phải khan để tránh phản ứng dimetylformamit bị hydrat tạo thành formic và dimetylamin. Công nghệ xản xuất isopren từ phân đoạn C5 bằng quá trình Cracking hơi nước sử dụng dung môi N-Metylpyrolidon. Công nghệ BASF bao gồm các giai đoạn sau: - Giai đoạn 1 : Dime hóa 90% xyclopentadien, trong giai đoạn này 4% isopren trong nguyên liệu ban đầu cũng bị polyme hóa. - Giai đoạn 2 : Trích ly diolefin và acetylen bằng cách tiếp xúc lỏng /lỏng, phần rafinat bao gồm pentan, penten, dicyclopentadien thu được ở đỉnh tháp. - Giai đoạn 3 : Chưng cất phần trích hỗn hợp parafin, olefin còn dư (đặc biệt 2-metyl-2-buten) và một lượng nhỏ isopren thu được ở đỉnh tháp chưng cất . Hỗn hợp hydrocacbon này được đưa đến tháp tách butan, tháp này tách sản phẩm nhẹ, ở đỉnh tháp thu được sản phẩm nhẹ bao gồm C4, 1,4-pentadien. Hỗn hợp olefin, parafin còn lại được đưa trở lại tháp trích ly, tiếp tục lại quá trình trích ly. Phần nặng thu được ở đáy tháp chưng cất được đưa sang tháp stripping để thu hồi dung môi và tuần hoàn trở lại tháp trích ly. Ở tháp stripping thu được isopren, cyclopenten, xyclopentadien còn dư, piperylen, dẫn xuất acetylen và một lượng nước dư được đua sang tháp hấp thụ - Giai đoạn 4 : Hấp thụ ở áp suất thường với dung môi là Nmetylpyrolidon, isopen và một số sản phẩm như 2 butyl không bị hấp thụ được tách ra trên đỉnh tháp. Phần ra ở đáy được xuống tháp chưng cất phần trích để thu sản phẩm nhẹ quay trở lại tháp hấp thụ còn dung môi được dưa sang tháp stripping, sản phẩm piperylen, dẫn xuất acetylen thu được ở tháp stripping, đáy tháp là dung môi tuần hoàn về tháp hấp thụ. - Giai đoạn 5 : Tinh chế phần giàu isopren thu được từ đỉnh tháp hấp thụ bằng 2 tháp chưng chất tách sản phẩm nhẹ và chưng cất tách sản phẩm nặng. Tháp thứ nhất tách 2-butyl ra ở đỉnh tháp, tháp thứ 2 tách sản phẩm 13 cyclopentadien, clyclopenten, vết của piperylen ra ở đáy. Isopren tinh khiết được thu trên đỉnh tháp chưng cất. Đặc tính của Isopren thương phẩm Hàm lượng quy định Giá trị Isopren (%kl min) 99,0 Cyclopentadien (ppm)max 10 Dẫn xuất Acetylen (ppm)max 50 Piperylen (ppm)max 1,00 Hợp chất cacbonyl (như là andehyt) (ppm)max 100 Chất ức chế (p-tertiobutylcatechol) (ppm)max 10 Dime 50 (ppm)max Phương pháp trích ly phân đoạn C5 bằng quá trình Cracking hơi nước thu isopren có công nghệ thu hồi, phân tách tinh chế sản phẩm khá phức tạp, phương pháp này vẫn được áp dụng sản xuất trong công nghiệp. 14 16 3.4 Sản xuất isopren từ axetilen và axeton : (Công nghệ SNAM) Nguyên liệu sử dụng trong công nghệ này là axetilen và axeton. Các bước chính của quá trình chuyển hóa như sau: a. Phản ứng cộng: CH3-CO-CH3 + C2H2 → (CH3)2C(OH)CCH ∆H298o =-63 kJ/mol (metylbutynol) b. Hydro hóa chọn lọc: (CH3)2C(OH)CCH + H2 → (CH3)3C(OH)CHCH2 ∆H298o = -167kJ/mol c. Dehydrat hóa (CH3)3C(OH)CHCH2 → CH2=C(CH3)-CH=CH2 ∆H298o = 33 kJ/mol Phản ứng cộng hợp được tiến hành ở điều kiện nhiệt độ từ 10-40oC, áp suất 2.106 Pa (20 atm), chất xúc tác là dung dịch kali cacbonat ( K2CO3). Quá trình xảy ra trong dung dịch (môi trường) NH3 lỏng, lượng axetilen dư (2/1) để ngặn chặn sự hình thành các sản phẩm phụ từ axeton. Hiệu suất phản ứng đạt 96% mol. 5060% mol sản phẩm/1 mol K2CO3. Quá trình chuyển hóa ngừng lại khi chất xúc tác bị trung hòa. Phần axetilen chưa phản ứng và NH3 được thu hồi bằng chưng cất (Flash) và tuần hoàn. Sau đó metyl-butynol được tinh chế bằng bằng hệ thống 2 tháp chưng cất, tháp đầu tiên loại axeton chưa phản ứng ra ở đỉnh, tháp thứ 2 tách các hợp chất nặng và hỗn hợp đẳng phí chứa 28% kl nước. Hiệu suất sau quá trình chưng cất là 95%. Phản ứng hydro hóa tiến hành trực tiếp trên hỗn hợp đẳng phí, áp suất 0.5-1.106 Pa, nhiệt độ 30-80oC, chất xúc tác là Palladium (Pd). Quá trình chuyển hóa xảy ra hoàn toàn. Hàm lượng metyl butanol hình thành nhỏ hơn 1% mol. Hydro chưa phản ứng được tuần hoàn, hydro được tách bằng quá trình ly tâm giống như xúc tác.Các chất (sản phẩm) còn lại được hóa hơi để thu hỗn hợp đẳng phí 17 metylbutenol/nước chứa 77% kl hợp chất hydrocacbon, hỗn hợp này được chuyển sang giai đoạn tiếp theo. Quá trình hydrat hóa (tách nước) tiến hành ở áp suất khí quyển và nhiệt độ 250300 oC, trên xúc tác Alumina (Al). Độ chuyển hóa gần như hoàn toàn. Các sản phẩm phụ bị giữ lại bởi quá trình rửa bằng nước. Xúc tác được tái sinh dễ dàng bằng sự đốt cháy cặn cacbon. Isopren thu được cuối cùng có hàm lượng đạt 98% kl, với hàm lượng các olefin lớn nhất 1.5%. Đánh giá phương pháp : nhược điểm của phương pháp này là nguồn nguyên liệu đắt và không dồi dào, quá trình phản ứng tạo nhiều sản phẩm phức tạp. Tuy nhiên, điều kiện vận hành và thiết bị đơn giản hơn, hiệu suất cao. Sơ đồ công nghệ SNAM được trình bày trong hình dưới đây. 18 20
- Xem thêm -