Đăng ký Đăng nhập
Trang chủ Synthesis nano biphasic calcium phosphate by untrasound assisted process for bio...

Tài liệu Synthesis nano biphasic calcium phosphate by untrasound assisted process for biomaterial application

.PDF
58
89
65

Mô tả:

i MỤC LỤC MỤC LỤC............................................................................................................... i DANH MỤC CÁC TỪ VIẾT TẮT ......................................................................iii DANH MỤC HÌNH ẢNH..................................................................................... iv DANH MỤC BẢNG BIỂU .................................................................................... v LỜI MỞ ĐẦU ........................................................................................................ 1 CHƢƠNG 1: TỔNG QUAN 1.1 KHÁI QUÁT VỀ CALCIUM PHOSPHATE 1.1.1 Tình hình nghiên cứu......................................................................... 4 1.1.2 Ƣu điểm của BCP .............................................................................. 5 1.1.3 Các ứng dụng của BCP ...................................................................... 5 1.1.4 Ứng dụng của HAp bột ...................................................................... 6 1.1.5 Ứng dụng của HAp dạng xốp ............................................................ 7 1.1.6 Ứng dụng của HAp dạng composit ................................................... 9 1.2 MỘT SỐ PHƢƠNG PHÁP NGHIÊN CỨU BIPHASIC CALCIUM PHOSPHATE 1.2.1 Phƣơng pháp phân tích nhiễu xạ tia X (XRD) ............................... 10 1.2.2 Phƣơng pháp hiển vi điện tử quét (SEM) ....................................... 11 1.2.3 Phƣơng pháp phân tích quang phổ hồng ngoại (FTIR) ................. 12 1.3 CÁC PHƢƠNG PHÁP TỔNG HỢP HAp 1.3.1 Phƣơng pháp ƣớt ………………………………………………………..13 1.3.2 Phƣơng pháp khô ............................................................................. 19 CHƢƠNG 2: NGHIÊN CỨU VÀ THỰC NGHIỆM 2.1 DỤNG CỤ, THIẾT BỊ, HÓA CHẤT 2.1.1 Dụng cụ ............................................................................................ 21 2.1.2 Thiết bị ............................................................................................. 21 2.1.3 Hóa chất ........................................................................................... 21 ii 2.2 QUY TRÌNH TỔNG HỢP BCP 2.3 CÁC PHƢƠNG PHÁP PHÂN TÍCH 2.3.1 Phƣơng pháp nhiễu xạ tia X (XRD) ................................................ 23 2.3.2 Phƣơng pháp phân tích quang phổ hồng ngoại (FTIR). ................ 23 2.3.3 Phƣơng pháp chụp kính hiển vi điện tử quét (SEM) ..................... 24 CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 3.1 KẾT QUẢ VÀ THẢO LUẬN 3.1.1 Kết quả phân tích XRD của HAp và β-TCP ................................... 25 3.1.2 Kết quả chụp IR của β-TCP và HAp .............................................. 29 3.1.3 Kết quả chụp SEM của β-TCP và HAp tại tỉ lệ mol Ca/P= 1,57 ... 31 KẾT LUẬN- KIẾN NGHỊ .................................................................................. 32 TÀI LIỆU THAM KHẢO PHỤ LỤC iii DANH MỤC CÁC TỪ VIẾT TẮT β–TCP: β-tricalcium phosphate BCP: Biphasic calcium phosphate HAp: Hydroxyapatite FTIR: Fourier Transform Infrared (Phương pháp phân tích quang phổ hồng ngoại). SEM: Scanning Electron Microscope (Phương pháp kính hiển vi điện tử quét ) XRD: X-ray diffraction (Phương pháp phân tích nhiễu xạ tia X) iv DANH MỤC HÌNH ẢNH Hình 1.1. BCP dạng bột, dạng viên và các khối đặc, xốp ......................................... 6 Hình 1.2. Dạng gel của BCP .................................................................................... 6 Hình 1.3. Thuốc bổ sung canxi sử dụng nguyên liệu HAp dạng vi tinh thể .............. 7 Hình 1.4. Quá trình tạo lớp men trên bề mặt răng .................................................... 8 Hình 1.5. Gốm y sinh HAp tổng hợp bằng các phương pháp khác nhau................... 8 Hình 1.6. Sửa chữa khuyết tật của xương bằng gốm HAp dạng khối xốp hoặc dạng hạt ........................................................................................................................... 9 Hình 1.7. Sơ đồ nguyên lý của phương pháp nhiễu xạ tia X................................... 10 Hình 1.8. Sơ đồ nguyên lý của SEM ...................................................................... 12 Hình 1.9. Sơ đồ nguyên lý của phương pháp kết tủa .............................................. 14 Hình 1.10. Sơ đồ nguyên lý của phương pháp phun sấy ......................................... 16 Hình 1.11. Quá trình tạo và vỡ bọt dưới tác dụng của sóng siêu âm ....................... 17 Hình 1.12. Sơ đồ nguyên lý của phương pháp siêu âm hoá học.............................. 18 Hình 3.1 Giản đồ XRD của β-TCP và HAp tại tỉ lệ Ca/P=1,53 phụ thuộc vào pH: (a) pH=7, (b) pH=9 và (c) pH=11 .......................................................................... 25 Hình 3.2 Giản đồ XRD của β-TCP và HAp tại tỉ lệ Ca/P=1,57 phụ thuộc vào pH: (a) pH=7, (b) pH=9 và (c) pH=11 .......................................................................... 26 Hình 3.3 Giản đồ XRD của β-TCP và HAp tại tỉ lệ Ca/P=1,61 phụ thuộc vào pH: (a) pH=7, (b) pH=9 và (c) pH=11 .......................................................................... 26 Hình 3.4 Phổ FTIR của β-TCP và HAp tại tỉ lệ Ca/P=1,53 tùy thuộc vào pH của dung dịch: (a) pH=7, (b) pH=9 và (c) pH=11 ......................................................... 29 Hình 3.5 Phổ FTIR của β-TCP và HAp tại tỉ lệ Ca/P=1,57 tùy thuộc vào pH của dung dịch: (a) pH=7, (b) pH=9 và (c) pH=11 ......................................................... 29 Hình 3.6 Phổ FTIR của β-TCP và HAp tại tỉ lệ Ca/P=1,61 tùy thuộc vào pH của dung dịch: (a) pH=7, (b) pH=9 và (c) pH=11 ......................................................... 30 Hình 3.7 Hình ảnh (SEM) của β-TCP và HAp tại tỉ lệ Ca/P=1,57 phụ thuộc vào pH của dung dịch ban đầu: (a,d) pH=7, (b, e) pH=9 và (c, f) pH=11 ........................... 31 v DANH MỤC BẢNG BIỂU Bảng 1: Bước sóng đặc trưng của các nhóm chức .................................................. 13 Bảng 2: Tổng hợp các thông số và phần trăm khối lượng của β-TCP và HAp theo tỉ lệ mol Ca/P ............................................................................................................ 27 1 LỜI MỞ ĐẦU Vật liệu y sinh đã và đang được nghiên cứu mạnh mẽ để đáp ứng nhu cầu thay thế các bộ phận cơ thể, cấy ghép mô, xương của con người, hứa hẹn cho việc chữa trị và tái tạo các mô và cơ quan bị mất hoặc bị tổn thương do chấn thương, bệnh tật hoặc lão hóa. Trong những năm gần đây, con người đã đạt được những tiến bộ đáng kể trong việc cấy ghép nội tạng, phẫu thuật tái tạo và sử dụng mô nhân tạo để điều trị, cấy ghép các cơ quan nội tạng hoặc mô xương. Trong lĩnh vực vật liệu dùng cho xương, nhiều loại vật liệu dùng trong cấy ghép và thay thế xương đã phát triển đáng kể trong những thập kỉ qua, những năm gần đây, các nhà khoa học trên thế giới quan tâm đến vật liệu biphasic calcium phosphate (BCP). Biphasic calcium phosphates là vật liệu có khả năng liên kết sinh hóa với tế bào sống, giúp cho các tế bào xương sau khi bị thương tổn tiếp tục tái sinh và liên kết trực tiếp với bề mặt vật cấy, tạo liên kết trực tiếp với xương non dẫn đến sự tái sinh xương nhanh mà không bị cơ thể đào thải. Các nhà nghiên cứu đang cố gắng điều chế BCP kích thước nano (trong khoảng 20 – 100nm) để góp phần nâng cao khả năng hấp thụ cơ thể [13].  Lý do chọn đề tài Ở nước ta, các vật liệu vô cơ có khả năng ứng dụng trong y sinh học được quan tâm từ lâu. Tuy nhiên, việc ứng dụng các vật liệu vô cơ trong y sinh học và dược học còn nhiều hạn chế, để góp phần hoàn thiện quy trình chế tạo BCP kích thước nano ứng dụng trong y sinh học tôi lựa chọn đề tài: “Nghiên cứu tổng hợp vật liệu biphasic calcium phosphate bằng phƣơng pháp kết tủa kết hợp sóng siêu âm.”  Mục tiêu nghiên cứu Nghiên cứu tổng hợp biphasic calcium phosphate bằng phương pháp kết tủa kết hợp sóng siêu âm. Khảo sát ảnh hưởng của pH và tỉ lệ mol Ca/P đến kết quả tổng hợp biphasic calcium phosphate. 2  Nội dung nghiên cứu - Tổng hợp biphasic calcium phosphate (HAp & β-TCP) từ calcium chloride và trisodium phosphate. - Khảo sát ở các môi trường pH=7, pH=9, pH=11. - Khảo sát tỉ lệ mol Ca/P= 1,53; Ca/P= 1,57; Ca/P= 1,61.  Phƣơng pháp nghiên cứu - Xác định cấu trúc bằng phương pháp XRD (phân tích nhiễu xạ tia X) [13]. - Xác định các nhóm chức bằng phương pháp phân tích FTIR (quang phổ hồng ngoại) [13]. - Chụp bề mặt mẫu bằng phương pháp chụp SEM ( kính hiển vi điện tử quét) [13].  Bố cục Chương 1: Tổng quan Chương 2: Thực nghiệm Chương 3: Kết quả và thảo luận 3 CHƢƠNG 1: TỔNG QUAN 1.1 KHÁI QUÁT VỀ CALCIUM PHOSPHATE Calcium phosphates với các đặc tính phù hợp dùng làm vật liệu sinh học đang thu hút nhiều sự chú ý của khoa học trong ứng dụng làm vật liệu cho xương. Calcium phosphate có tính tương hợp sinh học, hoạt tính sinh học cao và khả năng chữa lành xương do có thành phần và cấu trúc tương tự thành phần khoáng trong xương. Ngoài ra calcium phosphate còn có độ hấp thụ cao đối với các protein như fibronectin và vitronectin. Vì vậy, khi sử dụng calcium phosphate có thể tăng cường sự kết dính của các tế bào tạo xương. Mặt khác calcium phosphate bên trong cơ thể từ từ hòa tan để giải phóng ion calcium và phosphate có lợi trong việc hình thành xương. Sản phẩm của quá trình phân hủy calcium phosphate hình thành carbonated apatite; carbonated apatite hình thành có thành phần và cấu trúc hóa học giống với pha khoáng trong xương hơn và có hoạt tính sinh học. Ngoài ra, nano calcium phosphate có hoạt tính sinh học cao hơn, các hạt calcium phosphate ở kích thước nano được dùng trong cấy ghép mô với tính tương hợp sinh học được cải thiện đáng kể [3]. Calcium phosphate được dùng trong lĩnh vực y sinh được biết đến như: - Hydroxyapatite (HAp) [1] - β-tricalcium phosphate (β–TCP) [1] - Biphasic calcium phosphate (BCP) [1] Chúng không những khác nhau về thành phần mà còn khác nhau về độ tan, tính tương hợp sinh học, tính chất cơ lý. Biphasic calcium phosphate (BCP, hỗn hợp của HAp và β –TCP) được quan tâm nghiên cứu do BCP ảnh hưởng tốt đến quá trình tái tạo xương hơn HAp hoặc TCP. BCP có tốc độ tan phù hợp với tốc độ tái tạo của xương [13]. 4 1.1.1 Tình hình nghiên cứu  Tình hình nghiên cứu trên thế giới - Năm 1986, Moore và Chapman đã chế tạo được miếng ghép tổ hợp giữa hai pha HA và β –TCP [3]. - Năm 1989 Daculsi.G đã nghiên cứu sự thay đổi tính chất hóa lý của BCP trong ống nghiệm [9]. - Năm 2003 Bagot.D đã nghiên cứu ứng dụng vật liệu xốp BCP trong phẫu thuật xương tai [6]. - Năm 2003 Nich.C đã nghiên cứu ứng dụng vật liệu xốp BCP cấy ghép trong xương hông [19]. - Năm 2003 Rochet.N đã nghiên cứu ảnh hưởng của BCP lên tế bào xương người [21]; - Năm 2005 Livingston AT đã nghiên cứu ảnh hưởng của BCP lên tế bào gốc của người tạo nên sự hình thành xương [16]; - Năm 2006 Ogose.A đã nghiên cứu đánh giá mô học BCP ghép trên xương người [20]. - Năm 2006 Mastrogiacomo đã nghiên cứu ảnh hưởng của BCP lên sự tạo thành xương trong ống nghiệm [17]. - Năm 2007 Byong-Taek Lee và đồng nghiệp đã tổng hợp bột BCP kích thước nano dạng hình cầu bằng phương pháp sử dụng vi sóng [8]. - Năm 2008 Sun H đã nghiên cứu tính dẫn xương của BCP trên tế bào gốc [22]. - Năm 2013 Wen-Yu Su đã nghiên cứu BCP dùng làm chất mang thuốc Gentamicin chống viêm tủy xương [26].  Tình hình nghiên cứu trong nƣớc. - Năm 2005, Đỗ Ngọc Liên đã nghiên cứu quy trình tổng hợp bột và chế thử gốm xốp hydroxyapatit [3]. - Năm 2009, Vũ Thị Dịu đã nghiên cứu các yếu tố ảnh hưởng đến bột hydroxyapatite kích thước nano điều chế từ canxi hydroxit [1]. 5 - Năm 2011, Nguyễn Văn Hưởng đã khảo sát quá trình tách và một số đặc trưng của canxi hydroxyapatite từ xương động vật [2]. - Năm 2012, Nguyễn Minh Kha, Huỳnh Kì Phương Hạ, Phạm Thị Ngọc Trâm, khoa kĩ thuật hóa học trường Đại học Bách khoa TP. Hồ Chí Minh đã tổng hợp nano tinh thể hydroxyapatite bằng phương pháp sol-gel [4]. - Năm 2012, Trần Thanh Trước, Tạ Văn Tấn, Lê Thị Mỹ Hoa trường Đại học Công nghiệp Thực phẩm –TPHCM đã nghiên cứu tổng hợp bột nano biphasic calcium phosphate bằng phương pháp microwave [5]. 1.1.2 Ƣu điểm của BCP Năm 1983, Klein và các đồng nghiệp lần đầu tiên tạo ra chi tiết ghép xương bằng gốm chứa 100% HAp. Thực tế cho thấy, sự phát triển của xương trong miếng ghép này có tốc độ phát triển chậm. Điều này tạo cho chất lượng của xương ở nơi cấy ghép rất tốt, nhưng thời gian điều trị kéo dài. Sau thí nghiệm của Klein một nhóm các nhà khoa học khác, đứng đầu là L.Geroa chế tạo chi tiết ghép xương chứa 100% pha β -TCP thì tốc độ phát triển xương non quá nhanh và như vậy cũng sẽ đưa đến kết quả không tốt cho yêu cầu phát triển của xương [3]. Chính vì vậy việc chế tạo loại miếng ghép tổ hợp 2 pha với 2 loại HAp và β-TCP sẽ cho ra loại vật liệu có hoạt độ và tính tương thích sinh học tốt hơn [3]. BCP là một tiềm năng tốt nhất cho ghép xương vì có thành phần rất gần với các khoáng chất sinh học của xương, phóng thích các ion Ca2+ và PO43- giúp tạo xương [11]. 1.1.3 Các ứng dụng của BCP -BCP tổng hợp có hoạt tính và khả năng thích ứng sinh học tốt nên được sử dụng rộng rãi về phương diện lâm sàng dưới dạng bột, viên, các khối đặc, xốp và các loại composite khác nhau [11]. 6 Hình 1.1. BCP dạng bột, dạng viên và các khối đặc, xốp [11] Hình 1.2 Dạng gel của BCP [11] 1.1.4 Ứng dụng của HAp bột  Do lượng canxi hấp thụ thực tế từ thức ăn mỗi ngày tương đối thấp nên rất cần bổ sung canxi cho cơ thể, đặc biệt cho trẻ em và người cao tuổi. Canxi có trong thức ăn hoặc thuốc thường nằm ở dạng hợp chất hoà tan nên khả năng hấp thụ của cơ thể không cao và thường phải dùng kết hợp với vitamin D nhằm tăng cường việc hấp thụ và chuyển hoá canxi thành HAp. Có thể bổ sung canxi cho cơ thể người bằng cách dùng thức ăn … Một phương pháp hữu hiệu là sử dụng HAp ở dạng bột mịn, kích thước nano để bổ sung canxi [2] [14].  Đối với bột HAp có kích thước hạt khoảng 150nm trở lên, quá trình thiêu kết để tạo gốm HAp rất khó khăn. Quá trình kết khối diễn ra ở nhiệt độ khá cao (1000 – 12000C) trong thời gian dài (2–3 giờ), làm cho gốm HAp bị phân huỷ thành các hợp chất không mong muốn, có hại cho cơ thể. Với kích thước nano (từ 20100nm), nhiệt độ kết khối của HAp bột giảm xuống chỉ còn khoảng 800–10000C 7 trong thời gian từ ½ giờ đến 1 giờ. Điều này làm cho việc chế tạo gốm y sinh học từ HAp có chất lượng cao, thuận lợi và dễ dàng hơn [2]. Hình 1.3 là hình ảnh của một số loại thực phẩm chức năng và thuốc bổ sung canxi sử dụng nguyên liệu HAp bột dạng vi tinh thể đang được lưu hành trên thị trường [2] [14]. Hình 1.3: Thuốc bổ sung canxi sử dụng nguyên liệu HAp dạng vi tinh thể [1] 1.1.5 Ứng dụng của HAp dạng xốp Vật liệu gốm xốp HAp có tính tương thích sinh học cao, có nhiều lỗ liên thông với nhau, tạo thuận lợi cho sự xâm nhập của mô sợi và mạch máu, có tính dung nạp tốt, không độc, không dị ứng. Nhờ có khả năng đặc biệt này mà ngày nay, HAp dạng gốm xốp được ứng dụng đặc biệt rộng rãi trong y sinh học như [5]: - Sửa chữa những khuyết tật của răng: các nhà khoa hoc Nhật Bản đã thành công trong viêc tạo ra một hỗn hợp gồm HAp tinh thể kích thước nano và polymer sinh học có khả năng phủ và bám dính trên răng theo cơ chế epitaxy, nghĩa là tinh thể HAp mới tạo thành lớp men răng cứng chắc, “bắt chước” theo đúng tinh thể HAp của lớp men răng tự nhiên ở dưới [5] [13]. 8 Hình 1.4 Quá trình tạo lớp men trên bề mặt răng [5] Giai đoạn a: Lớp men HAp cũ, cần thay thế trên bề mặt răng bị phân huỷ bởi dung dịch H2O2 + H3PO4. Hợp chất H2O2 còn có tác dụng loại bỏ các chất bẩn tồn tại trên răng [5] [13]. Giai đoạn b: Các ion Ca2+, PO43-, OH- trong các polime sinh học dạng bột nhão tạo thành vi tinh thể HAp kích thước nano. Hỗn hợp này được phủ lên bề mặt răng cũ để tạo thành lớp men răng mới [5] [13]. - Chế tạo những chi tiết để ghép xương và sửa chữa những khuyết tật của xương [5] [25] : Hình 1.5 : Gốm y sinh HAp tổng hợp bằng các phương pháp khác nhau [5] Tuỳ thuộc vào mục đích cấy ghép hoặc thay thế, người ta có thể chế tạo ra các sản phẩm gốm HAp (Hình 1.6) có kích thước và độ xốp khác nhau. Sau đó, gia công các sản phẩm này thành các chi tiết phù hợp hoặc có thể sử dụng gốm HAp ở dạng hạt để điền đầy những chỗ khuyết tật của xương [5] [25]. 9 Hình 1.6: Sửa chữa khuyết tật của xương bằng gốm HAp dạng khối xốp hoặc dạng hạt [1] Ngoài ra, còn có một số ứng dụng của gốm HAp như: - Làm điện cực sinh học cho thử nghiệm sinh học [1]. - Làm vật liệu truyền dẫn và nhả chậm thuốc [1]. - Gần đây, người ta phát hiện HAp dạng xốp có khả năng vận chuyển và phân tán insulin trong ruột [1]. Tuy nhiên, gốm HAp còn có một nhược điểm là độ bền nén, độ bền uốn thấp. Tồn tại này cản trở viêc áp dụng gốm HAp vào các chi tiết đòi hỏi chịu lực lớn [1]. 1.1.6 Ứng dụng của HAp dạng composit Bản chất của gốm xốp và màng HAp là có độ bền cơ học thấp. Một giải pháp để tăng độ bền cơ học là tạo ra một tổ hợp gốm composit bằng cách phân tán HAp bột vào các polyme sinh học như collagen, chitosan, xenlulo, đường sacaro… . Vật liệu ở dạng này được sử dụng làm các chi tiết cấy ghép xương chất lượng cao, làm kẹp nối xương hoặc có thể làm chất truyền dẫn thuốc. Việc sử dụng các polyme sinh học làm chất nền tạo điều kiện cho việc gia công, chế tạo các chi tiết dễ dàng hơn. Mặt khác, các polyme này còn có khả năng liên kết với các tế bào sinh học thông qua các nhóm chức của mình. Đây cũng là ưu điểm vượt trội của vật liệu composit chứa HAp [5] [12]. 10 1.2 MỘT SỐ PHƢƠNG PHÁP NGHIÊN CỨU BIPHASIC CALCIUM PHOSPHATE 1.2.1 Phƣơng pháp phân tích nhiễu xạ tia X (XRD) Phương pháp XRD được dùng để nghiên cứu cấu trúc tinh thể của vật liệu, có thể xác định nhanh, chính xác các pha tinh thể với độ tin cậy cao [1]. Nguyên lý của phương pháp là xác định cấu trúc tinh thể dựa vào hình ảnh khác nhau của kích thước tinh thể lên phổ nhiễu xạ. Mạng tinh thể nguyên tử hay ion phân bố đều đặn trong không gian theo một trật tự nhất định. Khoảng cách giữa các nút mạng vào khoảng vài ăngstron ( A0 ) xấp xỉ với bước sóng của tia Rơnghen [1]. Một chùm electron đã được gia tốc, có năng lượng cao, đang chuyển động nhanh, bị hãm đột ngột bằng một vật cản, một phần năng lượng của chúng chuyển thành bức xạ sóng điện từ (tia X) gọi là bức xạ hãm [1]. Khi một chùm tia X có bước sóng  và cường độ I đi qua vật liệu, nếu tia tới thay đổi phương truyền và thay đổi năng lượng gọi là tán xạ không đàn hồi. Khi tia tới thay đổi phương truyền nhưng không thay đổi năng lượng gọi là tán xạ đàn hồi. Trường hợp vật liệu đang nghiên cứu có cấu trúc tinh thể thì hiện tượng tán xạ đàn hồi của tia X sẽ đưa đến hiện tượng nhiễu xạ tia X. Hiện tượng này chỉ xảy ra với ba điều kiện: Vật liệu có cấu trúc tinh thể; có tán xạ đàn hồi; bước sóng của tia X (tia tới) có giá trị cùng bậc với khoảng cách giữa các nguyên tử trong mạng tinh thể [1]. Hình 1.7: Sơ đồ nguyên lý của phương pháp nhiễu xạ tia X [1] 11 Trong mạng lưới tinh thể luôn tồn tại họ các mặt phẳng song song, cách đều nhau một khoảng bằng d. Một chùm tia X có bước sóng  chiếu tới bề mặt của mạng lưới tinh thể với một góc  sẽ bị phản xạ trở lại. Tất cả các tia phản xạ đó tạo nên chùm tia X song song có cùng một bước sóng và có phương truyền làm với phương tia tới một góc 2. Khi hiệu số pha giữa các tia X phản xạ là 2n (n là số nguyên), tại điểm hội tụ chùm tia X sẽ có vân giao thoa với cường độ ánh sáng cực đại [1]. 1.2.2 Phƣơng pháp hiển vi điện tử quét (SEM) Nguyên tắc của phương pháp hiển vi điện tử quét là dùng chùm điện tử quét lên bề mặt mẫu và thu nhận lại chùm tia phản xạ. Qua việc xử lý chùm tia phản xạ này, có thể thu được những thông tin về hình ảnh bề mặt mẫu để tạo ảnh của mẫu nghiên cứu [1]. Phương pháp kính hiển vi điện tử quét cho phép quan sát mẫu với độ phóng đại rất lớn, từ hàng nghìn đến hàng chục nghìn lần [1]. Chùm điện tử được tạo ra từ catot qua hai tụ quang sẽ được hội tụ lên mẫu nghiên cứu. Chùm điện tử đập vào mẫu phát ra các điện tử phản xạ thứ cấp [1]. Mỗi điện tử phát xạ này qua điện thế gia tốc vào phần thu và biến đổi thành tín hiệu sáng, chúng được khuếch đại đưa vào mạng lưới điều khiển tạo độ sáng trên màn hình [1]. Mỗi điểm trên mẫu nghiên cứu cho một điểm trên màn hình. Độ sáng tối trên màn hình phụ thuộc lượng điện tử thứ cấp phát ra tới bộ thu, đồng thời còn phụ thuộc bề mặt của mẫu nghiên cứu. Ưu điểm của phương pháp SEM là có thể thu được những bức ảnh rõ nét và không đòi hỏi khâu chuẩn bị mẫu quá phức tạp[1]. 12 Hình 1.8: Sơ đồ nguyên lý của SEM [1] 1.2.3 Phƣơng pháp phân tích quang phổ hồng ngoại (FTIR) Phương pháp phân tích theo phổ hồng ngoại là một trong những kĩ thuật phân tích rất hiệu quả. Một trong những ưu điểm quan trọng nhất của phương pháp phổ hồng ngoại vượt hơn những phương pháp phân tích cấu trúc khác (nhiễu xạ tia X, cộng hưởng điện từ..) là phương pháp này cung cấp thông tin về cấu trúc phân tử nhanh, không đòi hỏi các phương pháp tính toán phức tạp [1]. Kĩ thuật này dựa trên hiệu ứng đơn giản là: các hợp chất hóa học có khả năng hấp thụ chọn lọc bức xạ hồng ngoại. Sau khi hấp thụ các bức xạ hồng ngoại, các phân tử của các hợp chất hóa học dao động với nhiều vận tốc dao động và xuất hiện dải phổ hấp thụ và gọi là phổ hấp thụ bức xạ hồng ngoại [1]. Các đám phổ khác nhau có mặt trong phổ hồng ngoại tương ứng với các nhóm chức đặc trưng và các liên kết trong phân tử hợp chất hóa học [1]. Bột BCP được phân tích FTIR để xác định sự có mặt của các nhóm chức: OH-, PO43- [13]. Bước sóng đặc trưng cho các nhóm chức có thể có mặt trong bột BCP được trình bày ở bảng sau [3]: 13 Bảng 1: Bước sóng đặc trưng của các nhóm chức [3] Nhóm chức Bước sóng (cm-1) H – O Stretch 3570 C – O Stretch 2345 P – O Str (H3PO4) 1649 CO32- Stretch 1545 – 1445 P – O Stretch 1091 P – O Stretch 962 H – O Bend 632 O – P – O Bend 576 1.3 CÁC PHƢƠNG PHÁP TỔNG HỢP HAp Tuỳ thuộc vào mục đích ứng dụng, HAp ở các dạng khác nhau có thể được tổng hợp bằng nhiều phương pháp từ các nguyên liệu khác nhau. Dựa vào điều kiện tiến hành phản ứng, có thể phân chia các phương pháp thành: phương pháp ướt và phương pháp khô; phương pháp vật lý và phương pháp hoá học hoặc chia theo dạng tồn tại (dạng bột, dạng màng, dạng khối xốp) của sản phẩm HAp [5]. 1.3.1 Phƣơng pháp ƣớt Đây là phương pháp chế tạo HAp ở dạng bột hoặc dạng màng từ dung dịch chứa các nguyên liệu ban đầu khác nhau, bao gồm: phương pháp kết tủa, phương pháp sol – gel, phương pháp phun sấy… Nói chung, ưu điểm của phương pháp ướt là có thể điều chỉnh được kích thước của hạt HAp theo mong muốn [1]. 14 1.3.1.1 Phương pháp kết tủa Sơ đồ nguyên lý của phương pháp kết tủa được thể hiện qua hình 1.9: Dung dịch PO43- Dung dịch điều chỉnh pH Dung dịch Ca2+ Khuấy, gia nhiệt Kết tủa HAp Ly tâm, sấy Sản phẩm Hình 1.9: Sơ đồ nguyên lý của phương pháp kết tủa [5] Việc tổng hợp HAp bằng cách kết tủa từ các ion Ca2+ và PO43- có thể thực hiện theo nhiều cách khác nhau, có thể phân ra thành hai nhóm chính [5]: 3 a) Phương pháp kết tủa từ các muối chứa ion Ca2+và PO4  dễ tan trong nước: Các muối hay được dùng là Ca(NO3)2, CaCl2, (NH4)2HPO4, NH4H2PO4… . Phản ứng diễn ra theo phương trình (1.1) được coi là phương pháp cơ bản để tổng hợp HAp [5]: 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH  Ca10(PO4)6(OH)2 + 20NH4NO3 + 6H2O (1.1) Lượng Ca(NO3)2 và (NH4)2HPO4 được chuẩn bị theo tỷ lệ Ca/P = 1,67, pha trong nước cất với nồng độ tương ứng 0,2M và 0,1M. Sau đó, nhỏ từ từ (tốc độ 2ml/phút) dung dịch (NH4)2HPO4 vào cốc đựng Ca(NO3)2 trên máy khuấy từ (tốc 15 độ 300 – 400 vòng/phút). Bổ sung dung dịch NH4OH để đảm bảo phản ứng diễn ra trong môi trường pH = 10 – 12 [5]. Sau khi nhỏ hết lượng dung dịch (NH4)2HPO4 tiếp tục khuấy hỗn hợp trong khoảng 2 giờ tại nhiệt độ đã định. Kết thúc phản ứng, thu lấy kết tủa và làm sạch bằng cách lọc rửa nhiều lần với nước cất trên máy ly tâm hoặc thiết bị lọc hút chân không. Sản phẩm được sấy khô ở nhiệt độ 75 – 800C và bảo quản tránh tiếp xúc với không khí [5]. b) Phương pháp kết tủa từ các hợp chất chứa Ca2+ ít tan hoặc không tan trong nước: Phản ứng xảy ra giữa Ca(OH)2, CaO, CaCO3… với axit H3PO4 trong môi trường kiềm [1][26]. Ví dụ: 10Ca(OH)2 + 6H3PO4 = Ca10(PO4)6(OH)2 + 18H2O (1.2) Trong quá trình điều chế, yếu tố pH cũng đóng vai trò quan trọng. Độ pH 9 – 10 được điều chỉnh bằng cách thêm từ từ H3PO4 vào Ca(OH)2 [5] [10]. Các yếu tố như nguyên liệu ban đầu, nhiệt độ, môi trường phản ứng… thường ảnh hưởng đến chất lượng và hình dạng của tinh thể HAp. Để nhận được sản phẩm HAp bột có kích thước mong muốn thì ngoài các yếu tố trên, cần quan tâm đến sự kết tinh của HAp trong suốt quá trình tổng hợp [5]. 1.3.1.2 Phương pháp sol – gel Theo lý thuyết về phương pháp sol – gel, hệ phân tán là hệ bao gồm một môi trường liên tục và các tiểu phân (các hạt) có kích thước nhỏ được phân tán đồng đều trong môi trường đó. Tập hợp các tiểu phân nhỏ bé đó được gọi là pha phân tán, môi trường chứa đựng pha phân tán gọi là môi trường phân tán. Khi môi trường phân tán là lỏng và pha phân tán là rắn, thì tuỳ kích thước hạt sẽ tạo ra hệ huyền phù hoặc hệ keo (sol) [1] [24]. Gel là một trạng thái lỏng hoá rắn, được tạo thành từ các hệ sol hoặc các dung dịch cao phân tử. Gel có cấu trúc mạng không gian chứa đựng trong nó phần còn lại của chất lỏng sau khi hình thành mạng. Quá trình tạo gel được mô tả như sau: Hệ sol, dung dịch cao phân tử  gel, nghĩa là các hệ sol, dung dịch cao phân tử có thể
- Xem thêm -

Tài liệu liên quan